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The lattice Boltzmann methods (LBM) have successfully been applied to micro-scale flows in
hydrodynamic regime, such as flows of liquid in porous media. However, the LBM, in their standard
formulation, do not produce correct results beyond the hydrodynamic regime, i.e. for slip and tran-
sitional ones. Following the work of Shan and He [1] we propose to extend the LBM to those stated,
where non-equilibrium effects are obvious and require to include a larger number of distribution
function moments.

PACS numbers: 47.11.-j, 05.20.Jj, 05.20.Dd, 05.70.Ln, 51.10.+y

I. INTRODUCTION

The challenge of modeling low-speed gas flow possessing significant non-equilibrium effects, either due to rarefaction
or confinement in small size structures, is well known. Such flows are characterized by a finite Knudsen number and a
small Mach number Ma = U0/c0 ≤ 0.1, where U0 is the characteristic velocity of the flow and c0 the speed of sound.
The Knudsen number Kn = λ/L, defined as the ratio of the mean free path λ of the particles to the characteristic
length L of the flow, characterizes the “distance” from equilibrium. For sufficiently large Knudsen, all assumptions
of continuum mechanics collapse. More specifically the Navier-Stokes equations and the no-slip boundary conditions
are no longer consistent [2].

Since the Boltzmann equation is valid to describe fluid flows at any Knudsen, i.e. from hydrodynamic to collisionless
regimes, it is a good candidate to model systems with a large range of size scales, namely, where microscopic/rarefied
and macroscopic/hydrodynamic scales are connected. Examples of such systems can be found in some natural porous
media, such as coal [3], where the size of pores can extend from nanometer to millimeter, or by MEMS [4], which are
micro-metric system flows driven by macroscopic pumps.

The Lattice Boltzmann Method (LBM) has recently become a good counterpoint to conventional CFD methods [5],
especially to simulate hydrodynamic fluid flows in complex geometries, such as porous media [6].

Furthermore, this method achieves good results for flows with moderate Knudsen (Kn ∼ 0.1), characteristic of the
slip regime, when using kinetics boundary conditions [2, 7] or maximizing an entropy [8]. It would be interesting, for
many applications, to improve these methods again so as to access the transitional regime, i.e. a Knudsen number of
order one. Such an enhancement should help to account for effects related to rarefaction/confinement in porous media,
such as the Klinkenberg effect. This has already been studied with standard LBM [9], but dealing with bounce-back
or specular boundary conditions which are known to be inefficient at high-Knudsen number when used on their own.
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For finite Knudsen number, special attention has been given to capture the Knudsen Layer with different kind
of LBM models. To keep the computational efficiency of the method, the velocity set has been chosen in accord
with a regular lattice (typically the D2Q9 scheme). Nevertheless in order to catch the slip phenomena, effective
relaxation time schemes [10, 11] or multiple relaxation time schemes [12, 13, 14, 15] associated with appropriate
boundary conditions have been developed. For the D2Q9 LBM scheme, Toschi and Succi [16] suggested to add virtual
collisions for beams parallels to boundaries, in order to cure the so called “runaway pathology of lattice Boltzmann”.
Nevertheless, the authors conclude that the standard LBM does not have a sufficient velocity space isotropy. Nie
et al. [17] come to the same conclusion. Furthermore, using an important number of beams in the discrete velocity
models [18], specifically used to solve flows with high Knudsen number, shows that we need a thinner discretization
of the velocity space to access high-Knudsen flows.

From those assessments, we propose to study a family of schemes with a reasonably increasing number of beams and
an increasing order of isotropy. This family is built on the systematic procedure of construction described by Shan et

al. [1, 19] which essentially consists in projecting the distribution function on the basis of Hermite polynomials (as
in the approach of Grad [20, 21]), and evaluating the moments of this function using the Gauss-Hermite quadrature.
Moreover, the present approach may be viewed as a pragmatic alternative to the development given by Shan et al.

