
HAL Id: insu-00688849
https://insu.hal.science/insu-00688849

Submitted on 13 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Decompression-induced crystallization in hydrated
silica-rich melts: Empirical models of experimental

plagioclase nucleation and growth kinetics
Edith Mollard, Caroline Martel, Jean-Louis Bourdier

To cite this version:
Edith Mollard, Caroline Martel, Jean-Louis Bourdier. Decompression-induced crystallization in hy-
drated silica-rich melts: Empirical models of experimental plagioclase nucleation and growth kinetics.
Journal of Petrology, 2012, 53 (8), pp.1743-1766. �10.1093/petrology/egs031�. �insu-00688849�

https://insu.hal.science/insu-00688849
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Decompression-induced Crystallization in
Hydrated Silica-rich Melts: Empirical Models
of Experimental Plagioclase Nucleation
and Growth Kinetics

EDITH MOLLARD1,2, CAROLINE MARTEL1,2* AND
JEAN-LOUIS BOURDIER1,2

1UNIVERSITE¤ ORLE¤ ANS, ISTO, UMR 7327, 45071, ORLE¤ ANS, FRANCE
2CNRS/INSU, ISTO, UMR 7327, 45071 ORLE¤ ANS, FRANCE

RECEIVED APRIL 6, 2011; ACCEPTED APRIL 18, 2012
ADVANCE ACCESS PUBLICATION JUNE 21, 2012

Isothermal and isobaric crystallization of plagioclase in a

water-saturated synthetic rhyolitic melt is investigated through a

time-series of decompression experiments. The experimental

variables are the rate at which samples are initially decompressed

(30, 150, and 1200MPa h�1) from 200MPa and 8758C, final pres-
sure (25^160MPa), and holding time at final pressure (up to 17

days). Through textural measurements of the crystals, plagioclase

crystallization kinetics is characterized in terms of nucleation lag

and rates of nucleation and growth. Plagioclase crystallization is

markedly dependent on effective undercooling, �Teff, and holding

time at crystallization pressure. With �Teff increasing from 55 to

1108C, (1) nucleation lag decreases from 1^2 days to �15 min, (2)

maximum nucleation rates increase from �10�3 to 10�2mm�2 s�1,

and (3) maximum growth rates decrease from �10�6 to

5�10�7mm s�1. The initial decompression rate (30, 150, and

1200MPa h�1) has no systematic control on crystallization at final

pressure, except for the 1200MPa h�1 series in which samples show

nucleation difficulties. From the experimental data for �Teff-con-
strained plagioclase number density, proportion, and morphology, we

provide means to assess the conditions of nucleation and growth of

natural plagioclase microlites from rapidly ascended rhyolitic melts,

through the determination of the plagioclase liquidus curve and

�Teff prevailing during crystallization.

KEY WORDS: crystallization; plagioclase; nucleation delay; growth

rate; effective undercooling

I NTRODUCTION
Most andesitic to rhyolitic island-arc volcanoes are charac-
terized by repeated episodes of effusive dome growth and
explosive eruptions, such as dome destabilization into
more or less violent pyroclastic flows or Plinian events
(Roobol & Smith, 1976; Mullineaux & Crandell, 1981;
Newhall et al., 1996; Wolf & Eichelberger, 1997; Young
et al., 1998; Rutherford & Gardner, 2000). The occurrence
of either type of eruptive behavior mainly reflects differ-
ences in magma degassing in response to variable ascent
rates of the magma in the volcanic conduit (Jaupart &
Alle' gre, 1991; Woods & Koyaguchi, 1994; Rutherford,
2008), which has prompted many studies on the degassing
conditions and kinetics in silicic magmas (e.g. Sparks,
1978; Eichelberger et al., 1986; Toramaru, 1989; Navon
et al., 1998; Gardner et al., 1999; Melnik & Sparks, 1999;
Martel & Bureau, 2001; Mourtada-Bonnefoi & Laporte,
2002, 2004; Gonde¤ et al., 2011). However, gas exsolution
from a melt induces crystallization through an increase of
the liquidus temperature (Tuttle & Bowen, 1958), provided
enough time is available for crystallization. A number of
studies have demonstrated that microlite crystallization
occurs on eruptive timescales (Geschwind & Rutherford,
1995; Hammer & Rutherford, 2002; Martel & Schmidt,
2003; Brugger & Hammer, 2010). Nevertheless, the role of
syn-eruptive crystallization in magma ascent conditions
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and the explosive potential of the magma still remains
unclear.
Most crystal nucleation and growth studies have been

conducted in compositionally simple systems (Davis et al.,
1997; James et al., 1997) and induced by cooling (Fenn,
1977; Donaldson, 1979; Tsuchiyama, 1983; Muncill &
Lasaga, 1987, 1988; Roskosz et al., 2005; Pupier et al., 2008).
In cooling conditions, the supersaturation required for
crystallization is obtained by lowering the melt tempera-
ture with respect to the saturation (liquidus) temperature;
that is, by increasing undercooling (�T¼crystal liquidus
temperature ^ magma temperature). However, the driving
force for crystallization in ascending silicic liquids may
not be cooling, but melt dehydration as pressure decreases.
The liquidus temperature of anhydrous crystals increases
with decreasing melt water content. Therefore, isothermal
depressurization of water-saturated liquids (decrease of
melt water content) leads to an increasing difference be-
tween the crystal liquidus temperature and the magma
temperature, referred as to the effective undercooling,
�Teff (Hammer & Rutherford, 2002). �Teff directly con-
trols the rates of crystal nucleation and growth, variations
in which are reflected in specific crystal textures and
morphologies (Lofgren, 1974, 1980; Brandeis & Jaupart,
1987; Roselle et al., 1997; Hort, 1998; Toramaru, 2001;
Hammer & Rutherford, 2002; Couch et al., 2003;
Hammer, 2004; Brugger & Hammer, 2010; Martel, 2012).
To provide reliable correlations between crystal char-

acteristics (texture, morphology, and composition) and
syn-eruptive crystallization conditions, we performed
decompression-induced time-series experiments starting
with a water-saturated silicic melt. We chose a simplified
melt composition (four components) to (1) focus on plagio-
clase crystallization only, (2) reduce the number and
complexity of the parameters controlling crystallization,
and (3) facilitate crystallization thermodynamic modeling
(to be reported elsewhere). In comparison with previous
experimental studies (Hammer & Rutherford, 2002;
Couch et al., 2003; Brugger et al., 2010), our starting samples
were crystal-free; they were specifically designed to investi-
gate homogeneous crystal nucleation and to discriminate
the contribution of crystal nucleation from growth. These
experiments are meant to qualitatively and quantitatively
characterize the processes and rates of nucleation and
growth as a function of �Teff and pre-crystallization
decompression rate.

EXPER IMENTAL AND
ANALYT ICAL METHODS
Starting material
The starting glass is a haplotonalite synthesized by
Schott-AG (Germany) by mixing appropriate amounts of
SiO2, Al(OH)3, CaCO3, NaNO3, and Na2CO3, fusing at

17508C for �24 h while stirring, and cooling to 6008C at a
rate of 208C h�1 before air quenching. This crystal-free
and bubble-free glass, hereafter referred to as HTND, has
the following composition in wt %: 78·7 SiO2, 14·1 Al2O3,
5·4 Na2O, and 1·8 CaO (CIPW norm in wt %: 44
Quartz, 45 Albite, 9 Anorthite, 2 Corundum). The SiO2

content of HTND is about 2wt % higher than that of
most of the rhyolitic interstitial glasses of common andes-
ites to dacites (e.g. the microlite-free rhyolitic interstitial
glass from the andesite of Mt Pele¤ e, Martinique, contains
76^77wt % SiO2; Martel et al., 1998). Therefore, HTND
may be considered as a silicic end-member proxy for
natural rhyolitic melts. Such a simplified composition is
an acceptable compromise between natural and experi-
mental requirements, in the sense that it (1) crystallizes
nearly exclusively plagioclase, the major microlite phase
of most of the natural rhyolites and (2) facilitates further
thermodynamic modeling from experimental data.

Experimental device and method
To simulate decompression-driven isobaric crystallization
in silicic melts under relevant volcanic conditions, we
defined our experimental parameters in agreement with
the pre-eruptive conditions proposed for the Mt Pele¤ e
plumbing system; that is, 200MPa, 8758C, and melt
water-saturation (Martel et al., 1998).

Melt hydration

Hydrated glasses were prepared by mixing �300mg of
finely ground HTND and enough distilled and deionized
water to ensure saturation at 8758C and 200MPa (i.e.
5·8wt % calculated after Newman & Lowenstern, 2002).
The water^glass mixtures were loaded in gold capsules
(40mm in length, 4·0mm ID, 4·4mm OD) and
arc-welded shut. The capsules were held for at least 1h in
a drying oven at 1208C to homogenize water distribution
and loaded in an internally heated pressure vessel (IHPV;
ISTO, Orle¤ ans, France) for hydration at 8758C and
200MPa over 1 week. The vertically working IHPV was
pressurized with pure argon. Pressure (�2MPa) was
monitored by a high-pressure transducer calibrated against
a 700MPa Heise gauge and temperature (�48C) was
monitored by K-type thermocouples. The samples were
quenched isobarically to avoid water exsolution from the
melt. Melt water saturation was confirmed by the presence
of a droplet of excess water when opening the capsules.

