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Abstract 16 

The objective of this work is to present a low-cost methodology to monitor the displacement of 17 

continuously active landslides from ground-based optical images analyzed with a normalized 18 

Image Correlation technique. The performance of the method is evaluated on a series of images 19 

acquired on the Super-Sauze landslide (South French Alps) over the period 2008-2009. The 20 

image monitoring system consists in a high resolution optical camera installed on a concrete pillar 21 

located on a stable crest in front of the landslide and controlled by a datalogger. The data are 22 

processed with a cross-correlation algorithm applied on the full resolution images in the 23 

acquisition geometry. Then, the calculated 2D displacement field is ortho-rectified with a back 24 

projection technique using a high resolution DEM interpolated from Airborne Laser Scanning 25 

(ALS) data. The heterogeneous displacement field of the landslide is thus characterized in time 26 

and space. The performance of the technique is assessed using as reference differential GPS 27 

surveys of a series of benchmarks. The sources of error affecting the results are then discussed. 28 

The strongest limitations for the application of the technique are related to the meteorological, 29 

illumination and ground surface conditions inducing partial or complete loss of coherence among 30 

the images. Small changes in the camera orientation and the use of a mono-temporal DEM are the 31 

most important factors affecting the accuracy of the ortho-rectification of the displacement field. 32 
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Because the proposed methodology can be routinely and automatically applied, it offers 33 

promising perspectives for operational applications like, for instance, in early warning systems.  34 

 35 

Keywords: image cross-correlation; image matching; landslide; time-lapse photography; 36 

displacement monitoring 37 

 38 

1 Introduction 39 

Displacement monitoring of unstable slopes is a crucial tool for the prevention of hazards. It is 40 

often the only solution for the survey and the early-warning of large landslides that cannot be 41 

stabilized or that may accelerate suddenly and potentially fluidize in highly mobile mudflows. 42 

The choice of an adequate monitoring system depends on the type and size of landslide, the range 43 

of observed velocity, the required frequency of acquisition, the desired accuracy and the financial 44 

constraints. Displacement monitoring techniques applied on landslides can be broadly subdivided 45 

in two main groups: geodetic and remote-sensing techniques.  46 

Geodetic surveying consist in detecting geometrical changes in the landslide topography by 47 

measuring geometric parameters such as angles, distances or differences in elevation (e.g. 48 

levelling, tacheometry; Meissl & Naterop, 1995). These techniques necessitate the installation of 49 

benchmarks or targets in and outside the landslide and in measuring their position at different 50 

times. They have the advantage to be very accurate (0.2 to 2.0 cm) with a high potential of 51 

automation (Malet et al., 2002; Jaboyedoff et al., 2004; Foppe et al., 2006). Furthermore, many 52 

authors demonstrated the efficiency of permanent (Malet et al., 2002) and non-permanent 53 

(Squarzoni et al., 2005; Brunner et al., 2007) differential Global Positioning System (dGPS) for 54 

landslide monitoring with a centimetric accuracy during any daytime and weather conditions. 55 

However, because landslides can show highly variable displacement rates in time and space 56 

according to the local slope conditions (bedrock geometry, distribution of pore water pressures), 57 

the major drawbacks of the geodetic techniques are (1) to provide only discrete point 58 

measurements of the displacement and (2) the costs of installation and maintenance of the survey 59 

network. They are usually only justified in the case of a real risk for the population.  60 

Remote-sensing techniques appear to be an interesting and complementary tool to obtain 61 

spatially-distributed information on the kinematics (Delacourt et al., 2007) which is also justified 62 

by the need to investigate landslides from safe and remote places because of the inaccessibility of 63 

mountainous terrains. Remote-sensing techniques give the possibility to discriminate stable and 64 

unstable areas and to map sectors within the landslide with different kinematics from a regional to 65 
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a local scale. They are also useful tools for a process-based analysis of the deformation field 66 

affecting the slope (Casson et al., 2005; Teza et al., 2008; Oppikofer et al., 2008). Remote-67 

sensing techniques can be operational from spaceborne, airborne and ground-based platforms. In 68 

the last decades, the development of ground-based platforms for landslide monitoring at the local 69 

scale provided many advantages over spaceborne and airborne platforms despite a shorter spatial 70 

coverage (Corsini et al., 2006). The geometry and frequency of acquisitions are more flexible and 71 

adaptable to any type of local environment. Furthermore, the installation of the monitoring system 72 

is generally relatively easy. In addition ground-based platforms are permanent installations that 73 

allow a continuous monitoring (Casagli et al., 2004; Delacourt et al., 2007). Three main 74 

categories of ground-based remote sensing techniques are used in landslide monitoring: Ground-75 

Based Synthetic Aperture Radar Interferometry (GB-InSAR), Terrestrial Laser Scanning (TLS) 76 

and Terrestrial Optical Photogrammetry (TOP). A non exhaustive review of the main advantages 77 

and disadvantages of these techniques is presented in Table 1. Detailed reviews of the application 78 

of GB-InSAR and TLS to landslides can be found in Luzi (2010), Corsini et al. (2006), 79 

Tarchi et al. (2003), Jaboyedoff et al. (2010), Teza et al. (2007, 2008) and Monserrat & Crosetto 80 

(2008). A state-of-the art of the application of TOP to landslide and related geomorphologicla 81 

processes is given below.  82 

TOP is a very cost-effective technique with implementation, operating and equipment costs much 83 

lower than GB-InSAR and TLS. The technique consists in acquiring digital optical images 84 

represented using a matrix of intensity values (brightness) recorded at each pixel of the Charge 85 

Coupled Device (CCD) of the camera. While aerial images are acquired on overhead photographs 86 

from an aircraft, TOP uses RGB images acquired from a spot very close to the ground (Jiang et 87 

al., 2008). In the last decades, camera self-calibration and analytical processing techniques allow 88 

the use of non-metric cameras and of simplified camera calibration algorithms to compute digital 89 

elevation models using the principle of stereoscopic views (Mikhail et al., 2001; Jiang et al., 90 

2008). In the current state, the application of terrestrial images for landslide monitoring is mostly 91 

related to the production of DEMs for image ortho-rectification and sediment budget analysis 92 

(Bitelli et al., 2004, Pesci et al., 2004; Cardenal et al., 2008), and more recently to the 93 

characterization of the slope morpho-structure (Lim et al., 2005; Sturzenegger & Stead, 2009).  94 

Using correlation techniques, two-dimensional displacement fields can be derived by tracking 95 

objects in two images acquired at different time. So far, image correlation techniques have been 96 

applied only on aerial and satellite images (e.g. SPOT, QuickBird, OrbView, EROS) for the 97 

creation of landslide displacement maps (Casson et al., 2003; Delacourt et al., 2004; LePrince et 98 

al., 2008); the use of image correlation on terrestrial images has not been as popular for 99 
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permanent landslide monitoring as in other application field such as in solid and fluid mechanics 100 

for the characterization of the deformation pattern of soil/rock samples (White et al., 2003; 101 