[19]. The non-regular structure of the velocity space that this quadrature induces requires to interpolate for the
transport procedure, as already mentioned by Bardow et al. [22]. We use the Maxwell’s boundary conditions [2, 7]
with total accommodation because of the wall importance in high-Knudsen regimes, where inter-particle collisions are
nearly absent.

This family of schemes is demonstrated through the numerical simulations of a force-driven plane Poiseuille flow.
Numerical results are compared with existing semi-analytical theories [2] and experimental data for various gaseous
components [23], which relate the flow rate of the Poiseuille flow to a function of the Knudsen number.

This paper is organized as follows: section II describes the background theory used to build high order lattice
Boltzmann models; section III is devoted to the numerical test briefly aforementioned; finally, section IV presents the
conclusions and perspectives that can be drawn from this work.

II. HIGH ORDERS LATTICE BGK EQUATIONS

A. The BGK model

The Boltzmann equation describes the evolution of a single particle distribution function, f(x, v, t), where x is the
position and v the velocity of the particle at time t. It reads:

∂f

∂t
+ v · ∇xf +

F

m
· ∇vf =

(

∂f

∂t

)

c

, (1)

where ∇x and ∇v are respectively the gradients in configurations and velocity spaces, m the mass of a particle
and F an external force. In this model, the collision operator (rhs of Eq. (1)) is taken in its linearized form given by
Bhatnagar-Gross-Krook (BGK) collision term [24]:

(

∂f

∂t

)

c

= −f − feq

τ
, (2)

where τ is the relaxation time. This single time is related to both the kinematic viscosity ν (ν = kB T τ/m) and
the thermal diffusivity κ (κ = kB T τ/m) of the fluid. This points out that the BGK operator intrinsically describes
a fluid for which the Prandt number Pr = ν/κ is equal to unity. Finally, the local Maxwell-Boltzmann equilibrium
distribution feq reads:

feq(x, v, t) = ρ

(

m

2 π kB T

)D/2

exp

(

−m (v − u)2

2 kB T

)

, (3)

where kB is the Boltzmann constant and D the space dimension. The equilibrium distribution function shares the
three first moments with f : the density ρ, the macroscopic velocity u and the temperature T , which are all functions
of position x and time t. Because the BGK collision operator conserves the number of particles, the momentum and
the total energy, those macroscopic quantities are given by the first three momenta of the distribution function f , i.e.:
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ρ =

∫

f dv, (4)

ρ u =

∫

v f dv, (5)

ρ D
kBT

m
=

∫

(v − u)2 f dv (6)

B. Discretization procedure

The Lattice Boltzmann Methods (LBM) consist in going back and forth between a kinetic and a macroscopic
description. The temporal evolution of the distribution function f is given by (1) where the collisional operator
requires to know the equilibrium distribution function feq. In turn, feq requires the first three momenta of the
distribution function f . The Boltzmann equation is numerically integrated using a splitting scheme [25]. Firstly, the
temporal evolution of the distribution function is achieved by solving the linear transport term in the lhs of Eq. (1)
alone. Different TVD schemes have been experimented and three flux limiters have been retained and compared :
MinMod and Superbee limiters [26] and Koren limiter [27]. They give very close results apart for very low Knudsen
numbers (≤ 10−3) where the advantage goes to the Koren limiter.

The second step implements the local collisional term. That requires to know the equilibrium function using the
three first momenta of the distribution function. The same kind of scheme has already been used to integrate the
Vlasov equation [28]. Nevertheless, in this context, it has been recognized that the velocity discretization of the
distribution function should be precise enough, especially to take into account high velocities.