Decompression experiments

Around 20^30mg of hydrated HTND chips were loaded
in gold capsules (�25mm in length, 2·5mm ID, 2·9mm
OD) and welded shut for dynamic decompression experi-
ments in horizontally working cold-seal pressure vessels
(CSPV; ISTO, Orle¤ ans, France) made of Inconel 100
(Ni-steel alloy) and pressurized with pure argon. Before
each run, the furnaces of the CSPVs were calibrated at
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the pressure of interest by internal (two reading points)
and external (one reading point) K-type thermocouples
(both types with precision of �48C), to determine a hot-
spot zone, �3 cm long, without a significant temperature
gradient. During an experiment, the sample temperature
was read by only the external thermocouple (cumulative
uncertainty of �88C). Pressure (�2MPa) was monitored
by a high-pressure transducer (Asco Instrument PR 851)
calibrated against a 700MPa Heise gauge. The capsule
containing the hydrated glass chips was introduced into
the vessel with a Ni-steel alloy filler rod 80mm long to
reduce gas convection at high temperature, pressurized to
target pressure and heated to 8758C (requiring continuous
depressurization to maintain pressure constant while
heating).
All samples were held for 6 h at 200MPa and 8758C

(liquidus condition), to ensure a relevant and comparable
chemical and structural state of the melt before decom-
pression. Following this equilibration stage, the samples
were depressurized by manually bleeding a pressure valve
from 200MPa (initial pressure, Pi) to various final pres-
sures (Pf) between 25 and 160MPa. The decompression
(�P¼Pi ^ Pf) path followed multiple instantaneous
decompression steps of 5MPa. The total durations (�t) of
decompression were 7·5min, 1h, and 5 h, corresponding
to decompression rates (�P/�t) of 1200, 150, and
30MPah�1, respectively. At Pf, holding times were from 0
to 17 days. At the end of each anneal step, the sample was
quenched by removing the vessel from the furnace and
shaking it vertically to let the capsule and the filler rod
drop into the water-cooled part of the vessel (5508C), indu-
cing quench rates of the order of 25^508C s�1. Only sam-
ples with similar capsule weights before and after the run
were considered for further analysis.

Liquidus experiments

Several runs were performed to locate the plagioclase
liquidus, which is a prerequisite for the determination of
�Teff. For this purpose, hydrated HTND chips were
sealed in Au capsules that were run either at 200MPa in
CSPVor at 50MPa in IHPV. In both cases, pressure and
temperature were kept constant for 6 days, which has
been demonstrated to ensure chemical equilibrium in hap-
logranitic melts at 200 MPa, 700^9008C, and �6wt %
H2O (Holtz et al., 1992).

Analytical techniques
Crystal detection

Pieces of slightly crushed run products were placed on
a glass plate and covered with a drop of density liquid
(1·47) to check for the presence of crystals using an
optical microscope equipped with a quarter-wave (¼ l)
plate. Although having a resolution of only �2 mm, this
technique permits good crystal detection for very low crys-
tallinity (51%).

Other grains from the same runs were embedded in
epoxy resin, polished and carbon-coated for crystal ana-
lysis using aJEOLJSM-6400 scanning electron microscope
(SEM) operating at 20 keVaccelerating voltage and 6 nA
beam current. SEM has the advantage of allowing better
spatial resolution (�0·5 mm) than optical microscopy, but
crystal detection in a poorly crystallized sample frequently
failed for statistical reasons (only a small fraction of the
whole sample is observed).
To check for the presence of crystals at the nanoscale, we

observed the samples using a Philips CM20 transmission
electron microscope (TEM; CEMHTI, Orle¤ ans, France),
operating at 200 kV and equipped with an Oxford
energy-dispersive spectroscopy (EDS) analyzer [following
the method described by Martel et al. (2011)]. The starting
HTND glass and the samples quenched just after decom-
pression were first crushed in ethanol to obtain a suspen-
sion of small glass particles that were deposited onto a
holey carbon film supported by a copper grid.

Phase composition

Chemical analyses of the crystals and residual glasses were
obtained using a Cameca SX50 electron microprobe
(EMP; BRGM-ISTO, Orle¤ ans, France). EMP analytical
conditions were 15 keV accelerating voltage, 5 nA beam
current, and 10 s counting time on the element peaks with
a focused beam (1^2 mm in diameter) for crystal analysis.
The beam was defocused (�10 mm in diameter) and Na
was analyzed first for glass analysis to minimize Na migra-
tion (Pichavant, 1987; Devine et al., 1995). The analytical
errors on the oxide analyses are 1% relative for SiO2 and
Al2O3, 2% for CaO, and 5% for Na2O.

Glass water content

Water contents of the experimental glasses were deter-
mined by the EMP ‘by-difference’ method using hydrated
standard glasses, as described in Devine et al. (1995). To
have standard glasses of the same composition as the run
products (in particular in Na, the volatilization of which
under the electron beam is proportional to glass water con-
tent), we prepared three hydrated glass standards by filling
Pt capsules with 550mg of the haplotonalite glass pow-
derþdeionized water in nominal amounts of 1, 3, and
5wt % (which covers our investigated range of water
saturation pressures). Capsules were welded shut for hydra-
tion runs in the IHPVat 300MPa and 12008C for 7 days.
After isobaric quenching, the crystal-free glasses were
analysed for their water contents by Mettler Toledo DL37
Karl-Fischer Titration (ISTO, Orle¤ ans, France), following
the procedure given by Behrens (1995). The glass standards
have water contents of 1·2�0·2, 2·9� 0·2, and
4·8� 0·2wt % (average values of 3^5 analyses on each
sample). These glass standards were analysed by EMP
together with the samples (analytical conditions given
above for glasses). The differences from 100wt % of the
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EMP analyses of the glass samples were calibrated against
the glass standards to provide accurate water content esti-
mations with overall uncertainties of� 0·4wt %.

Textural analysis
Principles

Textural analyses of the run products were performed on
SEM images of the samples using ImageJ and SPO2003
open-source software (Launeau & Robin, 1996; Launeau
& Cruden, 1998). Depending on sample crystallinity, vari-
able numbers of SEM images were acquired, to include at
least 50 crystals per sample (Hammer et al., 2000; Couch
et al., 2003; Clarke et al., 2007). Because of the high
number of adjacent plagioclase grains, manual demarca-
tion of the crystals was necessary before conversion into
binary images.

Parameter definition

For each sample, textural analysis consisted of measuring
the respective area of bubbles (B), crystals (C), and glass
(G), as well as the number of crystals (N) and bubbles
(Nb), to calculate:

area crystallinity (%): �¼ [C/(GþC)]� 100;
area porosity (%): P¼ [B/(BþGþC)]� 100;
crystal number density (mm�2): Na¼N/(GþC);
bubble number density (mm�2): Nbubble¼Nb/(GþC);

crystal length (mm): L/2¼ average of the 10 longest semi
long-axes of the crystals viewed in planar sections
(Hammer et al., 1999).
Considering the longest crystals rather than the mean

length of the bulk crystal population better approaches
the true three-dimensional (3D) length of a homogeneous
crystal-size population by minimizing cross-cutting effects
(Higgins, 1994). Crystals that were cut by the image edges
were included in the count of � and Na, but not of L/2.

Uncertainties

For a given sample, the statistical uncertainty on Na, �,
and L/2 was defined by repeating analyses of different
images. Additionally, the interlocked character and the tor-
tuous morphologies of some plagioclase crystals made it
difficult to distinguish single crystals, especially for runs
at low crystallization pressure.Thus, to minimize subjectiv-
ity during Na and L/2 analysis, a first counting (A) was
carried out by considering adjacent aligned objects as a
single crystal with tortuous (overgrowths) morphology
(leading to a minimum value for Na and a maximum
value for L/2). A second counting (B) was performed by
considering each staggered object as small single crystals
(maximum Na and minimum L/2). Because we do not
have arguments in favour of one or the other counting
method, we show the results given by both methods and
define Na and L/2 as the average values (Fig. 1).

3D conversion

We converted the planar major and minor axes of the crys-
tals into 3D crystal habits using the spreadsheet program
of Morgan & Jerram (2006). The program compares the
2D measurements of long and short axes for non-foliated
objects with a database of 2D data obtained mathematic-
ally from random sections through 703 different habits
(Short\Intermediate\Long axis ranging from 1\1\1 to
1\10\10). The output gives the five best-match curves and
corresponding crystal habits based on a least-squares fit
between sample and database. Morgan & Jerram sug-
gested a minimum of �200 crystal sections to robustly de-
termine crystal habits if the crystals have acicular shapes,
so that some of our textural analyses for which the crystal
count is between 50 and 200 are subject to large errors,
often resulting in poor square residuals (R250·65).

