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Abstract 9 

 10 

  This paper makes a review of the interpretations of the tectonic evolution of SW Japan 11 

during the last three decades. In the late 1970s, the dominant model was the so-called 12 

―Pacific-type orogeny‖, emphasizing the purported absence of nappes and the contrast with 13 

the alpine chains, and interpreting the evolution as due to a steady oceanic subduction since 14 

the Paleozoic time. In the 80s, the discovery of the actual structure made of a pile of large 15 

thrust sheets led authors to propose collisional models, involving the intermittent 16 

underthrusting of buoyant blocks like micro-continents. At the same time, the use of high-17 

resolution biostratigraphy allowed several authors to recognize ancient accretionary wedges, 18 

with a reconstructed ocean plate stratigraphy of individual accreted units, especially in the 19 

Tanba and Shimanto zones. Also, precise radiometric dating permitted the distinction of 20 

metamorphosed units, especially in Sanbagawa and Shimanto belts. As a result of these new 21 

data, since the 1990s, the plate tectonic interpretation of the history of the Japanese islands 22 

was revised by Japanese scientists and presented again in terms of accretionary processes 23 

linked to a steadily oceanic subduction, with an episodic ridge subduction: the so-called 24 

―Miyashiro-type orogeny‖. The review of different data leads to the following conclusions. 25 

The structure of SW Japan is made of a pile of sub-horizontal nappes, polydeformed, with a 26 

geometry similar to the one encountered in collisional orogens. The geodynamic mechanisms 27 

advocated for the tectonic building within the accretionary orogeny concept (Miyashiro-type 28 

orogeny) are inappropriate. A permanent oceanic subduction with the intermittent ―collision‖ 29 

(actually subduction) of an active ridge or seamount chain is unable to build such structures, 30 

as this process induces in fact an acceleration of the tectonic erosion and collapse of the upper 31 

plate; the underthrusting of a micro-continent or mature arc is likely needed. The exhumation 32 

story of Sanbagawa HP schists suggests the setting of a continental subduction. The 33 

petrological and new geochemical data from the literature strongly support the existence, 34 
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beneath the nappes of accretionary complexes, of continental bodies showing affinities with 35 

South China, from which they were once separated. The episodic collision, underthrusting, of 36 

such blocks was responsible for the tectonic piling. Tectonic erosion plaid likely a major role 37 

in removing material during the intervening subduction stages. A revised geodynamic model, 38 

implying the collision of the Honshu, South Kitakami-Kurosegawa, and Shimanto Blocks, is 39 

proposed for explaining the three orogenic crises which took place respectively at around 240, 40 

130, and 80-60 Ma ago in SW Japan. The paleogeographic position and affinity of the Hida 41 

block with surrounding units, in the hinterland, are still unclear. More work is needed to solve 42 

this question. 43 

______________________________________________________________________ 44 

Key words: Japanese Islands, collisional orogen/accretionary orogen, Late Paleozoic, 45 

Mesozoic, tectonics, geodynamics 46 

________________________________________________________________________ 47 

 48 

1. Introduction 49 

 50 

  The Japanese Islands are often considered as a typical example of accretionary orogen 51 

(e.g. Cawood et al., 2009), built during the subduction of an oceanic plate, by superimposition 52 

of accretionary wedges composed of material coming from the upper plate by erosion and 53 

mainly from the downgoing plate (accretion s. st.), including deep-sea sediments, oceanic 54 

plateaus, HP metamorphic rocks. Due to this process, the upper plate is growing ocean-ward, 55 

and some syn- to post-orogenic granitoids are emplaced, initiated by melting of the lower 56 

plate crust and/or mantle wedge. The dominant model expressed today in the literature 57 

presents the Japanese Islands as a segment of subduction-related orogen built along the 58 

western Pacific margin, since at least the Mesozoic, by successive underthrusting of tectonic 59 

units corresponding to accretionary complexes, either sedimentary or affected by high P/T 60 

metamorphism (e.g. Isozaki, 1996, 1997; Maruyama, 1997; Isozaki et al., 2010). The 61 

episodicity of orogeny and production of granites is now assigned to the intermittent 62 

subduction of an oceanic ridge, core of the ―Miyashiro-type orogeny‖ concept (Maruyama, 63 

1997). A similar concept of subduction-related orogeny, piling Permian to Recent 64 

accretionary complexes, corresponds to the ―Nipponides‖ of Sengör and Natal‘in (1996).  65 

Basically, this interpretation is quite similar to the theory of ―Pacific-type orogeny‖ (Matsuda 66 

and Uyeda, 1971), which was dominant in the 1970s. This model emphasized the role of 67 

paired metamorphic belts and insisted on one structural point: the assumed total absence of 68 
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nappes in Japan and, due to this lack, the strong contrast with the Alpine chains. Therefore, in 69 

parallel with the development of the plate tectonic theory and the discovery of the great 70 

importance of subduction processes, an extrapolation of the present situation was made in the 71 

past; the Japanese Islands were considered as a permanent island-arc and a giant accretionary 72 

prism due to a steady oceanic subduction from Paleozoic to Present. 73 

 74 

  However, during the last 40 years, the interpretations and concepts related to the 75 

tectonic evolution of the Japanese Islands have evolved a lot and other models have been 76 

advocated.  77 

  During the 1980s, alternative collisional models were proposed, taking into 78 

account the new structural figure of SW Japan, after the discovery of large thrust sheets (e.g. 79 

Charvet et al., 1985; Faure et al., 1986). In this interpretation, the episodic orogenic events are 80 

assigned to the intermittent arrival at the trench of a buoyant feature, micro-continent or 81 

mature arc, choking the subduction and inducing the piling of nappes which show a geometry 82 

similar to the one visible in classical collisional orogens. Similar collisional episodes were 83 

proposed for NE Japan (Komatsu et al., 1983; Jolivet, 1986; Jolivet et al., 1987; Kimura, 84 

1997). 85 

 86 

  The aim of this paper is to review, based on a brief historical perspective, the validity 87 

of the main tectonic and geodynamic concepts implied by the two opposite models, when 88 

compared with the recent data. I will show that the pure accretionary model is likely invalid 89 

and that the collision of light blocks is the only mechanism able to account for the different 90 

data: tectonic, geodynamic, petrologic, and geochemical. A new geodynamic model, taking 91 

into account those recent data coming from the literature, is proposed at the end. Although 92 

this reflecting is valid for the whole Japan and different tectonic events, I will restrict my 93 

point to SW Japan, to the SW of the Itoigawa-Shizuoka fault (Fig. 1) and mainly to the 94 

tectonic development from Late Paleozoic to Paleocene. 95 

 96 

2. The discovery of nappes: invalidity of the Pacific-type orogeny, proposal of the 97 

collisional model    98 

  99 

  As mentioned before, the theory of ―Pacific-type orogeny‖ (Matsuda and Uyeda, 100 