Here, because the equilibrium is a Gaussian and because the computation of the momenta of the distribution
function requires integral calculation which can be performed efficiently by a Gauss-Hermite quadrature method, we
propose to decompose the distribution function on Hermite polynomials basis. The decomposition of the equilibrium
function given by Eq. (3) reads:

feq = ρ w[θ0](v)

∞
∑

n=0

u
n

n!
H[θ0]

n (v), (7)

where w[θ0](v) = 1/
√

2πθ0 exp
(

−v
2/2θ0

)

is the weight function for the Hermite polynomials H[θ0]
n , c0 =

√
θ0 =

√

kB T0/m the thermal velocity related to an arbitrary temperature θ0 and H[θ0]
n the n-th Hermite polynomial gen-

eralized to the same temperature θ0 (cf. A). That temperature, although arbitrary, will actually be close to the
temperature θ of the system. The summation (7) implies an infinite number of terms. From a practical point of view,

the summation is performed up to a given order N . So a truncated equilibrium distribution function f̃eq(x, v, t) is
thus introduced:

f̃eq(x, v, t) = w[θ0](v)

N
∑

n=0

an(x, t)

n!
H[θ0]

n (v), (8)

where the coefficients an(x, t) are the moments of f̃eq. Again the distribution function f is given by a decomposition
on Hermite polynomials basis up to an order q which is not necessarily equal to N :

f̃(x, v, t) = w[θ0](v)

q
∑

n=0

bn(x, t)

n!
H[θ0]

n (v), (9)

where the bn(x, t) are computed using the orthogonality relation:

bn(x, t) = θn
0

∫ ∞

−∞

f̃(x, v, t)H[θ0]
n (v) dv (10)
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Because the collision operator conserves the first three moments of f , a0, a1 and a2 are respectively equal to b0,
b1 and b2. The higher moments of f̃eq are combinations of these first three moments. It is natural to compute the
integral (10) with a Gauss-Hermite quadrature:

bm = θm
0

∫ ∞

−∞

w[θ0](v)
f̃ H[θ0]

m (v)

w[θ0](v)
dv

= θm
0

q
∑

i=1

fi H[θ0]
m (vi), (11)

with

fi = ωi
f̃(x, vi, t)

w[θ0](vi)
(12)

The velocities vi are the roots of the Hermite polynomial of order q and the ωi are their associated weights:

{ωi = q!
[

qH[θ0]
q−1(vi)

]−2

: i = 1, . . . , q}, (13)

where vi is the i-th root H[θ0]
q .

The summation is exact if the order of the polynomial f̃ H[θ0]
m (v)/w[θ0](v) is less than 2q. It will then be possible

to evaluate the distribution function f̃ up to order q. However, the numerical scheme only needs to construct the
equilibrium distribution function f̃eq explicitly, hence to compute the first three moments of the distribution function.
It is consistent with equation (9) to take a Gauss summation up to q. Relation (11) is indeed exact as soon as the

order of f̃ is less or equal to q. It will be the case because f̃ /ω
[θ0]
0 (v) is a polynomial of order q, and H[θ0]

m is a
polynomial of order m (m going from 0 to q).

In dimension 1, the discretization of the velocity space is provided by the Gauss-Hermite quadrature. The q velocity

values are given by the q roots of the generalized Hermite polynomial H[θ0]
q (vi) (cf. A). In higher dimension D, the

discretization of the velocity space is obtained by the tensor products of D copies of the 1-dimensional velocity system
and the weights are computed as the product of the corresponding 1-dimensional weights. Consequently, the number
of velocity beams is qD. Labeling the distribution function with an index associated to the qD beams, the three
moments read:

ρ =

qD

∑

i=1

fi (14)

ρ u =

qD

∑

i=1

vi fi (15)

D ρ θ + ρ u
2 =

qD

∑

i=1

v
2
i
fi (16)

Those three moments allow us to compute a distribution function feq
i = ωi

f̃eq(x, vi, t)

w[θ0](vi)
. For example, the truncation

of equation (8) to N = 2 provides:

feq
i = ωi

(

a0(x, t)H[θ0]
0 (vi) + a1(x, t)H[θ0]

1 (vi) +
1

2
a2(x, t)H[θ0]