RESULTS
Plagioclase liquidus location and effective
undercooling (�Teff)
The samples from the phase equilibrium runs designed to
locate the plagioclase liquidus were checked for the pres-
ence of crystals using optical microscopy, SEM and TEM.
The results indicate that liquidus conditions are reached
at 200MPa between 850 and 8758C and at 50MPa be-
tween 1000 and 10408C (Table 1). Following similar
crystal-hunting methods, we also constrained the liquidus
at 8758C between 160 and 180MPa from the decompres-
sion runs held for 7 days at Pf (Table 2). Assuming that
the liquidus curves are approximately parallel for
water-saturated rhyolitic melts with different normative
An contents (Tuttle & Bowen, 1958; Hammer &
Rutherford, 2002; Couch et al., 2003; Martel, 2012), we
located the HTND liquidus (normative An¼ 9wt %)
from our crystal-bearing and crystal-free experiments, by
paralleling the plagioclase liquidus curve of a Mt Pele¤ e
rhyolitic melt (normative An¼12wt %; Martel, 2012).
The deduced �Teff is �558C at 100MPa, �1108C at
50MPa, and �1758C at 25MPa (Fig. 2).

Decompression-induced plagioclase
crystallization
Crystal hunting using optical microscopy, SEM and TEM
was performed on samples quenched just after decompres-
sion, to verify that plagioclase crystallization does not
occur during decompression. All methods confirm
crystal-free glasses when decompressed to Pf¼ 50MPa
(t¼ 0 at Pf), regardless of the decompression rate. This in-
dicates that plagioclase nucleation actually proceeds iso-
barically during the anneal step at Pf, which provides a
means to relate nucleation and growth kinetics to �Teff for
a given Pf, assuming equilibrium degassing (tested below).
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The experimental conditions of the decompression ex-
periments and the plagioclase textural analyses are re-
ported in Table 2. Selected images of the decompression
run products are shown in Fig. 3. The plagioclase and
glass compositions are given inTable 3. The characteristics
of plagioclase nucleation (delay, crystal number density),
growth (crystal content and morphology), and compos-
ition are hereafter described as a function of Pf (or �Teff),

pre-crystallization decompression rate, and annealing dur-
ation at Pf.

Crystallization at Pf�140MPa (�Teff� 258C)
The samples quenched at Pf� 140MPa were decom-
pressed at a rate of 1200MPah�1. For a duration of 3 days
at Pf¼ 160MPa, Na reaches 138mm�2, � is below 1%,
and L/2 is �33 mm. After 7 days at Pf¼ 140MPa, Na has
a value of 22mm�2, � is below 1%, and L/2 is �67 mm.
At both Pf, plagioclase crystals are compact (fully crystal-
lized) rectangular prisms (Fig. 3a and b) with axis dimen-
sions of 1\5\10.
Plagioclase composition is An43�1 and An42�2 at 160 and

140MPa, respectively, and the residual glasses have SiO2

contents of 78^79wt %, which are very close to the liqui-
dus composition.

Crystallization at Pf¼100MPa (�Teff �558C)
Nucleation occurs between 1 and 2 days at 100MPa
(Table 2). Samples decompressed at a rate of
1200MPah�1 show Na below 50mm�2, reaching 100 and
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Fig. 1. Method of crystal demarcation and counting adopted for interlocked crystals. Count A considers the interlocked structures as a single
crystal with overgrowths leading to a tortuous morphology, whereas count B considers aligned single crystals. Without arguments in favor of
one or the other counting method, we defined the data point (filled symbols) as the mean between the values given by the two counting meth-
ods (open symbols).

Table 1: HTND liquidus experiments (water saturation)

Run no. P (MPa) T (8C) Time (day) Plag Method*

200A 200 850 6 Yes OM, SEM

200B 200 875 6 No OM, SEM, TEM

50A 50 1000 6 Yes OM, SEM

50B 50 1040 6 No OM, SEM

*Method used for crystal hunting: OM, optical microscopy;
SEM, scanning electron microscopy; TEM, transmission
electron microscopy.
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Table 2: Experimental conditions of the decompression runs and plagioclase textural analyses

Experimental conditions Analytical results

(Pi¼ 200MPa, T¼ 8758C)* Two dimensionsy Three dimensionsz

Run no. Pf (MPa) �P/�t (MPa h�1) Time at Pf (day) � (%) Na (mm�2) L/2 (mm) S\I\L axis R2 Shape

195/1200/1 195 1200 1 0 0 0

190/1200/0·65 190 1200 0·65 0 0 0

190/1200/2 190 1200 2 0 0 0

180/1200/2 180 1200 2 0 0 0

180/1200/7 180 1200 7 0 0 0

160/1200/1 160 1200 1 0 0 0

160/1200/2 160 1200 2 0 0 0

160/1200/3 160 1200 3 0·7 (0·9) 138 (3) 33 (2) 1\5\10 0·57 rect prism

160/1200/7 160 1200 7 traces traces n.d. n.d. n.d. n.d.

140/1200/2 140 1200 2 traces traces n.d. n.d. n.d. n.d.

140/1200/7 140 1200 7 0·6 (0·9) 22 (3) 67 (2) n.d. n.d. n.d.

100/1200/1 100 1200 1 0 0 0

100/1200/2 100 1200 2 1·4 (1·1) 30 (3) 58 (2) n.d. n.d. n.d.

100/1200/3 100 1200 3 0·4 (0·9) 14 (3) 50 (2) n.d. n.d. n.d.

100/1200/4 100 1200 4 1·3 (1·0) 19 (3) 67 (2) 1\10\10 0·81 rect prism

100/1200/7 100 1200 7 0·8 (0·9) 16 (3) 66 (2) n.d. n.d. n.d.

100/150/2 100 150 2 2·4 (1·3) 50 (7) 63 (5) n.d. n.d. n.d.

100/150/4 100 150 4 9·4 (2·4) 174 (23) 78 (9) 1\5\10 0·72 rect prism

100/150/7 100 150 7 10·2 (2·5) 270 (51) 74 (4) 1\6\10 0·88 rect prism

100/30/4 100 30 4 6·9 (2·1) 116 (13) 91 (17) 1\5\10 0·78 rect prism

100/30/7 100 30 7 10·5 (2·6) 105 (18) 91 (10) 1\6\10 0·71 rect prism

75/1200/0·5 75 1200 0·5 0 0 0

75/1200/1 75 1200 1 1·7 (0·9) 22 (3) 18 (3) n.d. n.d. n.d.

75/1200/2 75 1200 2 2·4 (1·3) 74 (8) 40 (6) n.d. n.d. n.d.

75/1200/7 75 1200 7 13·2 (2·8) 158 (21) 83 (13) n.d. n.d. n.d.

75/1200/17 75 1200 17 16·4 (3·1) 185 (52) 101 (20) 1\3·2\10 0·57 acicular

75/150/2 75 150 2 4·5 (1·7) 106 (11) 37 (2) 1\2\10 0·62 acicular

75/150/4 75 150 4 13·0 (2·8) 361 (47) 50 (10) n.d. n.d. n.d.

75/150/7 75 150 7 17·2 (3·2) 244 (33) 66 (12) 1\1·6\10 0·66 acicular

75/150/17 75 150 17 17·6 (3·2) 411 (60) 67 (9) 1\4\10 0·83 rect prism

75/30/2 75 30 2 9·5 (2·4) 249 (37) 59 (3) 1\2·2\8 0·63 acicular

75/30/4 75 30 4 12·7 (2·8) 326 (45) 65 (1) 1\3·4\9 0·65 acicular

75/30/7 75 30 7 19·1 (3·2) 500 (52) 75 (1) 1\3·4\10 0·66 acicular

75/30/17 75 30 17 18·4 (3·2) 169 (22) 80 (22) n.d. n.d. n.d.