1971) was dominant in the 1970s. This model emphasized the role of paired metamorphic 101 

belts (Miyashiro, 1961) and the assumed total absence of nappes in Japan and, due to this 102 
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lack, the strong contrast with the Alpine chains. Although the concept of paired metamorphic 103 

belts can be discussed and questioned (e.g. Brown, 1998, 2010), this point will not be 104 

addressed in detail here and treated only incidentally; I will concentrate on the tectonic and 105 

geodynamic aspects.  106 

 107 

 In the 1970s, the geometry of structures was poorly known and the stack of nappes 108 

ignored, despite some previous works advocating their existence (e.g. Fujimoto, 1937). 109 

However, in the late 1970s and early 1980s, two developments induced a big change in the 110 

understanding of the geometry of the different units, leading to the recognition of the 111 

structural scheme admitted today (Fig. 2). The first one was a revolution in the Japanese 112 

stratigraphy, due to the use of conodont and radiolarian faunas. The second one was the input 113 

of modern structural studies, by Japanese and foreign scientists, in particular the French team 114 

with an experience of alpine belts. The dating by conodonts and radiolaria showed that some 115 

formations, previously considered as Permian in the Inner zones of SW Japan, are in fact 116 

Triassic-Jurassic olistostromes and, due to the geometric superimposition of unambiguous 117 

Paleozoic units, should be interpreted as tectonic windows (Hayasaka and Hara, 1982; Faure 118 

and Caridroit, 1983). The general presence of thrust sheets and nappes in all the zones (e.g. 119 

Charvet, 1980; Faure, 1983; Charvet et al., 1983; Faure and Charvet, 1983, 1984; Guidi et al., 120 

1983; Caridroit et al., 1985) led to the recognition of an ―Alpine-type orogen in an island-arc 121 

position‖ (Charvet et al., 1985). Since then, the structural sketch of SW Japan was changed 122 

and considered as a piling of nappes (Fig. 1, 2) built by some specific orogenic events. 123 

Those major tectonic events, responsible for the Triassic, Cretaceous, Eocene, and Miocene 124 

thrustings, were interpreted in terms of collisional tectonics, the subduction leading to the 125 

episodic arrival of buoyant micro-continents in the subduction zones (Charvet and Faure, 126 

1984; Faure and Charvet, 1984, 1987; Charvet et al., 1985, Faure et al., 1987; Caridroit et al. 127 

1987). Some variations were suggested. For instance, regarding the Permian-Triassic belt of 128 

Inner Japan, the limestone Oga nappe, overriding the Sangun HP schists and Yakuno 129 

ophiolites, initially interpreted as a former seamount of the subducting ocean (Caridroit et al., 130 

1987; Faure and Charvet, 1987), was later proposed to be a part of the Hida-Sino-Korean 131 

margin (Cluzel, 1991; Chough et al. 2000).  132 

 133 

 134 

 135 
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3. Recent interpretations: recognition of large thrust sheets but return to the 136 

accretionary model with ridge subduction  137 

  138 

  The existence of nappes is widely admitted nowadays by the Japanese geological 139 

community. The advocated allochthony is even larger than previously proposed. For instance, 140 

if the North Chichibu zone was recognized as a klippe thrust over the Sanbagawa schists and 141 

rooted in the Tanba zone (e.g. Faure and Charvet, 1987; Kawato et al., 1991) (Kumoso 142 

locality, Fig. 3), the klippe system is now considered as including the South Chichibu 143 

(Sanbosan) and the composite Kurosegawa terrane, which comprises old (pre-Silurian to 144 

Siluro-Devonian) rocks (Yoshikura et al., 1990; Aitchison et al., 1991, 1996; Hada et al., 145 

2000) and a serpentinous mélange (Isozaki and Itaya, 1991; Isozaki, 1996, 1997). And the 146 

Kurosegawa terrane, formerly regarded as a part of the colliding block acting as the relative 147 

autochthon of the overthrust Sanbagawa HP schists unit (e.g. Maruyama et al., 1984), from 148 

southern origin (Aitchison et al., 1991; Hada et al., 2001), is now seen as a mélange coming 149 

from the innermost zones (Isozaki, 1997; Maruyama, 1997; Isozaki et al., 2010). Also, the 150 

Sanbagawa zone was demonstrated to overthrust directly the Cretaceous North Shimanto zone 151 

in central Kii peninsula (Sasaki and Isozaki, 1992; Masago et al., 2005). And, in Oboke area, 152 

central Shikoku, the lower unit made of Koboke and Kawaguchi Formations, initially 153 

regarded as a psammitic schists unit of the HP belt, appears to be a tectonic window 154 

correlated to North Shimanto; the protolith of those formations is younger than ca. 92-82 Ma, 155 

and the metamorphic age around 60 Ma, whereas the protolith of Sanbagawa schists is older 156 

than 130 Ma and the metamorphic age around 120-110 Ma (Aoki et al. 2007, 2008; Isozaki et 157 

al., 2010, and ref. therein) or 89-88 Ma (Wallis et al, 2009).  158 

 159 

  But, if the bulk geometry of flat-lying thrust sheets of different ages is widely 160 

accepted, and supported by seismic records (Kawamura et al., 2003; Ito et al., 2009),  the 161 

interpretation in terms of collisional orogeny is usually abandoned, at least for the post-162 

Triassic events, to the benefit of the accretionary orogeny model. The whole SW Japan is 163 

considered as a pile of accretionary complexes younging downward (Fig. 4). 164 

 165 

  Indeed, since the 1980s, the use of high-resolution biostratigraphy (conodonts and 166 

radiolaria) allowed several authors to recognize ancient accretionary wedges, with a 167 

reconstructed ocean plate stratigraphy of individual accreted units, especially in the Tanba and 168 

Shimanto zones (e.g. Matsuda and Isozaki, 1991; Matsuoka, 1992; Isozaki, 1996, 1997; 169 
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Wakita, 2000; Wakita and Metcalfe, 2005; Isozaki et al., 2010, and ref. therein). Also, precise 170 

radiometric dating permitted the distinction of metamorphosed units, especially in Sanbagawa 171 

and Shimanto belts (e.g. Suzuki et al., 1990; Isozaki and Itaya, 1991; Aoki et al., 2008, and 172 

ref. therein).  173 

 174 

  As a result of these new data, in the 1990s, the plate tectonic interpretation of the 175 

history of the Japanese islands was revised by Japanese scientists in terms of accretionary 176 

processes linked to a steadily oceanic subduction, with an episodic ridge subduction assumed 177 

to be responsible for the genesis of metamorphic-granite belts (e.g. Isozaki, 1996, 1997; 178 

Maruyama, 1997; Isozaki et al., 2010). 179 

 180 

  The progress in understanding and modeling the exhumation of HP metamorphic 181 

rocks, associated with precise field survey of the contacts led authors to re-interpret the 182 