2 (vi)

)

= ωi

(

ρ + ρ
u · vi

θ0
+ ρ

(u · vi)
2

2 θ2
0

+ ρ
(θ − θ0)

2 θ0

(

v
2
i

θ0
− D

)

− ρ
u

2

2 θ0

)

(17)



5

The first three moments of this distribution function are indeed given by a0, a1 and a2. Nevertheless we can show
that the positivity of this truncated distribution function is no longer guaranteed. A more complete presentation of
this method is given by Shan et al. [19]. Here we restrict our study to 2D problems with schemes obtained by 1D

composition. So, a scheme called here Hq (model with q beams per direction) correspond to the quadrature Eq2

2,2q−1

in [19].

III. NUMERICAL RESULTS

As a benchmark for this method, a transitional-Knudsen-number Poiseuille flows is under study [16]. A force-driven
Poiseuille flow was simulated for a large range of Knudsen numbers using schemes based on {Hq : q = 3, . . . , 8} and
with a second order equilibrium distribution function (N = 2). These simulations are set-up as follows. We apply
Maxwell’s boundary conditions in the cross-channel direction (y) and a periodic boundary condition in the channel
direction (x). In the cross-stream direction L = 100 grid points are employed, and only four grid points are used in

the periodic (stream) direction. The Knudsen number is defined as Kn =
√

5
2

ν
L c0

, where ν is the kinematic viscosity

and c0 the speed of sound. Hence, simulations are parametrized using the relation between the kinematic viscosity
and the discrete relaxation time τ = ν/c2

0 − δt/2, with δt = 1 in dimensionless formulation. The flow is driven by an
external force F = 8 ν U0/L2 pointing in the positive-x direction, where U0 is the maximum velocity of the stream
in the hydrodynamic limit (i.e. for Kn → 0). U0 is chosen so that every simulation has the same Mach’s number:
Ma = U0/c0 = 10−4. Finally, the density, the velocity and temperature are respectively initialized to 1, 0 and θ0 all
over the domain.

For different values of the Knudsen number (0.001 < Kn < 10), the mass flow rates across the duct Q =
∑L

y=0 ρ(y)ux(y) are calculated when the steady state regime is reached. Figure 1 shows, for each scheme, this

mass flow rate normalized to Q0 = 6 ν U0/c0 as a function of Kn. We also give also some experimental values [23]
and the low-Knudsen asymptotic value [2] for comparison:

Q

Q0
=

1

6 Kn
+ C1 + 2C2Kn. (18)

In this expression, the term 1/6 Kn (also plotted) is associated to the Navier-Stokes solution without slippage while
the other terms involving C1 and C2 take into account first and second-order slip boundary condition respectively.
Different values could be found in the literature (see Tang et al. [9]). Nevertheless C1 is usually close to 1, while C2

lives in a wide range of values including negative ones. Here we will take C1 = 1 and C2 = .13 (see hereafter for the
choice of C2).

Figure 1 points out the following observations. Firstly, in the hydrodynamic regime (i.e. for Kn . 0.01), all models
agree with the theoretical curve given by the Navier-Stokes equations. Even the simplest model H3, the well known
D2Q9 which only deals with 3 beams per direction, gives good results. When Kn is increased, the numerical results
deviates from the hydrodynamic asymptote as expected, but all models agree with each other almost up to Kn = 0.1,
value for which discrepancies between them appear. Hence, all these schemes produce good results up to the slip
regime, commonly defined in the range 0.01 < Kn < 0.1.