50/1200/0 50 1200 0 0 0 0

50/1200/0·25 50 1200 0·25 0·1 (0·8) 84 (7) 12 (1) 1\4·5\10 0·81 rect prism

50/1200/0·65 50 1200 0·65 0·4 (0·9) 129 (38) 28 (9) 1\4\10 0·76 acicular

50/1200/1 50 1200 1 1·0 (1·0) 200 (70) 37 (22) 1\4·5\10 0·67 rect prism

50/1200/2 50 1200 2 4·2 (1·6) 205 (81) 81 (58) 1\2·5\10 0·74 acicular

50/1200/7 50 1200 7 20·3 (3·3) 1160 (312) 62 (15) 1\2·5\9 0·71 acicular

50/1200/17 50 1200 17 21·4 (3·3) 423 (118) 107 (47) 1\3\10 0·74 acicular

(continued)
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�300mm�2 for decompression rates of 30 and
150MPah�1, respectively (Fig. 4a).
Samples decompressed at a rate of 1200MPah�1 have �

remaining below 2% (Fig. 4b). For slower decompression
rates, � significantly increases for 2^3 days following nu-
cleation and reaches a plateau at �10%. Plagioclase L/2
increases for 2^3 days after nucleation and reaches a plat-
eau value that increases from 65 to 95 mm as decompres-
sion rate decreases from 1200 to 30MPah�1 (Fig. 4c).
Plagioclases are rectangular prisms with hollow shapes
(Fig. 3c, m^o), with crystal axis dimensions of about
1\5^10\10 (Table 2).
Plagioclase composition at Pf¼ 100MPa is An37^39, re-

gardless of �P/�t and duration at Pf (Fig. 5a). Residual
glasses, however, show �P/�t-dependent compositions.
The samples decompressed at 1200MPah�1 have glass
SiO2 contents comparable with the liquidus composition
(i.e. 78^79wt %) whereas those decompressed at rates of
30 and 150MPah�1 contain SiO2 up to �81wt % (Fig. 5b).

Crystallization at Pf¼ 75MPa (�Teff �808C)
At Pf¼ 75MPa, the nucleation delay is between 0·5 and
1day (Table 2). For the three decompression rates, Na in-
creases for about 6 days after nucleation. For

decompression rates of 1200 and 150MPa, Na reaches a
plateau value of �200 and 400mm�2, respectively. For
the slower decompression rate of 30MPah�1, however, Na

reaches a maximum value of �500mm�2 and decreases
to �200mm�2 at 17 days (Fig. 4d).
Regardless of decompression rate, � increases for �6

days following nucleation before reaching a plateau value
between 15 and 20% (Fig. 4e). L/2 reaches plateau values
between 65 and 100 mm for decompression rates between
30 and 1200MPa h�1 (Fig. 4f). Plagioclases have hollow
acicular morphologies (Fig. 3d^f, p^r), with axis propor-
tions around 1\3^4\9^10 (Table 2).
After decompression at rates of 1200 and 30MPah�1,

plagioclase composition is An32^35, regardless of anneal
duration, whereas the sample decompressed at
150MPah�1 shows plagioclase An30 after 17 days (Fig. 5c).
The SiO2 contents of the residual glasses reach a plateau
value of �82wt % after 7 days (Fig. 5d).

Crystallization at Pf¼ 50MPa (�Teff �1108C)
Runs carried out at Pf¼ 50MPa with anneal durations51
day suggest nucleation onset within 6 h following decom-
pression (�P/�t of 1200MPah�1; Table 2). Na drastically
increases for 4^5 days before reaching a maximum value

Table 2: Continued

Experimental conditions Analytical results

(Pi¼ 200MPa, T¼ 8758C)* Two dimensionsy Three dimensionsz

Run no. Pf (MPa) �P/�t (MPa h�1) Time at Pf (day) � (%) Na (mm�2) L/2 (mm) S\I\L axis R2 Shape

50/150/0 50 150 0 0 0 0

50/150/2 50 150 2 6·9 (2·1) 536 (152) 36 (5) 1\1·9\10 0·75 rect prism

50/150/4 50 150 4 20·5 (3·3) 956(245) 50(16) 1\2·5\9 0·73 acicular

50/150/17 50 150 17 24·2 (3·3) 996 (181) 44 (8) 1\3·4\9 0·65 acicular

50/30/0 50 30 0 0 0 0

50/30/0·74 50 30 0·74 0·1 (0·4) 27 (6) 13·1 (2) n.d. n.d. n.d.

50/30/2 50 30 2 7·1 (2·1) 664 (237) 44 (9) 1\2·7\8 0·69 acicular

50/30/4 50 30 4 15·9 (3·1) 1334 (481) 51 (13) 1\2·3\9 0·69 rect prism

50/30/7 50 30 7 19·9 (3·3) 1007 (232) 57 (1) 1\2·8\8 0·75 acicular

50/30/17 50 30 17 20·4 (3·3) 786 (304) 48 (2) 1\2·7\8 0·65 rect prism

25/1200/0·65 25 1200 0·65 5 1 n.d. n.d. n.d. n.d. dendrite

25/1200/1 25 1200 1 n.d. n.d. n.d. n.d. dendrite

25/1200/2 25 1200 2 �3 (2) �1400 (500) �40 (5) n.d. n.d. dendrite

25/1200/7 25 1200 7 n.d. n.d. n.d. n.d. dendrite

*Pf is final pressure; �P/�t is decompression rate; time gives anneal duration at Pf.
yPlanar plagioclase analyses; � is area crystallinity; Na is crystal number density; L/2 is average length of the 10 longest
semi-axes of the crystals, as defined in the text. The 2s uncertainty is given in parentheses.
zSIL axis gives the short, intermediate, and long axis calculated after Morgan & Jerram (2006) from the 2D long and short
axes. R2 gives residual square; Shape gives the 3D habit (rectangular prism, acicular or dendrite).
n.d., not determined.
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around 1000^1300mm�2. For decompression rates of 1200
and 30MPa h�1, Na further decreases to �400 and
700mm�2 at 17 days, respectively, whereas Na is main-
tained for the 150MPa h�1 series (Fig. 4g). Counting crys-
tals following method A (lowest values of Na; Fig. 1) does
not change the fact that these curves pass through a max-
imum and further decrease, but the effect is reduced.
The time evolution of � does not vary within error as a

function of �P/�t, increasing for �7 days before reaching
a plateau value between 18 and 22% (Fig. 4h). L/2 in-
creases for �4 days before reaching a plateau value of
�55 mm for the samples decompressed at 30 and
150MPah�1 and �85 mm for the 1200MPah�1 series
(Fig. 4i). Counting crystals following method B (lowest
values of L/2; Fig. 1) would significantly reduce the size
difference between the series (Fig. 4i), but the crystal size
difference is still observable by comparing run 50/1200/17
(Fig. 3i) with run 50/30/17 (Fig. 3u). The crystals have
hollow either rectangular prism or acicular morphologies
(Fig. 3g^i, s^u), with axis proportions of 1\2·5^3·5\8^10
(Table 2).
Plagioclase compositions decrease from An30^32 at time

52 days to �An24^28 after 4 days (Fig. 5e). Glass compos-
itions reach 81^82wt % after 4^7 days and �83wt %
after 17 days (Fig. 5f). A silica polymorph crystallizes at

between 2 and 4 days (Table 3), the texture of which,
either botryoidal or pervasive, could be cristobalite
(Hobblit & Harmon,1993; Martel & Schmidt, 2003).

Crystallization at Pf¼ 25MPa (�Teff �1758C)
Four samples were decompressed at Pf¼ 25MPa (�P/
�t¼1200MPa h�1) with holding times of 16 h, 1, 2, and 4
days. They display highly heterogeneously distributed
areas of dendritic plagioclase intermingled with the silica
phase (Fig. 3j^l). Plagioclase textural analysis was particu-
larly difficult owing to both the small size and the dendritic
nature of the crystals. Our rough estimation for the
sample held for 2 days at Pf gives � �3�2%, Na

�1400mm�2, and L/2 �40 mm (Table 2). Plagioclases
could not be analyzed by EMP, but the glass contains
78·5wt % of SiO2 (Table 3), which is close to the liquidus
composition.

Empirical crystallization laws
Fit functions of the time evolution of Na, �, and L/2
To provide nucleation and growth laws for plagioclase, the
time evolutions of Na, �, and L/2 were fitted using simple
functions. Despite the fact that simple fit functions may
not be constrained by the data as precisely as polynomial
fits would be, they have the advantage of being

HTND liquidus (liqAn9)
Pelée liquidus (liqAn12)
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(a) 160/1200/3 (c) 100/1200/2

(d) 75/1200/2 (e) 75/1200/7 (f) 75/1200/17

(g) 50/1200/2 (h) 50/1200/7 (i) 50/1200/17

(k) 25/1200/2 (l) 25/1200/7(j) 25/1200/0.65

(b) 140/1200/7

Si

Fig. 3. Selected SEM images of the samples decompressed at 1200MPah�1 (a^l), at 150MPa h�1 (m), and 30MPa h�1 (n^u); run number as in
Table 2. Light grey crystals are plagioclase, dark grey area is glass, and black is pore space. The scale bar represents 100 mm for all images. It
should be noted that samples with �510% (runs with durations54 days) mostly show heterogeneously distributed plagioclase, so that the
selected images may not be representative of the texture of the whole sample.
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mathematically easily time-derived to obtain nucleation
and growth rates. Essentially, this is an acceptable com-
promise between fitting accuracy and convenience for
future modelling of the crystallization rates.