Sanbagawa belt in terms of a thin accretionary slice formed along the subduction channel and 183 

emplaced by wedge extrusion (Maruyama et al., 1996; Ota et al., 2004; Masago et al., 2005; 184 

Osozawa and Pavlis, 2007; Aoki et al., 2008) or another process (Mori and Wallis, 2010). A 185 

particular attention has been given to the eclogites of central Shikoku, interpreted as an 186 

oceanic plateau in an accretionary complex (Terabayashi et al., 2005) or derived from an 187 

oceanic island arc (Utsunomiya et al., 2011), and to their metamorphic conditions reaching 188 

locally 2.5 to more than 3 GPa and 900°C (Enami and Miyamoto, 2001; Ota et al., 2004). 189 

They have undergone two metamorphic stages (Endo, 2010): a first one at around 120 Ma, the 190 

last one, eclogitic, at 89-88 Ma, followed by a fast exhumation, with a rate of 2.5 cm/a  191 

(Wallis et al., 2009). 192 

 193 

  Between 500 Ma and the Tertiary, five major orogenies occurred (Isozaki et al., 2010), 194 

respectively at: 450 Ma (Oeyama), 340 Ma (Renge), 240 Ma (Akiyoshi), 140-130 and 80-60 195 

Ma. This paper is dealing essentially with the period from the late Paleozoic to latest 196 

Mesozoic-early Tertiary, during which three main tectonic events occurred. 197 

 198 

  The late Permian-Triassic one is sealed by the Upper Triassic molasse. It involved the 199 

emplacement of the Yakuno ophiolite, the ca. 240 Ma old Suo HP metamorphic rocks (part of 200 

the previous Sangun schists now subdivided into a ca. 340 Ma Renge belt and the Suo belt), 201 

and HT metamorphism in Hida-Oki belt. Explicitly or implicitly, a collisional process is 202 

advocated for the Triassic event, either by correlation with the Qinling-Dabie-Sulu suture 203 
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(Oh, 2006; Isozaki et al., 2010) or due the collision of a Proto-Japan block with the Asian 204 

margin (de Jong et al., 2009).  205 

  The Early Cretaceous event, post-dated by Cretaceous basins and by the Ryoke HT 206 

metamorphism, involved the remobilization of the Triassic belt, the piling and folding of 207 

Mino-Tanba and Chichibu units. The Late Cretaceous-Paleocene event, before the deposition 208 

of the Eocene Kuma Group, induced the reworking of the Early Cretaceous belt in the thrust 209 

system (final emplacement of Chichibu-Kurosegawa klippe), the HP metamorphism of North 210 

Shimanto and Oboke schists, the exhumation of Sanbagawa blueschists and eclogites. Those 211 

two Mesozoic tectonic events are now generally seen as successive accretions due to oceanic 212 

subduction, except some authors advocating the collision with micro-continents (e.g. Otsuki, 213 

1992). This accretionary orogen model, also called ―Misyashiro-type orogeny‖ (Maruyama, 214 

1997) emphasizes the role of continuous oceanic and episodic ridge subduction. 215 

 216 

 217 

4. Invalidity of the accretionary orogeny: revalidation of the collisional model  218 

  219 

   However, several facts are hardly explained by an ordinary oceanic plate subduction.  220 

Several lines of evidence contradict this interpretation: the geometry of structures, the 221 

comparison with the geodynamic processes presently working around the world, and the 222 

geochemical evidence. 223 

 224 

4.1. Tectonic considerations 225 

 226 

  The bulk geometry, with flat and refolded thrust contacts, is different from an 227 

accretionary prism geometry. The reworking of older belts, in a kind of ―basement nappes‖, 228 

implies huge deformation far beyond the back-stop. Even if it is assumed to be a simplified 229 

sketch, a cross-section like the one on Fig. 4 (after Isozaki et al., 2010) is misleading. The 230 

tectonic contacts between units have been refolded and reactivated, several times for some of 231 

them; for instance the Permian-Triassic stack has been thrust again at the end of Jurassic. The 232 

actual structure does not correspond to such an image of ―in sequence‖ package but to a 233 

majority of ―out-of-sequence‖ thrusts and cannot be compared with the classical anatomy of 234 

an accretionary prism. And the main contacts cannot be assigned to the former Wadat-Benioff 235 

planes. Actually the geometry, involving the multiple thrusting of ancient nappe systems, with 236 

different metamorphic evolution, recalls the one of classical collisional orogens. 237 
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 238 

  Nevertheless, the large allochthony advocated in some recent papers can be discussed. 239 

An example is given by the Kurosegawa rocks, presented as a pre-Jurassic klippe initially 240 

thrust over the Tanba-Chichibu units (Isozaki and Itaya, 1991; Isozaki et al, 2010) and 241 

therefore rooted to the west of Tanba or as olistoliths in such a far-travelled olistostrome 242 

klippe (Masago et al., 2005)(Fig. 5). The Kurosegawa terrane is agreed to be correlative with 243 

South Kitakami (Fig. 1), a large massif in NE Japan with old rocks (e.g. Ehiro, 2000). It is 244 

questionable that they both represent olistoliths coming from the innermost zones and 245 

reworked in a Mesozoic mélange; their affinity with Hida Gaien is debated. If they are nappes 246 

rooted near the Hida zone (Isozaki, 1997), that would strongly argue for a collisional model. 247 

But the South Kitakami massif is probably not a big thrust package coming from circum-Hida 248 

area; there is no structural evidence for that. An alternative and more likely interpretation is 249 

that the Kurosegawa zone, which records evidence of strike-slip faulting during the Early 250 

Cretaceous (Kato and Saka, 2003), could be originally the autochthonous basement of the 251 

Lower Cretaceous nappes, reworked as a klippe at the end of Cretaceous, together with 252 

Chichibu units. This two-stage interpretation is consistent with the fact that the initial strike-253 

slip faults, active during the Early Cretaceous, are cut by the younger thrust contact (Butsuzo 254 

Tectonic Line) (Fig. 6) responsible for the tectonic superimposition of those units above the 255 

Upper Cretaceous Shimanto domain (Kato and Saka, 2003, 2006).  256 

 257 

4.2. Geodynamic implications 258 

 259 

  Any interpretative theory of the tectonic development of Japan must comply with the 260 

global geodynamic machinery acting around the world. Several geodynamic processes 261 

advocated within the frame of the accretionary orogeny model look actually unable to build 262 

the described structures. 263 

 264 

  The first and main difficulty regards the ridge subduction, considered to be responsible 265 

for the episodic tectonic crises and nappe emplacement (Maruyama, 1997; Isozaki et al., 266 

2010). The subduction of an active oceanic ridge, according to the presently working and well 267 

documented recent example, cannot explain the tectonic piling. Such a subduction actually 268 

induces an acceleration of the tectonic erosion (e.g. Berhman et al., 1994; Bourgois et al., 269 