Beyond the slip regime, i.e. in the transitional regime, the flow-rate curves separate, alternating relatively to
the experimental curve – our only reference, as no theoretical solution exists in this interval –. This convergence
is noticeable because systems with even-order quadrature underestimate the flow-rate, while the odd-order ones
overestimate it. However, increasing the order of quadrature improves the result in any case. Physically, the difference
between odd and even schemes must be related to the fact that the 0-velocity stream appears in the former but not in
the latter. As the 0-velocity particles do not move, they do not collide with boundaries either. They are only sensitive
to particle-particle collisions. Unfortunately the influence of this process decreases with increasing Knudsen number
and finally, these particles remain in their initial state over a very long time. Although the odd-schemes induce
larger errors on the flow-rates, they have the advantage of depicting at least qualitatively a minimum for Kn ∼ 1.
Indeed experimental data reported figure 1 show this minimum which is not an artifact and corresponds exactly to
the Knudsen paradox behavior.

The alternation suggests the idea of trying to accelerate the convergence of these schemes by combining two different
behavior patterns. The natural choice for these schemes is to take two successive orders. We can therefore hope to
compensate the overestimation of the flow-rate of the odd-scheme by the underestimation of the lower or higher even-
order, while maintaining the extrema of the curve. These composite schemes are noted Hq|q+1 and are simply built
by superposition of the Hq and Hq+1 velocity spaces and by dividing the weights of each ones by 2, so the sum of the
weights of the new scheme is again equal to unity. More precisely, the new set of velocities of the composite schemes
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FIG. 1: Q/Q0 obtained with {Hq : q = 3, . . . , 8} (symbols), analytical curve (dashed line) and experimental data (stars).

Hq|q+1 is the addition of the qD velocities of Hq and the (q+1)D velocities of Hq+1 (where D is the spatial dimension).

So the transport step of the distribution function is performed for this new set of velocities i.e. on qD + (q + 1)D

beams. The equilibrium distribution function is still given by equation (17) but the moments are now computed by
summation over the qD + (q + 1)D fi’s. Here, the weight of a given beam is the same as for the scheme from which
it comes, but divided by two. So the sum of the weights over all the beams remains equal to one. As before, the
velocities are normalized to the highest one.

On figure 2 are plotted results for the same problem, but obtained with {H3|4,H4|5,H5|6,H6|7} composites schemes
described in the previous paragraph. Results of schemes based on {Hq : q = 7, 8} are also plotted for comparison.
In terms of computational cost, the H3|4 must be compared with H5 as they both have 25 beams. H4|5 and H7 can
also be compared as they have respectively 41 and 49 beams. So the combination of two successive order quadratures
considerably increases the speed of convergence of the family. Notably, the scheme based on the H4|5 produces very
good results up to Kn = 1, with a computational cost of the order of standard high-orders lattice Boltzmann models.
Finally, the worst behavior of H5|6 compared to H4|5, may be linked to the fact that the relative weight of the 0-
velocity stream is more important in the former than in the latter. This suggests to prefer even|odd combination or
to give a weight higher then 1/2 to even models.

To have a better insight into the results, the velocity profiles are given figure 3 for H4/5 and different values of the
Knudsen number. The theoretical profiles obtained from an hydrodynamic analysis including a velocity slip is also
plotted. Its expression reads :

v(x) = 4U0

( x

H
(1 − x

H
) + C1Kn + 2C2K

2
n

)

(19)

As expected, the agreement is good for low Knudsen numbers while the numerical profile is flatter than the
theoretical one for highest Knudsen values. The slip velocities are given on figure 4 for all models including composite
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FIG. 2: Flow rate computed with {Hq : q = 7, 8} and {H3|4,H4|5,H5|6,H6|7} (symbols). Experimental data (stars).

ones. The theoretical velocity slip Us = v(x = 0) obtained with the second order approximation in Kn is given for
comparison.

As for equation (18), C1 = 1 and C2 = .13. The value of C2 has been chosen such that equation (19) fits the slip
velocity points of H4|5. As for the flow curve, the same general picture can be drawn : all the models agree in the
hydrodynamic limit, while the slip velocity is higher for odd models than for even models. As q increases, the slip
velocities of even and odd models converge toward a single curve. This curve is close to the one obtained for the
composite models which do not exhibit huge differences.