Chambon et al., 2003; Küntz et al., 2005) or for the monitoring of other natural processes such as 102 

ice glaciers (Corripio et al., 2004; Fallourd et al., 2010; Maas et al., 2008) or volcanoes (Honda & 103 

Nagai, 2002). Only Delacourt et al. (2007) demonstrated an efficient application of TOP for 104 

landslide monitoring which consisted in the determination of the landslide boundaries and in the 105 

qualitative estimation of the spatial variability of displacement at the La Clapière landslide 106 

(French Alps) with an image acquisition system installed at 1 km-distance. 107 

Generally, the 2D displacements (in pixel) evaluated by the correlation algorithm have an 108 

accuracy of about 0.2 pixel (Casson et al., 2005; Delacourt et al., 2007) in the image plane, 109 

corresponding to an accuracy of millimeters to several centimeters for distances of about 100 m in 110 

the local coordinate system (Kraus & Waldhäusl, 1994).  111 

The major sources of errors affecting the displacement calculations and thus potentially limiting 112 

the efficiency of TOP for an operational landslide monitoring can be classified in two groups: 113 

(i) the parameters affecting the Image Correlation computation and (ii) the external parameters 114 

influencing the ortho-rectification procedure.  115 

The objective of this work is therefore to evaluate the potential and the limitations of TOP for the 116 

permanent monitoring of landslide using Image Correlation (IC) techniques. The dataset of 117 

images available for the Super-Sauze landslide (South French Alps) for the period 2008-2009 is 118 

used. First, the steps in the data acquisition and data processing (image correlation, ortho-119 

rectification) are presented and the results are evaluated using the displacement of benchmark 120 

measured by DGPS. Second, the main advantages and disadvantages of the method, and the 121 

influence of external factors on the precision and the accuracy of the results are discussed. 122 

Throughout this work, the accuracy is defined as the systematic difference between a measured 123 

quantity and the true value, and precision is defined as the random difference between multiple 124 

measurements of the same quantity.  125 

 126 

2 Experimental Site: the Super-Sauze landslide 127 

To evaluate the potential of correlation of ground-based images for landslide monitoring, the 128 

dataset available at the Super-Sauze landslide, triggered in the Callovo-Oxfordian black marls of 129 

the South French Alps (Alpes-de-Haute-Provence, France; Fig. 1A, 2A, B) is used. The landslide 130 

is located in the upper part of the Sauze torrential catchment. In the 1960s, the area was affected 131 

by rock failures in the scarp area. The failed material composed of rocky panels progressively 132 



 5

transformed into a silty-sandy matrix integrating marly fragments of heterogeneous sizes through 133 

successive weathering cycles (Malet et al., 2003). From the 1970s until today, the landslide 134 

material is gradually filling a torrential stream located downstream with a typical range of 135 

displacement rate between 1 to 3 cm.d-1 on average and possible higher velocities up to 40 cm.d-1 136 

during acceleration periods (Malet et al., 2002). In 2007, the mudslide extent over a distance of 137 

920 m between an elevation of 1980 m at the scarp and 1760 m at the toe with an average width 138 

of 135 m and a average slope of 25°. The total volume is estimated at 560,000 m3 (Travelletti & 139 

Malet, submitted).  140 

The kinematics of the landslide is currently monitored by Differential Global Positioning System 141 

(DGPS) and Terrestrial Laser Scanning (TLS), and by a remote camera monitoring system. This 142 

instrumentation consists in a low-cost D70 Nikon non-metric reflex digital camera installed on a 143 

concrete pillar located on a stable crest in front of the landslide at a distance of 300 m from the 144 

lower part and 900 m from the main scarp (Fig. 1A, B, C). The acquisition system is controlled 145 

by a datalogger (Campbell CR10) and the power is provided by a 40 W solar panel. The 146 

characteristics of the acquisition are presented in Table 2. Each four days, four images are 147 

acquired at 11:00, 12:00, 13:00 and 14:00 GMT in order to increase the probability of having at 148 

least one image with good meteorological conditions. Each photograph (6 Mb) is stored in a 149 

native file format to avoid any loss of information. 150 

 151 

3 Methodology 152 

The steps in the data processing workflow consist in (1) correlating the images by pairs in their 153 

original acquisition geometry to prevent any loss of information, and (2) ortho-rectifying the 154 

calculated displacement fields using a high-resolution digital elevation model interpolated from 155 

airborne LiDAR data. The daily images presenting the best ground texture contrast and the most 156 

homogeneous lightening are selected based on expert judgment. The detailed methodology is 157 

summarized in Fig. 3 and described below.  158 

3.1 Principle of the Image Correlation technique 159 

The 2D displacement field is obtained by correlating two optical images acquired at different 160 

time. The image correlation technique is based on the automatic identification of identical texture 161 

patterns within an image by maximizing a correlation function (Lewis, 1995; Baratoux et al., 162 

2001; Debella-Gilo & Kääb, 2010). Its principle adapted for landslide kinematics analysis is 163 

described in Delacourt et al. (2007). Visible ground features have to be superimposed on two 164 
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successive images on stable parts located outside the landslide. On the areas affected by landslide 165 

movements, the visible and recognizable features are shifted by the displacements. In order to 166 

quantify the ground displacements, a correlation window is defined on a reference (often the 167 

oldest) image. The corresponding window is searched in a pre-defined explored area belonging to 168 

the second image. The starting point of this explored area is the expected position of the window 169 

as if no displacement occurred between two acquisitions. The process is repeated for each pixel of 170 

the reference image. The Euclidean distance between the reference point and the matching point 171 

represents the displacement magnitudes in the image plane. By modifying the zone of interest, it 172 

is then possible to determine the displacements at various positions within the images (Fig. 4). It 173 

is important to note that the normalized cross-correlation technique cannot track objects that start 174 

to rotate significantly or are affected by important perspective distortions (Lewis, 1995). 175 

The size of the correlation window is a compromise between the desired accuracy on the 176 

displacement estimates and the spatial resolution of the velocity field (Delacourt et al., 2007). An 177 

increase of the size of the correlation window ensures a good signal to noise ratio and thus a good 178 

precision, but the accuracy on the displacement estimates decreases because of their averaging on 179 

a larger correlation window. This compromise is difficult to find when some parts of the landslide 180 

are well defined in terms of ground texture while others parts are not. Hierarchical correlation 181 

techniques allow to overcome this problem by automatically changing the physical size of the 182 

correlation window and of the explored area during the correlation computations. The physical 183 

size is defined as the effective landslide surface covered by the correlation window (Rohaly, 184 

2002; Aloui & Ibn-Elhaj, 2009).  185 

In this work, a sub-pixel hierarchical correlation technique is used (Chambon, 2003; Bastard, 186 

2009). The RGB images are first converted in gray-scale images on which a 3x3 pixel Sobel 187 

convolution matrix is applied to highlight the ground surface texture. The gradient values are then 188 

correlated (Chambon, 2003). Four successive degradations of the image resolution are applied 189 

following a pyramidal approach for changing the physical size of the correlation window and of 190 

the explored area by down-sampling the gradient values of the full resolution image (D’Antone, 191 