1996), a collapse of the upper plate, but not an ocean-ward nappe piling.  270 

  271 
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  The same observation is made regarding the subduction (―collision‖) of other oceanic 272 

asperities: aseismic ridges, plateaus, seamounts. 273 

  When the subduction of an aseismic ridge participates in the shallowing of the 274 

downgoing plate and increases the coupling, it induces also tectonic erosion (e.g. von Huene 275 

and Ranero, 2010 and ref. therein); it may induce the development or the activation of a fold-276 

and-thrust belt, but in the back-arc area, mainly verging continent-ward, as documented in the 277 

Andes (e.g. Schmitz, 1994; Hartley et al. 2000; McQuarrie and DeCelles, 2001; McQuarrie, 278 

2002; Müller et al., 2002; Barke and Lamb, 2006; Espurt et al., 2007). The crustal shortening 279 

is due to the bending and underthrusting of the Brazilian craton (e.g. Lyon-Caen et al., 1985), 280 

and occurs in the hot, thin zone of lithospheric weakness behind the arc, expected focus of 281 

shortening during periods of increased compressive stress (Cawood et al., 2009). As noticed 282 

along the Americas, the subduction of ocean floor relief can uplift the land surface above the 283 

―colliding‖ feature, but the process also involves accelerated tectonic erosion (von Huene and 284 

Ranero, 2010). Along Peru, short-term uplift during the subduction (―collision‖) of the ocean 285 

relief was followed by subsidence, leading to formation of basins in the middle and upper 286 

slopes, and extensional deformation (Clift et al., 2003).  287 

  The sometimes advocated accretion of seamounts and/or plateaus, for instance the 288 

Carboniferous Akiyoshi-Sawadani seamount chain, the Permian Maizuru seamount swarm 289 

(Maruyama et al., 1997; Isozaki et al., 2010), or the Late Jurassic Mikabu plateau (Isozaki et 290 

al., 1990) and Sorachi plateau in Hokkaido (Kimura, 1997) is also unable to explain the 291 

development of nappes. It has been demonstrated in many active margins around the Pacific, 292 

and particularly near Japan, that the arrival of seamounts at the trench may induce some local 293 

and temporary disturbance, including some small thrusts in the lower slope, but that the 294 

seamounts are broken by trench-parallel extensional faults as they pass over the outer trench 295 

rise and that they finally subduct in the same way as the surrounding oceanic lithosphere, 296 

provoking a collapse of the upper plate (e.g. Fryer and Smoot, 1985; Fryer and Hussong, 297 

1985; Kobayashi et al., 1987;  Lallemand and Le Pichon, 1987; Cadet et al., 1987; Lallemand 298 

and Chamot-Rooke, 1987; Ballance et al., 1989; Gardner et al., 2001; Fisher et al., 2004; von 299 

Huene, 2008).  300 

  Similar conclusions can be drawn in the case of oceanic plateaus, if they do not show 301 

any buoyancy contrast. Conversely, if they are of great size and a bit buoyant, the disturbance 302 

at the surface is more obvious and they may develop a conspicuous coastal uplift, like the 303 

Yakutat Block in Alaska (Eberhart-Phillips et al., 2006; von Huene and Ranero, 2010). 304 

However, in the mantle, the Yakutat slab is subducting with the Pacific plate and is not 305 
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moving independently as a truly distinct plate (Eberhart-Phillips et al., 2006). Seismic records 306 

show that it is subducting down to 140 km, with a slab up to 600-1000 km long (Eberhart-307 

Phillips et al., 2006; von Huene and Ranero, 2010). It is a composite oceanic and continental 308 

block of 15- to 20-km-thick crust (Fuis et al., 2008) and, due to its buoyancy, its relative 309 

resistance to subduction causes some deformation: the unsubducted crust becomes a foreland 310 

fold-and-thrust belt (Fuis et al., 2008; von Huene and Ranero, 2010). The buoyancy seems to 311 

be a critical factor. If we look at the oceanic plateaus produced by LIPs, having an 312 

anomalously thick crust but with a density close or identical to the normal oceanic crust, their 313 

arrival at the subduction trench does not induce a major accretion. Regarding the biggest 314 

plateau in the world, the Ontong Java Plateau, covering 1,900,000 km
2
 and having a crust as 315 

thick as 33 km, only 20% of the crust are accreted above a thrust décollement, the lower 80% 316 

of the plateau crust are subducting (Mann and Taira, 2004).  The Ontong Java Plateau–317 

Solomon island arc convergent zone is the only known example on Earth of active accretion 318 

of an oceanic plateau at subduction zone. This giant is exceptional and, due to its almost 319 

entire subduction, it can be concluded that in general oceanic plateaus are not significant 320 

contributors to the crustal growth of arcs, and therefore, to continental growth (Mann and 321 

Taira, 2004).  322 

 323 

  In contrast, the arrival at the trench of a rather small block with a lighter crust, and 324 

therefore positive buoyancy, like a mature arc or a micro-continent is able to induce a 325 

collision producing permanent compressive structures.  A good and well-known example is 326 

provided by the Izu collision in Central Japan, even if the accretion is only partial and a part 327 

of the arc is subducting (Yamamoto et al., 2009). The thickness of continental crust exerts a 328 

major control on this phenomenon, if we consider that the arcs thinner than 25 km subduct 329 

and the Izu arc, 30-35 km thick, induces collisional structures (Yamamoto et al., 2009).  330 

A past arc accretion-collision with an active margin likely occurred at the northwestern corner 331 

of the Pacific about 55 Ma ago, between the Kamchatka-Koryak margin and the Olyutorsky 332 

arc (Scholl, 2007).  333 

 334 

  In conclusion, assigning the tectonic development of SW Japan to the episodic 335 

subduction of oceanic features like active ridge, seamount chain, plateau, is not in agreement 336 

with the way plate tectonics is presently working. The creation of large permanent ocean-337 

ward compressive structures needs the underthrusting of buoyant blocks.  338 

 339 
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4.3. Exhumation of Sanbagawa HP metamorphic rocks 340 

 341 

  In their synthesis on the exhumation of oceanic blueschists and eclogites worldwide, 342 

Agard et al. (2009) made several statements: no exhumation is possible beyond a depth of 343 

~70 km, corresponding to 2.0-2.3 GPa; the oceanic exhumation velocities for HP-LT oceanic 344 

rocks, whether sedimentary or crustal, are usually on the order of the mm/a (between 1 and 5 345 

mm/a), whereas they are on the order of a few cm/a in the case of continental subduction. 346 

There is a link between faster exhumation rates and continental subduction. The exhumation 347 

of oceanic crust is obtained only when serpentinites are present in the slab mantle. 348 

In the case of Sanbagawa schists, they are assigned to the type B protoliths (ocean-derived), 349 

as defined by Maruyama et al. (1996) and considered as exhumed during an oceanic 350 

subduction.  351 

  However, some peculiarities lead to question this interpretation, at least for the 352 

eclogitic units present in central Shikoku, corresponding to the second stage of HP 353 

metamorphism (Endo, 2010), dated at 89-88 Ma (Wallis et al., 2009). According to detailed 354 

structural studies, eclogitic bodies form a large coherent unit that overlies a non-eclogitic unit 355 

with a major tectonic boundary and forms an eclogitic nappe (Wallis and  Aoya, 2000; Aoya, 356 