All time evolutions of Na, �, and L/2 were fitted by
square root of time functions relieved by a plateau value.
At Pf¼ 50MPa, the experiments performed at anneal dur-
ations52 days (�P/�t¼1200MPa h�1) suggest that the

(o) 100/30/7(m) 100/150/2 (n) 100/30/4

(p) 75/30/2 (q) 75/30/7 (r) 75/30/17

(s) 50/30/2 (t) 50/30/4 (u) 50/30/17

100 µm

Fig. 3. Continued.
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Fig. 4. Evolution of Na, �, and L/2 as a function of �P/�t and run duration at Pf, for Pf¼ 100MPa (a^c), 75MPa (d^f), and 50MPa (g^i). All
data have been fitted using square roots of time functions followed by a plateau value; � data in (e) and (h) show starting exponential laws.
Error bars give the statistical uncertainties and are included in the symbol size when not indicated, except for (g) and (i), in which the error
bar is given in the upper right corner. In (g) and (i), open symbols show the results of the counting methods A and B, as described in Fig. 1.
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Table 3: Chemical compositions of the phases

Run no.1 Phase2 n3 SiO2
4 Al2O3

4 CaO4 Na2O
4 An (mol %)5

200B glass 7 78·7 (0·2) 14·1 (0·2) 1·8 (0·1) 5·4 (0·1)

160/1200/3 plag 6 58·6 (0·6) 26·4 (0·3) 8·6 (0·3) 6·3 (0·1) 43·1 (1·1)

glass 6 78·7 (0·1) 14·1 (0·1) 1·7 (0·1) 5·4 (0·2)

140/1200/7 plag 6 58·5 (0·7) 26·3 (0·4) 8·7 (0·5) 6·5 (0·3) 42·3 (2·0)

glass 6 78·8 (0·3) 14·0 (0·2) 1·7 (0·1) 5·5 (0·2)

100/1200/2 plag 13 61·1 (1·3) 24·8 (0·9) 7·4 (0·5) 6·7 (0·2) 38·1 (1·8)

glass 12 78·9 (0·2) 14·1 (0·1) 1·7 (0·1) 5·3 (0·2)

100/1200/7 plag 7 59·6 (0·4) 25·6 (0·2) 7·9 (0·3) 6·8 (0·3) 39 (1·4)

glass 6 78·7 (0·3) 14·2 (0·3) 1·7 (0·1) 5·5 (0·1)

100/150/2 plag 8 60·0 (1·2) 25·3 (0·8) 7·8 (0·6) 6·8 (0·2) 38·8 (2·1)

glass 9 79·5 (0·7) 13·7 (0·5) 1·6 (0·1) 5·2 (0·2)

100/150/4 plag 6 59·6 (0·7) 25·6 (0·4) 7·8 (0·5) 7·0 (0·2) 37·9 (2·0)

glass 6 81·2 (0·6) 12·7 (0·4) 1·2 (0·1) 4·9 (0·2)

100/150/7 plag 10 60·5 (0·9) 25·1 (0·5) 7·4 (0·5) 7·0 (0·2) 36·8 (2·0)

glass 9 81·2 (0·4) 12·6 (0·3) 1·1 (0·1) 5·1 (0·2)

100/30/4 plag 8 60·0 (0·5) 25·4 (0·3) 7·7 (0·4) 6·9 (0·2) 38·1 (1·9)

glass 8 79·8 (0·7) 13·8 (0·3) 1·4 (0·1) 5·0 (0·5)

100/30/7 plag 5 60·6 (0·7) 24·9 (0·5) 7·4 (0·3) 7·0 (0·2) 36·9 (1·7)

glass 6 80·4 (0·4) 12·9 (0·3) 1·2 (0·1) 5·4 (0·2)

75/1200/2 plag 4 62·3 (0·6) 23·9 (0·4) 6·7 (0·1) 7·1 (0·3) 34·3 (1·1)

glass 6 78·6 (0·1) 14·0 (0·1) 1·7 (0·1) 5·6 (0·2)

75/1200/17 plag 5 61·1 (0·8) 24·7 (0·5) 6·7 (0·2) 7·5 (0·3) 33·3 (0·9)

glass 7 81·7 (0·3) 12·1 (0·2) 0·8 (0·1) 5·3 (0·2)

75/150/2 plag 9 61·2 (0·2) 24·6 (0·2) 6·8 (0·2) 7·5 (0·1) 33·2 (1·1)

glass 8 78·7 (0·3) 14·2 (0·1) 1·7 (0·1) 5·5 (0·2)

75/150/7 plag 7 61·3 (0·4) 24·5 (0·3) 6·5 (0·3) 7·7 (0·2) 31·9 (1·6)

glass 7 82·3 (0·6) 12·1 (0·4) 0·8 (0·1) 4·8 (0·6)

75/150/17 plag 7 61·6 (0·3) 24·3 (0·2) 6·1 (0·1) 8·0 (0·1) 29·6 (0·6)

glass 8 82·2 (0·2) 11·9 (0·2) 0·7 (0·1) 5·2 (0·2)

75/30/2 plag 4 62·7 (1·1) 23·6 (0·8) 6·4 (0·2) 7·3 (0·4) 32·7 (1·5)

glass 6 79·2 (0·3) 13·7 (0·2) 1·4 (0·1) 5·6 (0·1)

75/30/4 plag 7 60·9 (0·5) 24·6 (0·4) 6·9 (0·4) 7·5 (0·3) 33·9 (2·0)

glass 8 80·0 (0·5) 13·3 (0·4) 1·1 (0·1) 5·6 (0·1)

75/30/7 plag 7 61·3 (0·4) 24·4 (0·2) 6·7 (0·4) 7·5 (0·2) 33·0 (1·6)

glass 8 82·3 (0·4) 11·9 (0·2) 0·8 (0·1) 5·0 (0·3)

75/30/17 plag 7 61·8 (1·3) 24·1 (0·9) 6·7 (0·5) 7·4 (0·2) 33·3 (1·8)

glass 6 81·8 (0·4) 12·1 (0·4) 0·8 (0·2) 5·3 (0·1)

50/1200/0 glass 7 78·3 (0·1) 14·1 (0·2) 1·8 (0·1) 5·9 (0·1)

50/1200/0·25 plag n.d. n.d. n.d. n.d. n.d. n.d.

glass 7 78·3 (0·2) 14·3 (0·1) 1·8 (0·1) 5·6 (0·2)

50/1200/1 plag 5 63·6 (0·9) 22·9 (0·5) 6·2 (0·3) 7·3 (0·3) 32·1 (1·3)

glass 6 78·3 (0·2) 14·3 (0·1) 1·8 (0·1) 5·6 (0·2)

50/1200/2 plag 7 63·0 (0·6) 23·5 (0·3) 6·2 (0·2) 7·3 (0·3) 32·0 (1·2)

glass 9 78·6 (0·4) 14·2 (0·3) 1·7 (0·1) 5·5 (0·5)

50/1200/5 plag 8 62·9 (1·2) 21·0 (0·6) 5·4 (0·4) 7·9 (0·3) 27·6 (1·4)

glass* 1 81·4 11·9 0·7 5·9

(continued)
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early time evolution of � actually follows an exponential
law (Fig. 4h). The data point obtained at Pf¼ 75MPa and
1day confirms such a trend (Fig. 4e). However, becuse we
lack a complete dataset at time52 days, we will not fur-
ther consider this early time evolution of �. The fitting
parameters of the square-root laws for Na, �, and L/2,
and the time intercept with the plateau value are reported
inTable 4.

DISCUSSION
Equilibrium degassing
The plagioclase stability curve used to constrain �Teff en-
tirely depends on the assumption that water exsolution
keeps up with decompression through time (equilibrium
degassing). Thus, it is crucial to verify this assumption,
particularly in the light of the fast decompression
rates used in this study. In particular, a decompression
rate of 1200MPa h�1 stands on the side of equilibrium
melt water exsolution after Martel & Schmidt (2003),
close to equilibrium degassing after Rutherford (2008)

(i.e. �900MPah�1), and on the non-equilibrium degassing
side after Mangan & Sisson (2000).
First, we assessed whether melt^bubble equilibrium was

maintained with respect to water distribution on the time-
scale of our experimental decompressions, by measuring
glass water contents by the EMP by-difference method
(using hydrated glass standards; see the section ‘Experi-
mental and analytical methods’).To compare our measure-
ments with water solubility models in rhyolites, we first
analyzed the HTND glass hydrated at 200MPa and
8758C (run 200B), giving 6·7�0·3wt % H2O, whereas
the model of Newman & Lowenstern (2002) predicts
5·8wt %. This suggests a potential �1wt % overesti-
mation in our measurements. Water measurements in
glass samples quenched just after decompression to
Pf¼ 50MPa (time¼ 0 at Pf) suggest 3·5�0·5, 3·2�0·3,
and 3·2�0·5 wt % for decompression rates of 1200, 150,
and 30MPah�1, respectively (Table 5). These results are
0·7^1·0wt % higher than the value of 2·5�0·2wt % cal-
culated at 8758C and 50MPa after Newman & Lowen-
stern (2002), which agrees with the overestimation value