1995; Kumar & Banerjee, 1998) (Fig. 4). The optimum sizes of the correlation window (16x16 192 

pixels) and of the explored area (32x32 pixels) were identified with a trial and error procedure. 193 

These parameters are constant during the correlation computation. The correlation starts with the 194 

lowest resolution image in order to determine the largest displacements. Then the location of the 195 

pixel with the maximum cross-correlation value is used as the centre of the zone of interest for the 196 

next correlation step at a higher resolution. The spatial location of the maximum correlation value 197 

in the highest resolution image is thus progressively better estimated (Fig. 4). Ignoring high 198 
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resolution information at the first computational step decreases the probability to reach a local 199 

minima of the correlation function and, consequently, to obtain wrong matches in the 200 

correspondence solutions (Aloui & Ibn-Elhaj, 2009). In addition, this approach ensures a higher 201 

probability of reliable correlation peak detection (Anandan et al., 1993). The sub-pixel 202 

displacement is computed after the correlation at the highest resolution image. An iterative 203 

procedure is used to find the maxima of the correlation function interpolated with a bi-parabolic 204 

formula and with a maximization procedure based on the simplex method (Press et al., 1997; 205 

Chambon, 2003).  206 

The correlation results consist in matrices of displacements ∆u and ∆v along the u- and v-axes in 207 

the image plane with their associated correlation index (Fig. 4). Because the pixel size is not 208 

constant in the image due to the oblique acquisition, the displacements field correlated in the 209 

image plane cannot be directly interpreted in terms of metric displacements. Therefore an ortho-210 

rectification procedure is necessary for a quantitative analysis of the displacement fields. 211 

3.2 Ortho-rectification of the displacement field using high-resolution 212 

digital elevation models (DEMs) 213 

The ortho-rectification procedure consists in transforming the central projection of the image into 214 

an orthogonal view of the ground by correcting the effects of various distortion sources such as 215 

camera orientation, topographic effects and lens characteristics (Kraus & Waldhaüsel, 1998). In 216 

terrestrial photogrammetry, distortions induced by topography effects are the most important due 217 

to the oblique acquisition of the images. The ortho-rectification is used to convert the initial (u,v) 218 

and the final (u+∆u, v+∆v) positions of the displacement vectors in a local coordinate system. 219 

The conversion is possible if a Digital Elevation Model (DEM) of the object is available in order 220 

to relate two-dimensional pixel positions in the image plane to three-dimensional points in a local 221 

coordinate system using parametric approaches (Hemmleb & Wiedemann, 1997).  222 

In our approach, the rotation angles defining the external orientation of the camera are first 223 

determined using the relationship between the image coordinates (u,v) and the local coordinates 224 

system (X,Y,Z) given by the collinearity equations. These equations are based on the principle that 225 

each point in the local coordinate system is projected with a straight line through the projection 226 

center (origin of the camera) into the image plane (Bonneval 1972, Kraus & Waldhaüsel, 1994). 227 

Knowing the exact location of the camera and assuming that the principal point coordinates is at 228 

the center of the image, the external angle defining the absolute orientation of the camera in the 229 

local reference system can be determined with Ground Control Points (GCPs; Corripio, 2004).  230 
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In our case, the GCPs located on the landslide by DGPS measurements consisted in red-yellow 231 

squared metal targets with a dimension of 0.5x0.5 m identified both in the image plane and in the 232 

local coordinate system. A serie of 95 pairs of GCPs distributed on the image plane and in the 233 

local reference system were measured (Fig. 5). The centers of the GCPs are positioned in the 234 

local coordinate system with an average 3D accuracy of 0.02 m and a standard deviation of 235 

0.01 m. The coordinates (u,v) of the GCPs in the image plane are determined by manual picking 236 

with an estimated accuracy of about 2 pixels. Among the 95 GCPs, 45 are used to compute the 237 

external parameters and 40 are kept to calculate the accuracy of the transformation (section § 238 

5.2.1). A least mean square minimization technique based on Singular Value Decomposition 239 

(SVD) between observed and calculated GCPs in the image plane is used to determine the 240 

external parameters that satisfy the collinearity equations (Heikkilä & Silven, 1997).  241 

Then, a backward projection method is applied to allocate a 3D coordinate to each pixel 242 

coordinate in the image plane (Mikhail et al., 2001; Corripio, 2004). In the backward projection, 243 

instead of interpolating in the local reference system, the interpolation is carried out in the image 244 

geometry. A bilinear interpolation is used to associate the X,Y,Z coordinates for each initial point 245 

(u,v) and each final point (u+∆u, v+∆v) in the image plane. Because the interpolation of the X,Y,Z 246 

coordinates is carried out directly on a regular grid, this method is easier to implement than the 247 

classical forward method which projects the image location in the DEM geometry (Mikhail et al., 248 

2001). Moreover, a forward projection would transform the pixel coordinates in the image plane 249 

to irregularly distributed points in the local reference system which are then interpolated into a 250 

regular grid. Therefore, each point of the DEM is projected in the image using the collinearity 251 

equations. Because stereoscopic pairs of images acquired simultaneously from two cameras at 252 

different view spots are not available because of the local site configuration, two Airborne Laser 253 

Scanning (ALS) dense point clouds acquired in October 2007 and July 2009 have been used to 254 

interpolate 0.25m mesh-size DEMs with a planar and elevation accuracy of 0.07 m. The 255 

displacement correlated during the year 2008 and 2009 were orthorectified using the DEMs of 256 

2007 and 2009 respectively  In order to avoid the projection of duplicate points in the same 257 

position, the points of the DEMs visible from the camera viewpoint are identified by using the 258 

sightline method (Fisher, 1994; Franklin & Ray, 1994). The sightline is defined as the straight 259 

line going from the camera location to the position located in the gridded DEM. The visible 260 

points of the DEM of 2009 are presented in Fig 2B. About 57 % of the landslide area is visible 261 

from the camera view point, no displacements can be obviously measured in the invisible areas. 262 

The visible points of the DEM are then back-projected and linearly interpolated in the image 263 

plane. Three grids for the X, Y and Z coordinates (Fig. 3) are then obtained. The re-projection of 264 
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the displacement vector components in the local reference system is then straightforward, and the 265 

re-projected vector components are averaged and smoothed in a regular grid with a mesh size of 266 

1m.  267 

The use of a mono-temporal DEM for the ortho-rectification of the displacements is a strong 268 

hypothesis that the global landslide morphology remains constant over the period and affect the 269 

accuracy of the conversion of the displacement vector in the local coordinate system. However, it 270 

will be further demonstrated that this method is still a relevant estimation for our purpose with 271 

reference to the amplitude of the observed displacements. 272 

3.3 Image resolution at the terrain surface 273 

The effective (e.g. ground) pixel size is calculated with the DEM of 2009 projected in the image 274 

geometry. The effective pixel size is one limiting parameter for the accuracy of the correlation. 275 