2001). 357 

  Agard et al. (2009) already noticed that the P-T paths for Sanbagawa rather resemble 358 

those known in well established collisional cases ―despite the lack of subsequent collision‖. If 359 

the peak metamorphism reached the pressure of more than 3 GPa (Enami and Miyamoto, 360 

2001; Ota et al., 2004), that would suggest a continental subduction, as well as the fast 361 

exhumation rate of 2.5 cm/a advocated by Wallis et al. (2009). The peak pressure might be 362 

somehow overestimated when based on mantle-derived material, not implying that the crust 363 

reached that depth (Oberhänsli, person. com.) and a general metamorphism peak pressure of 364 

1.5-1.9 GPa is more likely for the whole package of oligoclase-biotite schists, which reached 365 

eclogite facies at a depth of 48-60 km and were exhumed at an average rate of only 1mm/a if 366 

the peak metamorphism occurred at 120-110 Ma (Aoki et al. 2009). Such a figure would be 367 

compatible with an oceanic subduction.  368 

  But some specific features are unusual in such a setting. The quartz-eclogite of the 369 

Iratsu body contains omphacite with quartz lamellae, a feature common in UHP rocks (Ota et 370 

al., 2004), and this quartz-eclogite is sedimentary in origin (Takasu, 1989; Ota et al., 2004). 371 

Also the presence of the Higashi-Akaishi garnet-bearing ultramafic body (Mizukami and 372 

Wallis, 2005) is unique amongst purported oceanic subduction-type metamorphic belts 373 
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(Hattori et al., 2010); such lenses are known in collisional orogens. This body represents a 374 

cumulate assemblage, maybe a root of an arc (Hattori et al., 2010) or the base of an oceanic 375 

plateau (Terabayashi et al., 2005) which has been subducted down to 100-120 km (Enami et 376 

al., 2004; Hattori et al., 2010). In front of those ―anomalies‖, Ota et al. (2004) state that ―the 377 

Sanbagawa belt is potentially the first example of a regional ultrahigh-P metamorphic belt in 378 

the Pacific-type orogens of the world, with a wide P range covering depths of subduction zone 379 

magmatism‖ and Hattori et al. (2010) assume the existence of  ―a rare example of oceanic-380 

type ultrahigh-pressure metamorphism‖. It seems more realistic to question the model and 381 

admit that, at least regarding the eclogitic nappe, the metamorphic conditions and the implied 382 

important depth reached during subduction are only compatible with a continental subduction. 383 

Regarding the exhumation rate, it has been recently debated (Aoki et al., 2009, 2010; Wallis 384 

et al., 2009; Wallis and Endo, 2010), interpreted as slow or rapid depending on the dating of 385 

the peak eclogitic metamorphism at 120-110 or 89-88 Ma. The latter hypothesis, which is 386 

supported by Lu-Hf data (Wallis et al., 2009) but also by zircon ages (Aoki et al., 2009), 387 

could imply a rapid exhumation (more than 2.5 cm/a) for at least some units and a short-lived 388 

Sanbagawa orogeny, on time scales of a few million years (Wallis et al., 2009; Wallis and 389 

Endo, 2010). That would clearly add another evidence of a continental subduction setting for 390 

this exhumation. 391 

 392 

  In addition, it is worth noting that the protolith of the quartz-bearing eclogite was a 393 

sedimentary rock containing detrital zircons with a core as old as around 1900 Ma (Okamoto 394 

et al., 2004). This fact has strong implications. Either the protolith was initially deposited near 395 

an arc (e.g. Utsunomiya et al., 2011) or a plateau (e.g. Terabayshi et al., 2005) on the oceanic 396 

bottom, before entering the subduction zone, and that means that this relief had a continental 397 

basement. Or, it was part of the accretionary prism and that implies the existence of an 398 

available Proterozoic source in Proto-Japan during the Early Cretaceous (139–135 Ma), age of 399 

the sedimentation (Okamoto et al. 2004 and ref. therein), precluding a composition restricted 400 

to a pile of oceanic accretionary complexes. 401 

 402 

  In short, the eclogite unit of central Shikoku shows pressure conditions and a likely 403 

fast exhumation rate which are known so far only in relation with a continental subduction, 404 

unknown in a setting of oceanic subduction.  405 

 406 

4.4. Petrological and geochemical evidence 407 
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 408 

  The data coming from petrological and geochemical studies have been already used in 409 

order to show that they are supporting the prior underthrusting of a buoyant micro-continent 410 

in the case of the post-tectonic Middle Miocene plutonism of Shimanto (Stein et al., 1994, 411 

1996). For instance, Stein et al. (1994) stated that ―a simple subduction model does not 412 

explain the various magmatic affinities‖ and that ―the proposed collision model could explain 413 

(1) the heating source, (2) the various magmatic affinities and also (3) the 0.7-0.8 GPa 414 

pressure invoking crustal thickening induced by the collisional event.‖ In the view of those 415 

authors, a mantle upwelling, after collision and prior to Shikoku basin subduction, was likely 416 

responsible for the necessary heating source. This view was questioned by Shinjoe (1997), 417 

who argued that ―mantle upwelling as a heat source cannot explain the strict along arc 418 

contemporaneity of the felsic magmatism and shift of the magmatism to the Setouchi region‖. 419 

Actually, a slab detachment occurring after the collision can easily explain the asthenospheric 420 

upwelling parallel to the belt and the along arc contemporaneity of such a near-trench 421 

magmatism. The younger Setouchi arc volcanism, more to the north, was located at the 422 

volcanic front linked with the subsequent Shikoku basin subduction. Another critical 423 

comment made by Shinjoe (1997) is the lack of direct evidence for the presence and collision 424 

of a micro-continent. However, indirect evidence is provided by the existence of high grade 425 

enclaves (Stein et al., 1994). 426 

 427 

  The presence of high grade enclaves, including granulite and not in equilibrium with 428 

the Ryoke metamorphism, has also been known for a long time in the Tertiary volcanoes 429 

cross-cutting both Ryoke and Tanba zones (e.g. Nureki and Murakami, 1979; Asami and 430 

Asami, 1982). But, as pointed out by Faure et al. (1986), if they bring evidence for a sialic 431 

basement comprising a deep continental crust, and if the big amount of felsic magmatism 432 

produced during the Late Cretaceous and Paleogene suggests the existence of such a sialic 433 

basement beneath Tanba and Ryoke (HT metamorphic equivalent of Tanba) zones, its 434 

presence could due to two different reasons. Either it is a pre-orogenic basement of Tanba-435 