Table 3: Continued

Run no.1 Phase2 n3 SiO2
4 Al2O3

4 CaO4 Na2O
4 An (mol %)5

50/1200/17 plag 7 62·6 (0·5) 23·6 (0·3) 5·6 (0·4) 8·2 (0·2) 27·4 (1·8)

glass* 7 82·6 (0·5) 11·7 (0·9) 0·6 (0·3) 5·1 (0·3)

50/150/0 glass 16 78·4 (0·3) 13·9 (0·2) 1·8 (0·1) 5·9 (0·2)

50/150/2 plag 7 63·2 (1·1) 23·2 (0·8) 6·1 (0·4) 7·5 (0·2) 31·0 (1·6)

glass 7 78·6 (0·3) 14·3 (0·2) 1·7 (0·1) 5·5 (0·4)

50/150/4 plag 8 61·3 (0·8) 23·4 (0·5) 5·6 (0·4) 8·0 (0·2) 27·7 (1·8)

glass* 7 81·6 (0·8) 12·6 (0·6) 0·7 (0·1) 5·1 (0·3)

50/150/17 plag 7 63·0 (0·4) 23·3 (0·4) 5·1 (0·2) 8·6 (0·2) 24·6 (1·1)

glass* 8 82·9 (0·3) 11·6 (0·3) 0·4 (0·1) 5·1 (0·1)

50/30/0 glass 20 78·5 (0·2) 14·0 (0·2) 1·8 (0·1) 5·8 (0·2)

50/30/2 plag 7 63·2 (0·8) 23·2 (0·5) 6·0 (0·3) 7·6 (0·1) 30·5 (1·2)

glass 6 78·9 (0·6) 14·1 (0·4) 1·4 (0·1) 5·5 (0·2)

50/30/4 plag 5 63·6 (0·5) 22·9 (0·3) 5·6 (0·2) 7·9 (0·3) 28·0 (1·1)

glass* 6 79·4 (0·3) 14·0 (0·2) 1·0 (0·1) 5·7 (0·1)

50/30/7 plag 7 62·9 (0·6) 23·5 (0·4) 5·8 (0·4) 7·8 (0·2) 28·9 (1·7)

glass* 6 81·2 (0·6) 12·7 (0·5) 0·7 (0·1) 5·4 (0·1)

50/30/17 plag 6 63·2 (0·9) 23·4 (0·6) 5·3 (0·3) 8·0 (0·2) 26·6 (1·6)

glass* 6 82·8 (0·4) 11·7 (0·2) 0·4 (0·1) 5·0 (0·2)

25/1200/2 plag n.d. n.d. n.d. n.d. n.d. n.d.

glass* 5 78·5 (0·2) 14·2 (0·1) 1·6 (0·1) 5·7 (0·2)

1Run number as in Tables 1 and 2.
2Phase is either plagioclase (plag) or residual glass (glass); * marks the presence of a silica phase.
3n gives the number of analyses.
4Contents of SiO2, Al2O3, CaO, and Na2O in wt %, with statistical error in parentheses; glasses recalculated on anhydrous
basis.
5Anorthite content of the plagioclase in mol %, with statistical error in parentheses.
n.d., not determined.
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previously observed between measurements and calcula-
tion. Additionally, these water measurements are compar-
able, within error, with those for samples annealed at
Pf¼ 50MPa for 2 or 17 days (2·6^3·5wt % H2O; Table 5),
for which the long durations are in favor of equilibrium
degassing. Thus, we infer that degassing reached equilib-
rium during decompression duration.

We calculated the characteristic time, tc, required for
water to diffuse in the melt until equilibrium, following
the equation given by Navon et al. (1998):

tc ¼ d2=ð4�DwÞ

where d is the average half-length between two bubbles
and Dw is the water diffusion coefficient in the melt.
Taking d as the maximum value of 100 mm retrieved from
run 50/1200/0 (Fig. 6b) and Dw¼ 7·4 mm2 s�1 calculated
after Zhang & Behrens (2000) for a melt water content of
2·5wt % yields a maximum tc of �5·5min. This is shorter
than the decompression duration of 7·5min corresponding
to the fastest decompression rate of 1200MPah�1, which
may also validate equilibrium water degassing.
In parallel, we compared the porosity of the sample

quenched just after decompression to Pf¼ 50MPa at a
rate of 1200MPa h�1 (Fig. 6b) with the porosity calculated
for equilibrium degassing following the equation of
Jaupart & Tait (1990).We measured a porosity of 44�3%
and the calculation gives 42�3% [water solubility at 200
and 50MPa of 5·8 and 2·5wt %, respectively (Newman
& Lowenstern, 2002); melt density of 2200 kg m�3

(Knoche et al., 1995) and gas density at 50MPa and 8758C
of 99 kg m�3 (Saul & Wagner, 1989)]. Again, the compari-
son validates equilibrium degassing. The samples that
were quenched just after decompression to 50MPa at
rates of 150 and 30MPa h�1 (decompression duration of 1
and 5 h, respectively; Fig. 6c) show lower bubble contents
(37�3 and 36�3%, respectively; Table 5) than that ex-
pected at equilibrium degassing, probably resulting from
gas escape during decompression, either by gas channeling
or by direct diffusive water loss towards the sample outer
rims. After anneal durations of 17 days, the samples show
porosities below 10% (Fig. 6d).

Parameters controlling plagioclase
crystallization
�Teff (or Pf)

Nucleation lag. �Teff shows a significant effect on the delay of
plagioclase nucleation, with a lag decreasing from 2^3
days for �Teff5258C to less than 6 h for �Teff¼ 1108C
(Fig. 7). Couch et al. (2003) suggested nucleation lags of 4^
8 h for �Teff �388C, but their starting melt contains 1^
2% plagioclase, so that �Teff from the liquidus must be
higher than 388C (we actually calculated �Teff �808C;
see the section on ‘Crystallization regime’ below). In our
experiments, for which degassing equilibrates before crys-
tallization pressure, the nucleation lag is interpreted as
the time required for the crystal nucleus to reach critical
size. For small undercooling, the critical size is large so
that an atom cluster requires a relatively long period of
time to reach the required size. In contrast, for large
undercooling, the critical size of the crystal nucleus is

Table 4: Parameters of the equations fitting the

time-dependent evolution curves of plagioclase number dens-

ity, content, and size

Data points* Square root of timey

f(x)¼ aˇ(x – tn) Intercept

Pf (MPa) Parameter �P/�t (MPa h�1) tn (day) a i� 0·5 (day)

100 Na 1200 1·5 0·53 2

150 1·5 117·20 5

30 1·5 71·70 4

� 1200 1·5 0·53 2

150 1·5 4·90 5

30 1·5 5·41 5

L/2 1200 1·5 52·07 4

150 1·5 70·32 4

30 1·5 72·15 4

75 Na 1200 0·7 63·14 5

150 0·7 128·98 7

30 0·7 196·68 7

� 1200 1·5 5·51 9

150 1·5 7·75 8

30 1·5 8·10 7

L/2 1200 0·7 37·63 9

150 0·7 26·98 8

30 0·7 34·44 7

50 Na 1200 0·2 433·81 6

150 0·2 445·78 4

30 0·2 634·16 4

� 1200 1·0 8·43 7

150 1·0 11·13 7

30 1·0 10·14 7

L/2 1200 0·2 52·31 3

150 0·2 26·05 4

30 0·2 29·17 4

*From Fig. 4.
yFitting equation, defined with constant a and variable
x¼ time (in days), with boundary conditions of tn (nucle-
ation time) and i [intercept between f(x) and the plateau
value]. It should be noted that at Pf¼ 75 and 50MPa, tn for
� is different from that for Na or L/2 owing to the expo-
nential starting curve (Fig. 4e–h).
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small and atom clusters require shorter time to form a nu-
cleus (Gibb, 1974).
Na, �, and L/2. With increasing �Teff, the maximum Na

values increase following power laws (Fig. 8a), reflecting
the progressive dominance of the nucleation process as
crystallization pressure decreases. The maximum � values
drastically increases from �Teff �558C to �1108C to a
value of 20^25% at �Teff �1108C (Fig. 8b) that must be
close to equilibrium, as expected from phase equilibrium
data for rhyolitic melts (water-saturated conditions; e.g.
Couch et al., 2003; Martel, 2012).
Composition. The An decrease of the plagioclase equilib-

rium composition, from An43 at Pf¼ 160MPa to An24^28
at Pf¼ 50MPa (Fig. 5a, c and e; Table 3), is in agreement
with the trend expected from phase equilibrium data for
rhyolitic melts (water-saturated conditions; e.g. Couch
et al., 2003; Martel, 2012).
Morphology. Plagioclase crystal morphology depends