The pixel size depends on (1) the distance between the object and the camera (Fig. 6A) and 276 

(2) the angle of incidence which is defined as the complementary angle between the line of sight 277 

of the camera and the normal of the terrain surface (Fig. 6B). A low incidence angle means that 278 

the line of sight is nearly tangential to the topography. Consequently, the pixel projection in the 279 

local coordinate system is very close to an invisible zone from the camera view point.  280 

The pixel size determines the minimum theoretical displacement that can be detected by the 281 

Image Correlation technique for a pixel-level correlation. Below this displacement threshold, the 282 

accuracy solely depends on accuracy of the sub-pixel correlation. Globally, the incidence angle 283 

on the landslide ranges from 0° to 40° and the pixel size varies from 1.10-2 m2 in the lower part (at 284 

an average distance of 300m) to 3.10-2 m2 in the upper part of the landslide (at an average 285 

distance of 900 m; Fig. 6A,B). The upper part is characterized with a pixel size often larger than 286 

0.04 m2, especially in areas where the angle of incidence is less than 5°. Therefore the lowest 287 

accuracy is expected in this region because a small ∆v and ∆u displacement can lead to an 288 

important ∆X, ∆Y, ∆Z metric displacement.  289 

In order to better assess the effect of the image resolution on the displacement estimate, a rigid 290 

displacement of ∆v=1 pixel and ∆u=1 pixel is imposed for each (u,v) location in the image plane 291 

and then converted in the local reference system. The metric displacements plotted versus their 292 

corresponding angle of incidence and the histograms with the cumulative distribution function of 293 

the displacements are presented in Fig. 7. If only a pixel-level correlation technique is used, the 294 

calculated displacements correspond to the minimum displacements that can be detected along 295 

the u-axis and v-axis of the image. In areas where the incidence angle is less than 5°, the 296 

minimum displacement drastically increases to several meters for both directions (Fig. 7A, B). 297 
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Therefore no strong confidence is given to areas whose incidence angle is lower than 5°. 11% and 298 

2% of the pixels in the landslide area with an angle of incidence lower than 5° has a metric 299 

sensitivity to one pixel of displacement greater than 0.5 m in the v-axis and the u-axis (Fig. 7C, 300 

D). Globally, 50% of the pixels in the image plane inside the landslide area show a metric 301 

sensitivity less than 0.17 m for one pixel displacement along the v-axis and 0.07 m along the u-302 

axis. Minimum displacements for a pixel-level correlation in respectively the u and v-direction 303 

are 0.04 m and 0.06 m in the lower part of the landslide and 0.09 m and 0.11 m in the upper part.  304 

3.4 Post-processing: displacements filtering 305 

Filtering criteria are necessary to remove the badly correlated points and improve the signal to 306 

noise ratio (Casson et al., 2003; Berthier et al., 2005; Wangensteen et al., 2006; Debella & Kääb, 307 

2010). Three criteria are used in this study to filter aberrant displacements in the image plane 308 

coordinate system and in the local coordinate system. There are based on: 309 

1. the value of the correlation peak coefficient: loss of coherence can occur during the 310 

correlation computations because change in surface states between a reference image and 311 

the correlated image are high, resulting thus in low correlation coefficients. Defining a 312 

threshold value has the consequence to increase the percentage of realistic displacements. 313 

A high threshold coefficient of r=0.6 was selected to remove the badly correlated points. 314 

However, the correlation peak coefficient alone is not a sufficient discriminating criteria 315 

because some points can display a high correlation coefficient even if they do not 316 

represent the same object (e.g. two trees or large stones having the same geometry; 317 

Casson et al., 2005); 318 

2. the value of displacement amplitudes and directions: points which detect an upslope 319 

displacement detection and a too important displacement amplitude with reference to 320 

prior knowledge on the landslide kinematics. 321 

3. the displacements assigned to invisible areas from the camera viewpoint because of small 322 

ortho-rectification errors in the conversion to the local coordinate system. 323 

Table 2 presents the results of the filtering on the total number of correlated points. 324 

Displacements correlated from images acquired in the summer season (23–27 July 2008) and in 325 

the autumn season (19–23 October 2008) highlight the differences in the number of remaining 326 

values for the two seasons. The amount of remaining point after filtering varies between 80% and 327 

90% in the summer period and can decrease to 50% in the autumn period. This is mainly 328 

explained by the different illumination conditions (low sun elevation) that affect the quality of the 329 

correlation. This aspect will be discussed further in section §6.1.3. The upper part of the landslide 330 
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is the most affected by the filtering criteria. This part generally shows a percentage of remaining 331 

values lower than in the middle and lower parts of the landslide. This is explained by the fact that 332 

the upper part has a more complex morphology. Consequently the effects of illumination changes 333 

are more important than in the middle and the lower parts, especially in autumn. In addition, the 334 

angle of incidence in this area can be low (5 to 10°) and thus sensitive to small displacements of 335 

the camera.  336 

4 Results 337 

4.1 Displacement maps of the landslide 338 

A set of images over the period May–July 2008 is used to illustrate the potential of the technique 339 

for the characterization of the kinematics during an acceleration period triggered by high rainfall 340 

amounts and a fast melting of the snow cover.  341 

Figure 8 shows an example of displacement rate (in pixel.day-1) of the ground surface in the 342 

image plane derived from image pairs of 20–28 May, 1–4 June and 9 June–13 June. The reference 343 

is the image of 20 May. The contrast in displacement rates between the landslide area and the 344 

stable area gives confidence on the calculated velocity field. One can notice that the pattern of 345 

displacement rate is heterogeneous spatially and temporarily. The upper part of the landslide 346 

displays the highest velocities ranging from 1 to 7 pixels.day-1 while the lower part displays 347 

velocities of less than 4 pixels.day-1. No quantitative comparisons can be carried out at this stage 348 

because the pixel sizes vary strongly in the image (Fig. 6A). From the 20 May to the 13 June, 349 

cumulated displacements up to 110 pixels are observed in the upper part. The maximum of 350 

displacement rate is observed around the 1st June. Then the landslide decelerates to displacement 351 

rate of about 1 pixel.day-1.  352 

Some local specific displacement patterns are also clearly highlighted; for instance, the presence 353 

of a stable in-situ crest located in the landslide body is perfectly identified in the correlated 354 

images. 355 

Figure 9 presents the amplitude of the 3D ortho-rectified displacement rates for the period 1st 356 

June– 4th June in the local coordinate system. The difference of kinematics among the upper (until 357 

3 m.day-1) and the lower (until 1 m.day-1) parts becomes more evident than in the image plane. 358 