The computational time needed for the simulations given here is depicted figure 5. For both families of schemes the
CPU time scales as the total number of beams to the power 1.32. For the same number of beams, composite schemes
are slightly faster than simple ones. More precisely, the numerical effort for a Hq|q+1 is approximatively the same as

for Hq′ , with q′ = int([qD + (q + 1)D]1/D), where the function int(x) maps x to the closest integer (Fig. 5).

IV. CONCLUSION

We have presented a high order lattice Boltzmann model based on the projection of the distribution function on
the Hermite’s basis. The schemes obtained with that procedure have been tested on a Poiseuille flow for a wide
range of Knudsen numbers, ie from the hydrodynamic regime to the rarefied one. All those schemes agree with the
theoretical values for small Knudsen numbers. Two successive order schemes show an alternating convergence toward
experimental data. However, that convergence seems to be slow. Mixed scheme have been proposed in order to
improve it. Qualitatively the good agreement obtained for Hq+1 models coupled to the Hq ones can be attributed
to a finer discretization of the velocity space. For the former, the beams belong to a range around the thermal
velocity, while the latter takes into account higher velocities where the probability distribution function is not very
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FIG. 3: Velocity profiles for H4|5 and Kn=.005, 0.32, 0.64, 1.28 and 2.56. Numerical results are continuous lines. As expected,
theoretical curves (dashed lines) are valid for small Knudsen number.
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FIG. 4: Slip velocities for Hq (symbols) and theoretical curve (continuous line).

significant. Among that family the combination of type H2q+1|2q should be preferred since the 0-velocity stream is
weakly weighted.

In our approach, we used a better velocity space discretization than in the usual LBM scheme. In addition, to be
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FIG. 5: Normalized CPU time for the different models with Kn = 0.032.

able to use Gauss Hermite quadrature to compute the exact the moments of the distribution function, the velocities
are the roots of an Hermite polynomial. The irrationality of these roots demands the use of a more sophisticated
propagation step than for a standard lattice method. To that respect, the computational effort is more important.
Nevertheless, all the schemes imply the usual relaxation time related directly to the Knudsen number. So there is no
need to introduce an effective scheme-dependent relaxation time nor to use a multiple relaxation time scheme. In the
former case it appears that it is still a challenge to find a general wall function.

The scheme order is related to the truncation q of the Hermite development of the distribution function (see Eq. (7))
which is higher than the truncation N of the equilibrium distribution function toward which the former relaxes. Here,
we have taken N = 2, while q runs from 2 to 8. Although it is not explicitly computed, it is important to have a good
description of the distribution function, especially for high Knudsen values for which it remains out of equilibrium
over long times. It has been numerically verified that, at least for the benchmark presented here, increasing the order
N only has minor influence.
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APPENDIX A: HERMITE POLYNOMIALS

1. Appendix I

Generalized Hermite polynomials with temperature θ0 = c2
0.
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H[c2

0
]

0 (x) = 1 H[c2

0
]

3 (x) =
x3

c6
0

− 3 x

c4
0

H[c2

0
]

1 (x) =
x

c2
0

H[c2

0
]

4 (x) =
x4

c8
0

− 6 x2

c6
0

+
3

c4
0

H[c2

0
]

2 (x) =
x2

c4
0

− 1

c2
0

H[c2

0
]

5 (x) =
x5

c10
0

− 10 x3

c8
0

+
15 x

c6
0

2. Appendix II

Generalized Hermite polynomials with temperature θ0 = c2
0 in dimension higher than one.

H
[c2

0
]

0 (x) = 1 H
[c2

0
]

1 α(x) =
xα

c2
0

H
[c2

0
]

2 α β(x) =
xα xβ

c4
0

− δα β

c2
0

H
[c2

0
]

3 α β γ(x) =
xα xβ xγ

c6
0

− xα δβ γ + xβ δα γ + xγ δα β

c4
0

H
[c2

0
]

n is a tensor of order n.
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