markedly on �Teff (Fig. 8). For �Teff5408C, plagioclase
crystals show compact tabular or rectangular habits,
which is in good agreement with the results of either
cooling-induced plagioclase crystallization from plagio-
clase melts (Lofgren, 1974; Muncill & Lasaga, 1987, 1988)
or decompression-induced crystallization (single-step de-
compression experiments, SDE; Hammer & Rutherford,
2002; Couch et al., 2003). We observed skeletal or hollow
morphologies for 48C5�Teff5�1508C (at least41108C),
as either rectangular prisms for 408C5�Teff5808C or
acicular habits for 808C5�Teff5�1508C. This �Teff

range is significantly higher than the range of 40^608C

reported for skeletal habits in cooling-induced plagioclase
crystallization (Lofgren, 1974; Muncill & Lasaga, 1987,
1988). Nevertheless, it agrees with crystallization in SDE
(Hammer & Rutherford, 2002; Couch et al., 2003) and in
phase equilibrium experiments on water-saturated rhyoli-
tic melts (Martel, 2012). Similarly, we find dendritic crystal
shapes for �Teff4�1508C, which is a far higher value
than the range of 60^808C reported for cooling-induced
crystallization, but agrees with crystallization in SDE or
phase equilibria experiments. Therefore, our results con-
firm that plagioclase morphologies resulting from crystal-
lization driven by cooling (�T) are not comparable with
those resulting from isothermal melt dehydration or de-
compression (�Teff). However, the various studies that
dealt with plagioclase crystallization driven by melt dehy-
dration all agreed on the relationship between �Teff and
crystal morphology (Hammer & Rutherford, 2002; Couch
et al., 2003; Martel, 2012).

Plagioclase Ostwald ripening

In most samples, the time evolution of Na at Pf rapidly
reaches a steady state. However, the samples decompressed
at 30MPah�1 to Pf¼ 75MPa (Fig. 4d) and the samples
decompressed at 30 and 1200MPah�1 to Pf¼ 50MPa
(Fig. 4g) show a decrease of Na after having reached a
maximum value.
One may invoke a process of Ostwald ripening, by

which large crystals grow with time at the expense of smal-
ler ones that dissolve, to reduce the excess energy asso-
ciated with solid^liquid interfaces. During Ostwald

Table 5: Water degassing conditions

Run* Pf (MPa) �t (min) Time at Pf (day) Melt H2O contenty Porosity

n H2O (wt %) Nbubble (mm�2) Pz (%) Pcalc§ (%)

200B 200 0 6 31 6·7 (0·3) 21 1 0

50/1200/0 50 7·5 0 12 3·5 (0·5) 396 44 (3) 42 (3)

50/1200/2 50 7·5 2 7 2·6 (0·4) n.d. n.d. 42 (3)

50/1200/17 50 7·5 17 7 3·2 (0·3) 44 6 (3) 42 (3)

50/150/0 50 60 0 8 3·2 (0·3) 295 37 (3) 42 (3)

50/150/2 50 60 2 8 3·5 (0·2) n.d. n.d. 42 (3)

50/150/17 50 60 17 7 3·2 (0·2) n.d. n.d. 42 (3)

50/30/0 50 300 0 13 3·2 (0·3) 192 36 (3) 42 (3)

50/30/2 50 300 2 19 3·2 (0·3) n.d. n.d. 42 (3)

50/30/17 50 300 17 5 3·1 (0·3) 81 4 (3) 42 (3)

*Run conditions as in Tables 1 and 2.
yH2O content determined by the EMP by-difference method (Devine et al., 1995), with statistical error in bracket; n is the
number of analyses.
zPorosity measured by image analysis.
§Porosity calculated at equilibrium after Jaupart & Tait (1990) (see text).
Statistical error is given in parentheses. n.d., not determined.
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(a) 200B (b) 50/1200/0 (c) 50/30/0 (d) 50/1200/17

Fig. 6. Sample porosity for the starting sample hydrated at 8758C and 200MPa for 6 days (a), samples quenched at Pf¼ 50MPa just after de-
compression (time¼ 0) at a rate of 1200MPa h�1 (b) and 30MPa h�1 (c), and the sample quenched after 17 days at Pf¼ 50MPa (d). The
white scale bars represent 100 mm.
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ripening, the decrease of Na is commonly accompanied by
an increase of crystal size, but Cabane et al. (2005)
observed that, for Ostwald ripening of plagioclase crystals
in silicate melts, crystal size is rapidly buffered, an observa-
tion that is consistent with our experiments (Fig. 4f and i).
Ostwald ripening in silicate melts has mostly been inter-

preted as being controlled by a surface nucleation process
at the crystal^liquid interface (Cabane et al., 2005).We pro-
pose that the occurrence of Ostwald ripening results from
the high Na generated at Pf� 75MPa. For example, at
Pf¼ 50MPa, there must be a critical Na around
1000mm�2 above which Ostwald ripening is favored by
short crystalline inter-distances.

Pre-crystallization decompression

The evolution of Na, �, L/2, and composition with �Teff

mostly follow the same trends, within error, as a function
of �P/�t. However, in detail, there is a tendency for the
samples decompressed at a rate of 1200MPah�1 to show
lower Na and lower � than the samples decompressed at
rates of 30 and 150MPah�1 (Fig. 8a and b). � is particu-
larly low at Pf¼ 100MPa, resulting in residual glasses
that are clearly depleted in SiO2 (Fig. 5b). The 1200 MPa
h�1 series display a positive correlation between L/2 and
�Teff, with a maximum value expected at �Teff �1108C.
In contrast, the 30 and 150MPah�1 series have a max-
imum L/2 for �Teff� 558C (Fig. 8c). Overall, low Na, low
�, and the dominance of growth regime up to high �Teff

could reveal nucleation difficulties at small �Teff in the
samples decompressed at 1200MPah�1.
Previous studies have reported the absence of a clear

relationship between pre-crystallization decompression
rate and plagioclase composition (Castro & Gardner,
2008; Brugger & Hammer, 2010), a result that is also con-
sistent with our data (Fig. 5). Nevertheless, insignificant or
positive correlations between Na and pre-crystallization
decompression rate have been suggested (Couch et al.,
2003; Martel & Schmidt, 2003; Martel, 2012). In particular,
the experiments performed by Martel (2012), which have
many similarities to the present ones (same experimental
device, crystal-free and water-saturated starting samples,
similar run temperatures and pressures, similar decom-
pression rates, and plagioclase as the major crystallizing
phase), reported a positive correlation between Na and
pre-crystallization decompression rate.The primary differ-
ence between these observations and our experiments is
melt composition. Specifically, compared with the
four-element-bearing HTND, the synthetic rhyolite of
Martel (2012), as well as that of Couch et al. (2003) and
Martel & Schmidt (2003), contains five additional elem-
ents (Fe, Mg, Mn, K,Ti) that could influence melt^crystal
surface tensions and result in nucleation behaviors differ-
ent from those observed in compositionally more simple
systems (Mu« ller et al., 1992). However, we do not see crys-
tallization differences between the samples decompressed

at rates of 30 and 150MPah�1, suggesting that only the
1200MPah�1 series behave differently. Therefore, we
speculate that such a high decompression rate generates
atomic structural arrangements in the melt that may be
different from (less relaxed than?) those in melts decom-
pressed more slowly, which may further modify the solid^
liquid interfaces and nucleation conditions.

Crystallization kinetics
Rates of nucleation (I) and growth (U) were obtained
from time-derivatives of the square-root functions fitting
the Na and L/2 data, respectively, the equations for which
are given inTable 4. In comparison with the crystallization
rates commonly determined by integrating between two
data points over a given period of time (e.g. Hammer &
Rutherford, 2002; Couch et al., 2003; Brugger & Hammer,
2010), function derivatives have the advantages of (1) pro-
viding rates at any time and (2) being particularly well
suited to rate modelling issues.

Effect of �Teff on nucleation rate (I)
The time evolution of I passes through a maximum value,
Imax, at the very beginning of nucleation and drastically
decreases with time (Fig. 9a^c). Imax increases from
�10�3mm�2 s�1 for �Teff �558C (except in the
1200MPah�1 series, which was subect to nucleation diffi-
culty) to �10�2mm�2 s�1 for �Teff �1108C (Table 6), high-
lighting the progressive domination of the nucleation
process towards high �Teff. This positive correlation
between Imax and �Teff is in agreement with the conclu-
sions of Fenn (1977) and Swanson (1977), who documented
an increase in alkali-feldspar nucleation rate with decreas-
ing water content in granitic systems (i.e. decreasing Pf

for water-saturated melts). Our results are also in agree-
ment with the decompression-induced incremental Imax re-
ported by Couch et al. (2003) (Fig. 10a).
Nucleation delays and rates reported in Fig. 9 suggest

that magma decompressed to low pressure (high �Teff) nu-
cleates microlites early (within the first hour) and mas-
sively, thus drastically changing the physicochemical and
rheological properties of the magma. In contrast, a melt
rapidly decompressed to a relatively high final pressure
(low �Teff) only crystallizes a few microlites after 1^2
days, which have little effect on magma rheology. These
few microlites, however, may act as preferential sites for
future growth-dominated crystallization at lower
pressures.