The geometrical effect induced by the presence of the stable in-situ crest on the landslide 359 

kinematics is also clearly pointed out. The temporal evolution of the displacement rates is 360 

illustrated with two transversal and one longitudinal profiles on Figures 9 and 10. The difference 361 
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of displacement rates between the upper and the lower part of the landslide is particularly pointed 362 

out.  363 

The precision of the computed displacements is assessed by performing a null hypothesis on the 364 

stable areas (Berthier et al., 2005; Casson et al.,2003). Only the points with a correlation 365 

coefficient r> 0.8 are taken into account. In the image plane coordinate system, the average errors 366 

µ range from 0.5 to 0.9 pixel with standard deviations σ of 0.3 to 1.2 pixel for the image pairs 367 

between the 20 May and the 25 June. In the local coordinate system, the average errors µ range 368 

from 0.03 m to 0.11 m with standard deviations σ of 0.10 to 0.31 m for the image pairs between 369 

the 20 May and the 25 June. 370 

4.2 Comparison with DGPS displacements 371 

In order to estimate the accuracy and validate the calculated displacements, comparisons with 372 

independent and more accurate geodetic technique is necessary. Sixty benchmarks distributed in 373 

the stable parts and on the landslide body were monitored by DGPS with a horizontal and a 374 

vertical average accuracy of ±0.02 m and ±0.05 m. In total, 219 DGPS measurements are 375 

available for the period 2008–2009. In order to validate the displacements computed in the image 376 

plane, the DGPS benchmarks are projected in the image plane using the collinearity equations 377 

(Bonneval 1972, Kraus & Waldhaüsel, 1998). The pixel displacements derived from the image 378 

correlation are then averaged in a perimeter of 16 pixels around each benchmark. The results are 379 

presented in Figure 11A. A correlation coefficient of r=0.98 is found between DGPS 380 

measurements and Image Correlation, and an average relative accuracy of 11% is determined 381 

(Fig. 11C). In order to validate the metric displacements in the local coordinate system, the ortho-382 

rectified displacements are averaged in an area of 4 m2 around each benchmark and compared 383 

with the DGPS displacements. A correlation coefficient of r=0.95 is found (Fig. 11B), and an 384 

average relative accuracy of 20% is determined (Fig. 11D). 385 

 386 

5 Discussion: sources of errors 387 

The major sources of errors affecting the displacement calculations and thus potentially limiting 388 

the efficiency of the TOP for an operational landslide monitoring are the parameters affecting the 389 

Image Correlation computation and the external parameters influencing the ortho-rectification 390 

procedure. 391 
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5.1 Sources of errors affecting the Image Correlation computation 392 

5.1.1 Accuracy and precision of the Image Correlation algorithm 393 

One limitation of the Image Correlation technique is directly linked to the correlation algorithm 394 

used for matching the image pairs and to the sub-pixel interpolation method (Debella-Gilo & 395 

Kääb, 2010). The performance of a measurement system can be assessed by considering the 396 

errors associated in terms of accuracy and precision. In this section, the accuracy is represented 397 

by the average misfit between the measurements and the true value. Precision is represented by 398 

the standard deviation of the misfit between the measurements and the true value. 399 

A series of experimental tests were carried out to assess the precision of the Image Correlation 400 

technique. The series of tests allow to investigate the influences of the size of the correlation 401 

window and of the level of noise observed in the images. Homogeneous imposed displacements 402 

(systematically equal to a multiple of pixels to avoid image resampling; Chambon & Schmittbuhl, 403 

2003) are applied to pairs of images to create synthetic images. Furthermore, three levels of 404 

Gaussian noise were added to the original images with a mean noise level imposed to zero and 405 

variances σ2 imposed to 10-4, 10-3 and 10-2 (Fig. 12A). Then the Image Correlation technique is 406 

applied on the original image taken as reference and on the synthetic image with different sizes of 407 

correlation windows (5, 10, 16, 20, 30 and 50 pixels). For each correlation window, fifteen 408 

imposed displacements were realized with an amplitude ranging from 1 to 23 pixels along the u 409 

and v-directions. The analysis was conducted by comparing the noisy synthetic images with the 410 

reference image. In the optimal case, the measured displacement would be identical to the 411 

imposed displacement.  412 

Each Image Correlation analysis revealed displacement differences distributed close to zero 413 

(mean accuracy of 5.10-4 pixels). As observed by Hild et al. (2003), the precision of the 414 

correlation algorithm mainly depends on the pixel fraction of the displacement. Larger correlation 415 

windows produce less scattered displacements and therefore improve the precision. By plotting 416 

the standard deviation of the calculated displacements against the size of the correlation window, 417 

the influence of the correlation window size can be pointed out (Fig. 12B). For very low level of 418 

noise, the precision is less than 0.1 pixel for a size of correlation window greater than 5x5 pixels. 419 

For higher level of noise, the precision is more dependent on the size of the correlation window. 420 

Because homogenous displacements field were imposed in the image, the accuracy (average 421 

misfit) is similar for small and large correlation windows. In reality, the displacement field 422 

becomes more heterogeneous at higher resolution. Therefore, an increase of the size of the 423 
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correlation window implies a decrease of the displacement accuracy, but, as shown in these tests, 424 

an increase of the precision. 425 

5.1.2 Influence of ground surface state 426 

 427 

The time lag between two image acquisitions is one of the critical factors that affect the 428 

correlation computation. This time has to be long enough to increase the signal (e.g. landslide 429 

displacement) but short enough to preserve the tracked features (Berthier et al., 2005). Loading of 430 

the snowpack on the ground during Winter, surface erosion due to fast snow melting and the 431 

development of water-saturated ponds in Spring, weathering of the objects, growing of grass and 432 

large deformations are environmental processes that significantly modify the surface state during 433 

a year. Such correlation errors are characterized by very low correlation coefficients, very large 434 

displacement amplitudes or randomly-distributed displacement directions in comparison to the 435 

neighbor pixels (Fig. 13). On average, about 20 to 25% of the points are usable from one year to 436 

the next year (using a correlation window of 16*16 pixels and with a correlation coefficient 437 

threshold of 0.8). Consequently, the construction of long time series of displacements with the 438 

image correlation technique is a difficult task for the site. The range of cumulated displacement 439 

rates observed over a period of 16 months (May 2008–September 2009) is illustrated by tracking 440 

the displacement at three locations in the upper (pt 1), middle (pt 2) and lower (pt 3) parts of the 441 

landslide at the direct vicinity of benchmark measured by DGPS (Figs. 9, 11). In our case, the 442 

cumulated displacements of the year 2009 are adjusted on those of 2008 using GCPs measured 443 

with DGPS at the vicinity of the points pt1, pt2 and pt3. The monitoring of a few benchmark with 444 

geodetic techniques is therefore necessary to combine displacement pattern observed in image 445 

pairs acquired over the period May 2008–September 2009 (74 pairs of images). After the 446 

acceleration period of Spring 2008, the displacement rates are decreasing to relative constant 447 

values of about 0.02 m.day-1 in the lower and middle parts and 0.05 m.day-1 in the upper part 448 

computed over the period July to October (Fig 14). Although these displacement rates are very 449 

close to the resolution of the image, the calculated displacements are in very good agreement with 450 

the displacement of the benchmarks measured by DGPS, demonstrating that the Image 451 