Ryoke or a continental block underthrust during the orogeny. Owing to the now generally 436 

accepted interpretation of Tanba as an accretionary complex initially formed in a setting of 437 

oceanic subduction (see above), the former hypothesis can be discarded. Therefore, such high 438 

grade metamorphic rocks must represent the elements of a colliding block arrived at the 439 

trench and having underthrust the upper plate. 440 

 441 
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  Recent geochemical studies dealing with Sr-Nd isotopic data of granitic rocks 442 

generated in Japan from Paleozoic to Recent (Jahn, 2010 and this volume) bring a new and 443 

very strong support for the collisional model. The majority of the granitoids from SW Japan 444 

have high initial 87Sr/86Sr ratios, negative Nd(T) values and Proterozoic Sm-Nd model ages 445 

(Jahn, 2010). In other words the melting process producing the magmas involved old 446 

(Proterozoic) continental crust. This is true for the Miocene Kashiwajima pluton of the 447 

Shimanto belt, which confirms the aforementioned conclusion. But this is also true for the 448 

Mesozoic granitoids, namely the Upper Cretaceous and Triassic ones, which post-date the 449 

early Cretaceous and the Permian-Triassic tectonic crises respectively. Conversely, the 450 

granitoids with a lower Sr ratio, implying a higher proportion of mantle-derived material, 451 

were emplaced during the subduction stages of our model, between two collisions.  452 

In summary, the granitoids emplaced just after a tectonic crisis show geochemical 453 

characteristics of post-collisional ones, quite comparable with those observed in SE China and 454 

Taiwan, or in classical collisional orogens in the European Hercynides and Caledonides (Jahn, 455 

2010). This fact argues in favour of the presence of a continental crust beneath the stack of 456 

nappes made of accretionary complexes at the moment of the granitoid genesis and 457 

emplacement. What is the possible origin of such a continental crust? It was not initially there 458 

as the accretionary complexes were likely the result of an oceanic subduction, well 459 

documented by the ocean plate stratigraphy and the synchronous arc volcanism. The only 460 

possibility is the underthrusting of a continental block, responsible for the tectonic crisis and 461 

the nappe emplacement. 462 

 463 

4.5. Summary 464 

 465 

  All the lines of evidence: tectonic, geodynamic, petrologic, and geochemical ones 466 

invalidate the hypothesis of an intermittent ridge subduction and support the model of the 467 

underthrusting of a buoyant block (micro-continent or mature arc) for explaining the episodic 468 

tectonic crises. Instead of the accretionary orogeny model most popular during the last 469 

decade, the collisional model proposed during the 1980s is the only one accounting for the 470 

different data. 471 

 472 

5. Role of tectonic erosion  473 

 474 
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  A problem underlined by several authors is the scarcity of remnants of old crust in 475 

Japan, despite the abundance of continental detrital clasts in the sedimentary rocks, the 476 

abundance at once of outcropping Paleozoic granites not visible anymore, etc. One may add 477 

now the obvious necessity of the colliding blocks. Isozaki et al. (2010) pointed out that ―the 478 

recent provenance analysis of detrital zircons has first imaged ―ghost‖ geologic units which 479 

once formed in Japan and have already disappeared without evident traces‖. For such reasons, 480 

the role of tectonic erosion has been advocated (Kato and Saka, 2003, 2006; Isozaki et al., 481 

2010).  482 

  It is well demonstrated that, during the subduction stage, conspicuous tectonic erosion 483 

may occur, instead of accretion, the erosive subduction margins representing 75% of the 484 

present active margins around the world (Scholl and von Huene, 2007, 2010). 485 

  This erosion may result from two mechanisms. The first one is the surface erosion of 486 

material of the upper plate transported to the trench and then subducted (e.g. von Huene and 487 

Cullotta, 1989; von Huene and Lallemand, 1990); it has been working out for the Paleozoic 488 

and Cretaceous granites (Isozaki et al., 2010). The second one is the basal erosion. At 489 

erosional convergent margins, lower plate underthrusting thins forearc crust by detaching rock 490 

from the upper plate and transporting this material to the mantle. A 50 Ma period is long 491 

enough to erode the initial width of the volcanic-arc and fore-arc massif of any subduction 492 

zone, assuming a mean trench–volcanic-arc landward migration of 5 km/Ma and a mean 493 

trench–volcanic-arc distance of 250 km (Lallemand, 1995). Evidence for basal subduction 494 

erosion of a forearc is (1) rapid (0.3-0.5 km/Ma) and substantial (3-5 km) subsidence, (2) 495 

offshore truncation of cratonic rock, (3) retrograde (landward) migration of the arc-magmatic 496 

front, and (4) the coastal and offshore occurrence of arc magmatic rocks (Scholl and von 497 

Huene, 2002). During the Cretaceous, the location of volcanic activity moved toward the 498 

Asian continent (e.g. Isozaki et al., 2010); the truncation of structures and presence of 499 

Cretaceous granite very close to the Japan active trench, at a distance of about a few tens of 500 

km suggest the idea of tectonic erosion which must have destroyed the hangingwall of pre-501 

Miocene basement of Japan (Yamamoto et al., 2009).  502 

 503 

  As proposed by Kato and Saka (2006) for the Cretaceous history after collision of the 504 

South Kitakami micro-continent, tectonic erosion likely occurred after each collisional event 505 

during the following subduction stage. This erosion was responsible for the removal of part of 506 

the structures and of the previously underthrusting block. The subsidence accompanying the 507 

incipient subduction participated also in hiding the colliding block edge. 508 
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 509 

6. Origin of colliding blocks 510 

 511 

  Where are the colliding blocks coming from? Without entering into detail, one can 512 

make some remarks. It has been suggested that Proto-Japan was initially attached to Southeast 513 

China (Maruyama et al., 1997; Isozaki et al., 2010), as a part of a continental margin affected 514 

by rifting during the break-up of the supercontinent Rodinia about 750 to 700 Ma ago.  The 515 

microcontinent was later separated from SE China and drifted northeastward to form proto-516 

Japan. The recent isotopic geochemical data obtained in SW Japan support this evolution 517 

model as they share the same characteristics as the South China Block (Jahn, 2010). They add 518 

a new line of evidence to some previous ones coming from paleobiogeographic considerations 519 

(e.g. Hada et al., 2001; Kido and Sugiyama, 2011). 520 

 521 

  A rifting episode is known to have occurred in SE China, creating the Nanhua rift, at 522 

about 850-800 Ma, later closed by an intracontinental tectonic event around 460-450 Ma 523 

(Charvet et al., 2010 and ref. therein). This rifting phase (or a younger one?), closer to the 524 

oceanic margin of Catahysia, may have succeeded and opened a new oceanic domain 525 

suggested by the around 580 Ma age of the Nomo oceanic crustal remnants. Its closure may 526 

have been witnessed by the emplacement of the Ordovician Oeyama ophiolite (Igi et al., 527 