Effect of �Teff on growth rate (U)

Similarly to I, the time evolution of U passes through a
sharp maximum, Umax, and further decreases with time
(Fig. 9d^f). In contrast to Imax, Umax decreases with �Teff,
from �10�6mm s�1 for �Teff �558C to �5�10�6mm s�1

for �Teff �1108C (with the exception of the 1200MPah�1

series in which crystal sizes were particularly difficult to
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define, potentially leading to large errors on U). Our Umax

values are 1^4 log units higher than the range of 10�7^
10�10mm s�1 previously estimated for groundmass plagio-
clase growth rates in intermediate to silicic magmas
(Cashman, 1988, 1992; Geschwind & Rutherford, 1995;
Gardner et al., 1998; Hammer et al., 1999; Cashman &
Blundy, 2000; D’Oriano et al., 2005; Brugger & Hammer,
2010). The discrepancy mainly results from the fact that
we calculated growth rates from the 10 longest crystals,
whereas previous researchers mostly calculated mean
values on the whole crystal population. Nevertheless,

our Umax values are of the order of magnitude of those
determined by Hammer & Rutherford (2002) and
Couch et al. (2003), both groups of researchers having
calculated time-integrated Umax from the 10 longest
crystals. However, both studies reported Umax at
�Teff4558C, whereas our curves would suggest Umax at
�Teff5558C (Fig. 10b). The fact that the kinetic regime
dominated by growth is extended to the small �Teff in our
study may be related to the crystal-free nature of our start-
ing glasses, for which growth is precisely detected. In con-
trast, the initial plagioclase crystals in the starting
samples of Hammer & Rutherford (2002) and Couch et al.
(2003) may take part in the crystallization by crystal
overgrowth, which is not further counted as such (as only
newly formed crystals are taken into account in these
studies).

Crystallization regime
Plotting the experimentally determined Na vs �, together
with data from the single-step decompression experiments
of Couch et al. (2003), Brugger & Hammer (2010) (their
‘anneal’ runs have been rapidly decompressed from ini-
tial pressure) and Martel (2012), defines an exponential
correlation for �Teff up to �2008C (Fig. 11). For
�Teff42008C, the data show scatter in �, from 10^30%
(Martel, 2012) to 45^50% (Brugger & Hammer, 2010).
This shift at low crystallization pressure may reflect

Fig. 9. Plagioclase nucleation rate, I (a^c) and growth rate, U (d^f), calculated from the time-derivatives of the Na and L/2 fit functions given
inTable 4, respectively. The I and U dependence on crystallization duration at Pf and �Teff should be noted.

Table 6: Maximum nucleation and growth rates

�Teff Imax� 10�3 (mm�2 s�1)* Umax� 10�7 (mm s�1)*

(8C) 1200y 150y 30y 1200y 150y 30y

55 0·01 2·1 1·3 9·5 12·9 13·2

80 1·2 2·5 3·6 6·9 4·9 6·3

110 8·2 7·9 11·6 9·6 4·8 5·3

*Maximum nucleation and growth rates deduced from the
derivatives of the square-root functions for Na and L/2,
respectively, given in Table 4.
yPre-crystallization decompression rates in MPa h�1.
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temperature and melt composition effects on crystallinity,
as Brugger & Hammer (2010) performed experiments at
8808C starting with a normative-Qz21 bulk sample, com-
pared with 8508C and normative-Qz43 composition used
by Martel (2012).
Thus, provided temperature and composition (norma-

tive Qz content) are comparable with those reported
here, evaluation of Na, �, and crystal morphology from
either experimental or natural samples provides a means
to assess both �Teff prevailing during isobaric crystalliza-
tion and plagioclase liquidus temperature or pressure
(Fig. 11).
For example, the plagioclase liquidus of the Aniakchak

rhyodacite used in the decompression experiments of
Brugger & Hammer (2010) has been determined from
phase equilibrium experiments by Larsen (2006). Plotting
Na^� data from the Brugger & Hammer (2010) experi-
ments at Pf¼ 5, 26, 45, and 87MPa suggests crystallization
under �Teff4200, �175, �85, and �558C, respectively

(Fig. 11). From magma temperature (8808C; Larsen, 2006)
and �Teff, we can deduce plagioclase liquidus tempera-
tures of41080, �1055, �965, and �9358C at the respective
Pf. Because the plagioclase liquidus curves are parallel in
pressure^temperature space (water saturation; Fig. 2), ex-
trapolation of these liquidi to �Teff¼ 08C suggests a
plagioclase liquidus pressure of �150MPa at 8808C. This
finding compares well with the plagioclase liquidus pres-
sure at 8808C determined by Larsen (2006), giving confi-
dence in using �Teff-constrained Na^� plots to deduce
plagioclase liquidus locations.
In the experiments of Couch et al. (2003) the plagioclase

liquidus temperature of the Soufrie' re Hills interstitial
rhyolitic melt is not precisely known because the pre-
decompression starting melts already contain 1^2 vol. %
plagioclase. Assuming that Na compares with our
crystal-free melts (or at least Imax compare; Fig. 10a), we
can propose plagioclase liquidus temperatures of410758C
at 50MPa to �9608C at 125MPa, using our �Teff-con-
strained Na^� plot. Extrapolating these liquidus tempera-
tures to �Teff¼ 08C yields a plagioclase saturation
pressure of �210MPa at 8758C [which approximately
leads to adding �408C to the �Teff reported by Couch
et al. (2003)].

APPL ICABIL ITY TO VOLCANIC
SYSTEMS
The empirically derived nucleation and growth laws pro-
vide time information on the decompression-induced iso-
baric crystallization of plagioclase from a silica-rich melt
(SiO2475wt %). In particular, we provide plagioclase nu-
cleation lags (Fig. 7) and rates of nucleation and growth as
a function of �Teff (Fig. 10). In turn, these results represent
experimental clues to back-track �Teff conditions and
plagioclase liquidus temperatures prevailing during crys-
tallization of natural plagioclase microlites from rhyolitic
melts (Fig. 11).
First, because recent experiments have evidenced a sig-

nificant influence of the presence of initial crystals in the
starting melt on further decompression-induced crystal-
lization (particularly on Na; Martel, 2012), the application
of pure starting melts may be restricted to aphyric or
phenocryst-poor rhyolites, typically obsidians or rhyolites
in which microlites could nucleate homogeneously between
distant phenocrysts. Second, the simulation of a rapid de-
compression that triggers isobaric crystallization may not
represent the most common mode of ascent and crystal-
lization of natural silicic magmas. Indeed, magmas from
dome-related eruptions typically ascend slowly, giving
time for syn-decompression microlite crystallization con-
trolled by transient (increasing) �Teff. Nevertheless, some
obsidians and rhyolites do ascend rapidly, crystallizing
microlites during a stall at shallow depth (Castro &
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Dingwell, 2009; Martel, 2012). Microlite number density in
pyroclasts from pulsated magma ascents [e.g. Mount St
Helens summer 1980 eruptions (Cashman & McConnell,
2005) or Soufrie' re Hills, Montserrat, vulcanian eruptions
(Druitt et al., 2002)] could also be interpreted in terms of
the �Teff prevailing during nucleation, provided evidence
exists that Na represents a single nucleation event (occur-
ring at high pressure and small �Teff) with further syn-

decompression crystallization occurring as growth around
these early formed nuclei.
The full applicability of the present experimental data

to various volcanic settings would require (1) more experi-
mental data in more silica-poor liquids (typically 70^72wt
% SiO2) and (2) further investigations of the microlite char-
acteristics in phenocryst-poor rhyolites. At Inyo domes,
California, rhyolitic obsidians display tabular to skeletal
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plagioclase microlites with Na from 103 to 104mm�2 and �

from 2 to 30% (Castro & Mercer, 2004; Castro & Gardner,
2008). Although requiring further refinement of the natural
microlite characteristics, the Na^� values from Inyo
Domes are compatible with the experimental data, suggest-
ing possible rapid ascent of the obsidian magma followed
by a stall and crystallization under �Teff of 100^1508C
(Fig. 11). Similarly, a detailed study of the microlite charac-
teristics reported in the rhyolitic obsidians from Chaite¤ n
volcano, Chile, would potentially be relevant to retrieve
�Teff, as these magmas ascended very rapidly (Castro &
Dingwell, 2009). At Mt Pele¤ e, Martinique, the microlite-
bearing pumices from the P1 Plinian fallout (although con-
taining �40 vol. % of phenocrysts; Martel & Poussineau,
2007) show Na, �, and microlite morphologies (dendritic)
that are compatible with very low-pressure nucleation
under �Teff42008C (Fig. 11).
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