Correlation technique is an efficient technique to complement on-site measurements. 452 

5.1.3 Influence of illumination conditions 453 

The difference observed in RGB intensities in various images acquired with various solar 454 

illumination angles is an important limited factor essentially in terms of changes of the shadow 455 
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areas (Berthier et al., 2005). In order to assess the influence of illumination conditions on the 456 

image correlation results, two experiments are carried out.  457 

The first experiment consists in correlating images acquired at different times within a day. Four 458 

photographs acquired 11:00, 12:00, 13:00 and 14:00 GMT in a period of small displacements 459 

(August 2009) and of clear sky conditions are correlated. The results indicate that illumination 460 

changes can lead to an average and a standard deviation of pixel-level error of respectively 461 

µ1h=1.31 and σ1h=0.03, µ2h=1.35 and σ2 =0.12, µ3h=1.89 and σ3h=0.18 pixel for time-interval 462 

acquisition of respectively 1, 2 and 3 hours. The results demonstrate that the correlation of images 463 

acquired in nearly similar illumination conditions can display a pixel-level precision.  464 

The effect of illumination changes can be larger if the images are acquired at different seasons. 465 

This influence cannot be assessed by correlating images distant in time because of the landslide 466 

displacements. Therefore the second experiment consists in creating synthetic images with 467 

different shadow areas as a function of the sun azimuth and elevation (Burrough & McDonell, 468 

1988). Only the shadows created by direct solar illumination are analyzed assuming clear-sky 469 

conditions; the effects of reflected and diffuse illuminations are neglected. First, the shaded relief 470 

on the landslide is computed from the DEM in the local coordinate system. Then, the shaded 471 

relief is projected and linearly interpolated in the image plane coordinate system. 97 shaded relief 472 

images were created with different artificial illuminations. An example of shaded relief image is 473 

represented in Figure 5. Because a preference is given to correlate images taken when the sun 474 

elevation is maximal (Delacourt et al., 2007), a shaded relief image with a sun elevation of 65° 475 

and a sun azimuth of 250° (illumination coming from the South-West) is chosen as the reference 476 

image for the correlation. It represents the illumination conditions on the landslide in the month 477 

of July at 12:00 GMT in clear sky conditions. The reference image is correlated with the shaded 478 

relief images, and the calculated displacements are compared to the errors induced by 479 

illumination changes. The mean displacement error and the mean correlation coefficient are used 480 

to characterize the influence of illumination changes on the image. Because only the shadow 481 

intensities are correlated, the errors are overestimated and are therefore represented by a 482 

normalized index.  483 

As expected, the correlation of the synthetic images show that the correlation coefficient tends 484 

rapidly to r=1 when the sun elevation is closer to the reference image (at 12.00 GMT) and the 485 

slope of the relationship depends on the sun azimuth (Fig. 15A). At the opposite, the correlation 486 

coefficient drops quickly when the illumination comes from the South-East (azimuth of 120°) and 487 

shows a strong sensitivity to sun elevation changes. Low sun azimuth (120°) and low elevation 488 

angles (30°) typically represent illumination conditions at the end of the daytime which are thus 489 
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not optimal for the correlation. In addition, low sun elevations (30°) and higher azimuths (200°) 490 

are typical illumination conditions of the autumn period at 12.00 GMT. These images are also not 491 

very relevant for the calculation of the displacements because the correlation coefficient is low. 492 

This finding is in agreement with Table 2 which indicates the amount of interpretable 493 

displacements is lower in the autumn season than in the summer season (lower correlation 494 

coefficients). 495 

Figure 15B presents the mean correlation coefficient versus the displacement noise index. As 496 

expected, for sun azimuths equal to the reference image (240°), the displacement noise decreases 497 

with an increase of the correlation coefficient. In very bad illumination conditions (e.g. a low sun 498 

elevation and a sun azimuth opposite to the reference -100°-), the trend is inversed because the 499 

image becomes very low textured (most areas of the landslide are in the shadow with 500 

homogeneous intensity values). In that case, no maximum correlation value is computed, 501 

resulting in a null displacement with the correlation algorithm used in this study. Similar results 502 

are observed for images displaying homogeneous texture such as for instance in backlighting 503 

conditions, in foggy meteorological conditions or when the ground surface is covered by snow.  504 

Therefore, correlation of images with a too important time-lapse has to be avoided to minimize 505 

illumination effects. A possible alternative is to correlate images under diffused illumination 506 

(cloudy day) thus providing a more homogenous lightning. At the opposite, correlation of images 507 

acquired at the same solar time in the day and when the sun elevation is maximal is optimal. 508 

5.2 Sources of errors affecting the ortho-rectification procedure 509 

5.2.1 Influence of camera orientation 510 

The accuracy camera orientation is a parameter affecting both the image geometry and the 511 

accuracy of the geo-referencing (Mikhail et al., 2001). If changes in external orientations of the 512 

camera are small, the image geometry is not significantly affected. Consequently a homogeneous 513 

component in the correlated displacement field is visible in the image plane (Fig. 16A). This 514 

misfit can be significant in the areas where the expected displacements are low or null such as in 515 

the stable parts. This systematic error can be corrected assuming a rigid translation of the image 516 

by removing the average ∆u and ∆v misfits (observed on the stable parts of the images such as 517 

stable crests or on reference targets located outside the landslide; Fig. 2B, A; Fallourt et al., 518 

2010). Nevertheless this correction is not fully optimal, because the geometric deformations 519 

caused by the slight orientation changes of the camera depend on the object distance. Therefore, 520 
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after correction of the homogeneous component in the image plane, an average residual misfit of 521 

about 0 to 2 pixels is observed .  522 

In order to evaluate the accuracy of the external orientation that influences the georeferencing 523 

quality, fourty GCPs not introduced in the minimization processes of section §3.2.3 are used. The 524 

shift between the projected and the observed GCPs positions in the image plane is thus 525 

determined (Fig. 16B). A mean shift error of, respectively, -0.20 and -0.08 pixel with a standard 526 

deviation of 1.59 and 1.51 pixels in the u and v-directions respectively is obtained (Table 4). The 527 

accuracy of the external parameters in the georeferencing procedure in the local coordinate 528 

system is calculated by comparing the back-projected GCPs identified in the image plane with the 529 

GCPs positions measured with DGPS and located in the stable parts. The absolute accuracy in X, 530 

Y and Z coordinates are presented in Table 4. Because most of GCPs in the stable parts are 531 

located in the background of the image (750 m from the camera location) where the ground pixel 532 

size is about 20 cm, the mean 3D error (0.14 m) and the standard deviation (0.56 m) of the 533 

positioning are not representative of the areas of the landslide located closer to the camera 534 

(300 m). Nevertheless, because the standard deviation of the GCP located in the image plane are 535 

close to the accuracy of the GCPs picking, the determination of the camera orientation is 536 

considered acceptable. Furthermore, the good coherence between the shaded relief images 537 