1979, Ishiwatari, 1991; Isozaki, 1996).  528 

 529 

  It is unclear when the other blocks, responsible for younger collisions, were detached 530 

from the main continent. Possibly, they were rifted later, after a collisional phase, during the 531 

subsequent subduction stage. For instance, the ―Honshu Block‖ was detached during the 532 

opening of the Carboniferous Yakuno oceanic domain and back-collided during the Late 533 

Permian (Charvet et al., 1999). Its autochthonous nature, advocated for paleobiogeographic 534 

reasons (Charvet et al., 1999), instead of a far-travelled exotic block origin, is supported by 535 

the recent geochemical results (Jahn, 2010). The timing of rifting of the other blocks is quite 536 

obscure, although likely Paleozoic to Mesozoic. That remains to be documented.   537 

 538 

  Another still unclear point is the correlation of Hida with the units known in China, 539 

Korea, and Russia. It has been naturally considered as a piece of North China or Sino-Korea 540 

block because, if one looks at the pre-Sea of Japan configuration, it comes near North Korea 541 

(e.g. Kojima, 1989, 2000; Yamakita and Otoh, 1999). But that implies an eastward extension 542 
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of the Triassic Dabie-Sulu-Imjingang collisional suture zone in Japan on the eastern border of 543 

Hida, within the Renge belt (e.g. Oh, 2006; Isozaki et al., 2010) and in the Higo belt of 544 

Kyushu (Osanai et al., 2006). And, if the Yeongnam massif of SE Korea is assigned initially 545 

to the North China Block, it is then interpreted as a major klippe thrust over the UHP belt 546 

(Isozaki et al., 2010). This last interpretation is difficult as there is no convincing structural 547 

evidence; in Korea, the boundary between the Yeongnam massif of the southeastern 548 

Ryeongnam block and the Ogcheon belt is the sub-vertical Triassic Honam strike-slip fault 549 

(e.g. Cluzel, 1991; Oh, 2006). And the Yeongnam massif, located to the south of the Ogcheon 550 

belt generally correlated with the Huanan rift of South China (e.g. Chang, 1996; Oh, 2006), is 551 

likely the extension of the Cathaysian part of South China (Chang, 1996); only the 552 

northeastern Taebaeksan part of the Ogcheon belt s. l. shows affinities with North China 553 

(Chang, 1996). In addition, the correlation between the Hida marginal Renge belt and the N 554 

China-S China suture belt is not sure, as the HP metamorphic ages are quite different, 555 

Carboniferous versus Triassic (e.g. Tsujimori et al., 2001; Oh, 2006; Isozaki et al., 2010 and 556 

ref. therein). An alternative correlation with the Asian mainland is a link with South China 557 

(e.g. Faure and Charvet, 1987; Chough et al., 2000).  558 

  A completely different category of interpretations is to consider that the Hida-Oki 559 

Block was part of a separate Proto-Japan micro-continent colliding with the Asian mainland 560 

in the late Paleozoic (Maruyama et al., 1989) or during the Jurassic (De Jong et al., 2009). 561 

The latter hypothesis fits with well established data. For instance, De Jong et al. (2009) 562 

include the Khanka Block in their Proto-Japan; it means that the Jiamusi and Bureya blocks, 563 

which are similar (Zhou et al., 2010a; Wilde et al., 2010) could be also part of this entity. 564 

And, as a matter of fact, the rather well established longitudinal correlation of the Mino-565 

Tanba and Maizuru-Yakuno zones to the north in NE China and Russia shows all these zones 566 

bordering the eastern part of Hida-Khanka-Jiamusi-Bureya massifs (Kojima, 1989; Faure and 567 

Natal‘in, 1992; Kojima et al., 2000). The docking of this Proto-Japan with Eastern Asia would 568 

have happened in the Late Triassic-Early Jurassic (De Jong et al., 2009), which is the time of 569 

the collision evidenced by the Heilongjiang HP complex running to the west of the Jiamusi 570 

massif (Wu et al., 2007; Zhou et al., 2009). On one hand, this is not incompatible with a 571 

common regional origin of those blocks as Jiamusi was maybe part of N Australia at around 572 

500 Ma, together with N China, S China, Tarim (Wilde et al., 2000, 2003). In that 573 

configuration, what is the eastern extension of the Dabie-Sulu-Imjingang suture? It could the 574 

Heilongjiang suture, with some diachroneity. Its connection with the so-called Solonker 575 

suture (De Jong et al., 2009), between North China and Mongolia, is unlikely, as those two 576 
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blocks were welded for sure before the Late Permian. On the other hand, the affinity between 577 

Hida and Khanka blocks is questioned (Wilde et al., 2010) and the Khanka-Jiamusi was not 578 

part of North China nor South China blocks according to Zhou et al. (2010b).  579 

  So, the problem of the nature of Hida block is still open. To solve it is beyond the 580 

scope of this paper and needs more work. That does not affect the interpretations presented in 581 

the next section, in which the Hida area is shown as the hinterland, no matter it was attached 582 

or not to the Asian mainland before the Jurassic. 583 

 584 

7. Geodynamic model 585 

 586 

  Taking into account the afore-mentioned remarks, a geodynamic model can be 587 

proposed for the Late Paleozoic-Triassic and Cretaceous to Paleogene orogenies. It is inspired 588 

from the collisional models previously proposed (e.g. Charvet et al., 1985, 1999; Faure et al., 589 

1986; Faure and Charvet, 1987) with the modifications needed due to the recent discoveries 590 

mentioned before. 591 

 592 

  For the Permian-Triassic Akiyoshi orogeny (Fig. 7), the scenario is the following. 593 

During the Early Permian, an oceanic domain is subducting beneath another one: the Yakuno 594 

one with an anomaslously thick crust (Ishiwatari, 1985, 1991) and likely bordered by an intra-595 

oceanic arc (Suda, 2004). The Oga-Akiyoshi seamounts are located in this oceanic domain. 596 

The western end is occupied by a Hida domain including the former 340 Ma high-P/T Renge 597 

belt (e.g. Isozaki et al., 2010). This subduction leads to the approach of the Honshu micro-598 

continent. During the Late Permian-Early Triassic, the collision of the Honshu block induces 599 

the emplacement of the nappes of: HP Suo schists, younger unit of the Sangun belt (e.g. 600 

Nishimura, 1998), Yakuno ophiolite, and non metamorphosed Oga-Akiyoshi reefal limestone. 601 

It leads also to the deformation of the Carboniferous Unazuki sediments, and the partial 602 

resedimentation of ophiolitic olistoliths in the Maizuru Group. It is followed by HT 603 

metamorphism and granite emplacement in the Hida domain. This belt, with HP schists, is 604 

known to extend towards the south until at least Ishigaki island (Faure and Charvet, 1987; 605 