(Fig. 5) and the true images (Fig. 2A) shows that the quality of the determination of the camera 538 

orientation is satisfying. 539 

5.2.2 Influence of the DEM 540 

The accuracy of the DEM used in the ortho-rectification procedure is important to correct large 541 

distortion induced by the topography, which in turn controls the accuracy of the displacements in 542 

the local coordinate system. Therefore, the actual necessity of using a mono-temporal DEM for 543 

the complete series of image pairs has to be addressed. In order to evaluate its influence on the 544 

ortho-rectified displacements, the displacements of the 1st June–4th June 2008 originally ortho-545 

rectified with the DEM of October 2007 (Fig. 9) are compared with those orthorectified with  the 546 

DEM of July 2009 documenting a slightly different landslide morphology (Fig. 17A, B). The 547 

observed differences in displacement are presented relative to the displacement orthorectified 548 

with the DEM of 2007. The differences vary spatially in the landslide area. Despite some areas 549 

displaying differences in displacement larger than 75%, the average difference is 21% which is 550 

very similar to the differences observed with the DGPS measurements (Fig. 11D). As a 551 

consequence, the influence of the DEM on the accuracy of the displacement is more important 552 

than the influence of the camera orientation, the image resolution and changes in illumination 553 
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conditions. For large displacements, morphologic changes become significant and the errors on 554 

the displacements increase. The computation of multi-temporal DEMs for each image is therefore 555 

a pre-requisite to improve the accuracy of the ortho-rectified displacements. Nevertheless, in case 556 

of a translational landslide characterized by low changes in elevation, the use of the same DEM 557 

constitutes still an acceptable 1st-order estimate. 558 

 559 

6 Conclusion 560 

The potential of multi-temporal correlation of ground-based images for landslide monitoring has 561 

been assessed using the dataset available on the Super Sauze landslide (South French Alps). A 562 

methodology to compute displacement rates both in the image plane coordinate system and in the 563 

local coordinate system has been proposed.  564 

The results demonstrated clearly the potential and the limitation of this technique by identifying 565 

the heterogeneous displacement field, in space and in time, of the landslide. The camera 566 

monitoring allowed to characterize displacements up to 3 m.day-1 during an acceleration period, 567 

and displacement of about 0.02 m.day-1 computed over the period July to September (the less 568 

active period). The results are in good agreement with previous knowledge on the landslide 569 

kinematics and are in very good agreement with benchmark displacements measured by DGPS.  570 

For objects located in a range of 300 to 900 m from the camera location, this study showed that 571 

the pixel size can vary from 0.005 to 0.04 m2 according to the resolution of the image (2000x3008 572 

pixels) and the angle of incidence of the line of sight. The orientation of the line of sight 573 

(depending on the location and orientation of the camera) to the ground surface has to be 574 

considered before installing a permanent monitoring system. Areas of low incidence angles (< 5°) 575 

are very sensitive to small movements of the camera. Therefore, the angle should be the most 576 

perpendicular as possible to the mean displacement vector of the landslide. 3D displacements of 577 

less than 0.04 m and 0.06 m in the lower part of the landslide and 0.09 m and 0.11 m in the u and 578 

v-directions are difficult to measure over a period of four days without a sub-pixel correlation 579 

algorithm.  580 

The strongest limitations are independent of the acquisition system and are related to the 581 

meteorological and illumination conditions and the ground surface changes inducing partial or 582 

complete loss of coherence between pairs of images. During the winter season (from November 583 

to May), the presence of snow impedes reliable correlation results and excessive ground 584 

deformations between two consecutive years impede valid displacement measurements even if 585 

the images are acquired during the same solar time. The small changes in the camera orientation 586 
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and the use of a constant DEM are the most important parameters that affect the accuracy of the 587 

ortho-rectification of the displacement field. A regular acquisition of multi-temporal DEMs 588 

through airborne or terrestrial laser scanning or stereoscopic photogrammetric views is believed 589 

to be a priority to significantly improve the accuracy of the technique. The errors induced by the 590 

sub-pixel correlation algorithm are thus insignificant compared to the influences of the other 591 

parameters cited previously.  592 

The results demonstrate that Image Correlation techniques implemented in permanent monitoring 593 

system is particularly interesting for monitoring landslides characterized by annual pluri-594 

decimetric displacements. In addition, this low cost technique is a very suitable alternative for 595 

inaccessible landslides or areas without access to power supply. Furthermore, because the 596 

proposed methodology does not require GCPs except for determining the external orientation of 597 

the camera and for combining displacement pattern observed in image pairs acquired over two 598 

years, the methodology can be routinely and automatically applied to new pairs of images. 599 

Therefore this study offers very promising perspectives for operational applications which can be 600 

potentially integrated in an early warning system by considering additional efforts in direct data 601 

transmission. Finally, inversion of the displacement field could be developed to characterize the 602 

macroscopic rheological properties of the landslide material.  603 
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Figures 
 

 
Fig. 1. (A) View of the Super-Sauze landslide towards the south with the different 
coordinate systems used in the georeferencing procedure. (B) Location of the camera 
monitoring system (C) 
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Fig. 2. Views of the landslide in the image geometry and in the local coordinate system  
(A) Image acquired by the monitoring system showing the different parts of the landslide 
from the camera location. (B) View of the landslide morphology in the local coordinate 
system on a shaded relief computed with a 0.25 m mesh DEM interpolated from 
airborne-LiDAR data sets acquired in July 2009. The invisible areas from the camera 
location are also shown. 
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Fig 3. Flowchart of the methodology  
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Fig. 4. Principle of the normalized hierarchical image correlation. The correlation computation 
starts from the lowest resolution to the highest resolution by keeping constant the size of the 
correlation window and the explored area, while their physical size is decreasing. At each higher 
resolution level, the explored area is centered on the pixel  with the highest t correlation value of 
the previous resolution level. The estimate of the position of the maximum correlation value is 
thus increased. 
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Fig.5. Location of the GCPs used for the Least Mean Square minimization (LMS) and for the 
accuracy analysis in a shaded relief image.  The shaded relief image is produced by interpolating 
the shaded relief values of the DEM of 2009 projected in the image plane. This image is useful to 
visually check the quality of the back projection by comparison with a real image. 
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Fig. 6. Image resolution characteristics: (A) Effective pixel size in square meters (B) Angle of 
incidence in degrees. A low angle means that the line of sight is nearly tangential to the 
topography.  
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Fig. 7. Minimum metric displacement for pixel accuracy in v-axis (A) and u-axis (B) according to 
the angle of incidence. The sensitivity of metric displacements to small changes in u and v 
directions drastically increases for angle of incidence below 5°. (C) and (D) histograms and 
cumulative distribution function of the metric displacements resulting for 1 pixel displacement in 
v-axis and u-axis. 50% of the pixels in the image plane inside the landslide area shows a metric 
sensitivity less than 0.17 m for 1 pixel displacement in v-axis and 0.07 m in u-axis.  
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Fig. 8.  Displacement rates amplitude (color) and displacement direction (arrows) in the image 
plane and cumulated displacements along 8 profiles crossing the landslide over the period the 
20the May to the 25the June 2008. In order to highlight the displacement direction, the arrow length 
is normalized in each image.  
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Fig. 9. Displacement rates map for the period 1st – 4th June 2008. (A) Displacement rates  
observed on the whole landslide. The profiles P1, P2 and P3 refer to Fig. 10 and the locations pt 
1, pt 2 and pt 3 refer to Fig. 11. (B) Details on the displacement rates and displacement direction  
of the velocity amplitude and direction in the upper part. (C) Details on the displacement rates 
and displacement direction  in the lower part.   
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Fig. 10. Displacement rates profiles in the upper (P1), the medium (P2) and the lower (P3) part of 
the landslide. The location of the profiles is indicated in Fig. 9. 
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Fig. 11. Assessment of the accuracy of the Image Correlation technique. Relationships between 
the displacements observed by Image Correlation and the displacements observed by DGPS on 
sixty benchmarks in the image plane (A) and in the local coordinate system (B). Relative 
accuracy of the Image. Correlation technique in the images plane (C) and in the local coordinate 
system (D). 
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Fig. 12. Precision of the correlation algorithm. (A) Examples of different level of Gaussian noise 
created in the images of displacements (B) Precision of the hierarchical correlator in the u and v 
direction as a function of different levels of Gaussian noise (σn2) and different sizes of the 
correlation window.  
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Fig. 13.  Example of results for the correlation of two images acquired with one year interval (15th 
July 2008-14th July 2009), at the same solar time and clear sky conditions. Depending on the 
location in the landslide, some areas conserved their texture while others areas affected by strong 
weathering and ground deformation (loading of the snow and landslide displacement) display a 
totally different ground texture. The incoherency of the displacements is therefore clearly 
identifiable (inhomogeneous amplitude and direction of the displacement vectors).  
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Fig. 14. Cumulated displacements at three locations in the upper (pt1), middle (pt2) and lower 
(pt3) parts of the landslide. The location of the points is indicated in Fig. 9. The cumulated 
displacements of the year 2009 are adjusted on those of 2008 using GCPs measured with 
DGPS at the vicinity of the points pt1, pt2 and pt3. 
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Fig. 15.  Results of the correlation on the synthetic shaded relief images. (A) Influence of 
illumination conditions as a function of the sun elevation and azimuth on the mean correlation 
coefficient. (B) Relationship between displacement noise index and correlation coefficient. The 
values near the dots correspond to the sun elevation angles.  
 
 

 
Fig. 16. Assessment of the accuracy of the camera orientation (A) Average homogenous 
components due to slight movement of the camera. (B) Residual ∆u and ∆v misfits between 
projected and observed GCPs after the least square minimization.  
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Fig. 17. Effect of the DEM on the ortho-rectification of the displacement field. (A) relative 
difference between the displacement field of the 1st June orthorectified with a DEM of 2007 and a 
DEM of 2009. (B) Histogram of the relative differences.   
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Tables 
 
Table 1. Relative advantages and disadvatages for GB-InSAT, TLS and TOP 
Techniques Relative advantages Relative disadvantages 

High data accuracy possible (millimetric 
accuracy) Requires large initial investment if buying 

Monitoring during night and any type of 
weather conditions Skilled crew required for operation 

Atmospherics effects can be corrected 
(permanent scatterers)  Displacement along line of sight 

Potential for high level of automation in 
acquisition and post-processing 

Fails in detecting large and rapid displacements 
(signal decorrelation) 

 Sensitive to changes in acquisition geometry and 
surface state variations   

GB-InSAR 

    
High data accuracy possible 1-4 cm (at 100 
m range); 30 cm (at 1000 m range) Requires large initial investment if buying 

Provide an easily understandable image Skilled crew required for operation 

Potential for high level of automation in 
acquisition 

Computation of the true 3D displacements 
require specific algorithms optimized for 
calculations on large 3D point clouds 

 Large amount of computational resources for the 
spatial data visualization 

 Automated data post-processing difficult  

TLS 

    
High data accuracy possible  from 
millimeters to a few centimeters at 100 m 
range  

Adverse weather and illumination changes 
affects image quality 

Provide an easily understandable image Not operating during the night  

Low initial cost  and operating cost Very Sensitive to changes in acquisition 
geometry and surface state variations   

Low energy supply (passive sensors) Ortho-rectification using accurate DEM is 
necessary for quantitative analysis 

Potential for high level of automation in 
acquisition and post-processing 

Ground control points necessary for camera 
calibration 

Simple camera calibration processes 
available  

TOP 

Simple matching algorithms available to 
produce DEMs and to compute  2D 
displacement fields 
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Table 2. Camera acquisitions characteristics 
Type of Camera Single-lens reflex digital camera 
Effective Pixels 6.1 million 
Image Sensor RGB CCD, 23.7 x 15.6 mm 
Image Size 3008 x 2000 
Sensitivity 400 iso 
Focal length 52 mm  
Shutter speed 1/800 
Storage Media CompactFlash™ (CF) Card 
Storage System NEF (RAW) 
 
 

 
 
 
 
 
 
Table 4. Mean µ and standard deviation σ of the absolute 
accuracy for the projection in the image plane and the back-
projection in the local coordinate system 

Image plane (n=40) µ (pixels) σ (pixels) 
u 0.20 1.59 
v -0.08 1.51 

Local coordinate system 
(n=11) µ (m) σ (m) 

X 0.07 0.41 
Y -0.13 0.53 
Z 0.01 0.29 

 

Table 3. Quantity of interpretable displacement values in summer and in autumn after filtering according to the location in the landslide 
(Fig. 2) 

 Total 1. Correlation coefficient > 0.6 2. Downslope displacements 3. Displacements in visible areas 

23 July - 27 July 2008 

Absolute 
quantity of 
values (-) 

Relative 
quantity of 
values (%) 

Absolute 
quantity of 
values (-) 

Relative 
quantity of 
values (%) 

Absolute 
quantity of 
values (-) 

Relative 
quantity of 
values (%) 

Absolute 
quantity of 
values (-) 

Relative quantity 
of values (%) 

Upper part 210637 100 197139 93.6 164275 78.0 161221 76.5 
Middle part 24821 100 23612 95.1 23266 93.7 22343 90.0 
Lower part 61979 100 61255 98.8 59989 96.8 57801 93.3 

Whole landslide 297437 100 282006 94.8 247530 83.2 241365 81.1 

19 Oct. - 23 Oct. 2008                 

Upper part 210637 100 183570 87.2 82149 39.0 74798 35.5 
Middle part 24821 100 22847 92.1 20751 83.6 18672 75.2 
Lower part 61979 100 61762 99.7 60019 96.8 57510 92.8 

Whole landslide 297437 100 268179 90.2 162919 60.4 150980 50.8 