Nishimura, 1998; Nuong et al., 2008). 606 

 607 

  Regarding the Late Jurassic to Paleocene story, three stages are described (Fig. 8).  At 608 

around 150 Ma, an oceanic realm is subducting beneath Chugoku domain, composed of the 609 

previous nappe system unconformably covered by Triassic or Jurassic molasse. Due to that 610 
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consumption, the South Kitakami-Kurosegawa continental block, on which the Torinosu 611 

formation is deposited, is approaching the subduction zone, where the Mino-Tanba 612 

accretionary prism is built. That may explained the double, from north and south, supply of 613 

Precambrian clasts to the Mino sandstone deposition area (Suzuki et al., 1991). The collision 614 

of the South Kitakami-Kurosegawa block, likely at around 140 Ma (Otsuki, 1992) rather than 615 

at 155 Ma (Kato and Saka, 2003, 2006), reworks the Mino-Tanba accretionary prims as a pile 616 

of nappes and the units of the hinterland (Chugoku nappes and Hida s.l.) are thrust again. At 617 

around 110-120 Ma, during a new subduction, the Kurosegawa belt is affected by strike-slips 618 

faults bounding shallow-water sedimentary basins and the Mino-Tanba stack is affected by 619 

the Ryoke HT metamorphism and granitic emplacement. The North Shimanto prism is 620 

possibly beginning to grow. The subduction of an oceanic realm rich in Triassic seamounts, 621 

reworked as olistoliths in the South Chichibu-Sanbosan sediments, is documented by arc 622 

volcanism and responsible for the Sanbagawa HP metamorphism. This ocean is bounded to 623 

the east by a continent-type block (Shimanto Block), likely bearing an arc related to the 624 

subduction of the fast-moving Izanagi plate (Whittaker et al., 2007a, b). The collision of this 625 

block with the active margin takes place between 80 and 60 Ma. It induces the exhumation of 626 

the Sanbagawa HP schists and eclogites, the re-thrusting of the Kurosegawa-Chichibu 627 

domain, the basal thrust contact cutting the former strike-slip faults, and the deformation of 628 

the Mino-Tanba stack. The Izanagi-Pacific oceanic ridge arrives at the trench later, at around 629 

60-55 Ma, almost parallel to the margin and not oblique as previously advocated (Whittaker et 630 

al., 2007a, b; Smith, 2007; Müller et al., 2008; Yin, 2010). 631 

 632 

8. Conclusions 633 

 634 

  The review of the evolution of ideas on the tectonic evolution of Japan during the two 635 

last decades leads to the following statements. 636 

1) The structure of SW Japan is made of a pile of sub-horizontal nappes, polydeformed, with 637 

a geometry similar to the one encountered in collisional orogens. 638 

2) The mechanisms advocated for the tectonic building within the accretionary orogeny 639 

concept (Miyashiro-type orogeny, Nipponides etc.) are inappropriate. Mainly, a steady 640 

oceanic subduction with the intermittent ―collision‖ (actually subduction) of an active ridge or 641 

seamount chain is unable to build such structures; it induces in fact an acceleration of the 642 

tectonic erosion. 643 



20 

 

3) Several lines of evidence suggest the episodic thrusting of a buoyant block: micro-644 

continent and/or mature arc. They include: tectonic, geodynamic, petrologic, and geochemical 645 

data. 646 

4) The three orogenic crises which took place at around 240, 130, and 80-60 Ma ago in SW 647 

Japan can be best explained by a collisional model involving the successive arrival at the 648 

former subduction zone of the Honshu Block, the South Kitakami-Kurosegawa Block, and a 649 

Shimanto Block. Those features were likely previously separated from South China with 650 

which they show affinities. 651 

5) Tectonic erosion plaid likely a major role in removing material during the intervening 652 

subduction stages. 653 

6) In the hinterland, the paleogeographic position and the affinity of the Hida block with 654 

surrounding units is still unclear. More work is needed to solve this question. 655 

7) Similar tectonic features are due to similar geodynamic causes all around the world. The 656 

tectonic architecture of the Japanese islands, resembling the one of some classical collisional 657 

orogens, is not an exception and cannot be explained by a process that would be restricted to 658 

Japan, as a peculiar and original model of accretionary orogeny. 659 

 660 
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Figure 1. Sketch map showing the main divisions of Japan (after Faure et al., 1987). The 1077 

 Green Schist Nappe corresponds to Sanbagawa zone, the Superficial Nappe to North 1078 

 Chichibu. 1079 

 1080 

Figure 2. Schematic structural map of SW Japan, emphasizing the structures of the Late 1081 

 Jurassic-Early Cretaceous orogen (after Faure et al., 1987). Note the tectonic windows 1082 

 of the Tanba zone beneath the Sangun-Maizuru units partly inherited from the 1083 

 Chugoku nappe system of the Late Permian-Triassic orogeny. Black spots in the 1084 

 Sangun-Maizuru zone represent the Triassic (T) and Jurassic (J) molasses. 1085 

 1086 

Figure 3. a) Schematic general cross-section of SW Japan (after Charvet et al., 1985). 1: 1087 

 Tertiary and Cretaceous volcanic; 2: Yakuno ophiolitic complex; 3: Sangun schists; 4: 1088 

 Permian Maizuru Group; 5: Tanba zone units; 6: Upper Cretaceous Izumi Group; 7: 1089 

 Cretaceous Sennan Group volcanic; 8: Inferred basement rocks of the Ryoke area; 9: 1090 

 High-grade (top) and low-grade (bottom) of the Sanbagawa basic schists; 10: Cover 1091 

 and basement  of the Kurosegawa block; 11-12: Shimanto; 13: Miocene to Recent 1092 

 deposits off Shikoku; 14: ―Younger‖ (top) and ―Older‖ (bottom) granites of Ryoke 1093 

 zone; 15: Miocene granitoids intruding Shimanto. b) Zoom on the cross-section of the 1094 

 ―outer zones‖ in eastern Shikoku island (after Charvet et al., 1985). A: Izumi Group; 1095 

 B: Cretaceous deposits of Central Chichibu; C: Shimanto; D: Sanbagawa high-grade 1096 

 schists; E: Low-grade schists; F: Sandstone unit; G: Assumed Oboke-Kurosegawa 1097 

 basement; H: Pre-Cretaceous sediments of domain III; I: Olistostrome of the Chichibu 1098 

 nappe; J: Green rocks; K: Stratigraphic cover of the Mikabu green rocks; L: Thrust 1099 

 contact of phase 1; M: Thrust contact of phase 2. O: Oboke; Ku: Kurosegawa. 1100 

 1101 

Figure 4. Simplified anatomy of SW Japan emphasizing the superimposition of accretionary 1102 

 complexes younging downward and the absence of basement continent-like units 1103 

 (after Isozaki et al., 2010). AC and meta-AC: Accretionary complexes and 1104 

 metamorphosed accretionary complexes; WB plane: Wadati-Benioff plane; Ng-1105 

 HmTL: Nagato-Hida marginal Tectonic Line; I-KTL: Ishigaki-Kuga Tectonic Line; 1106 

 BTL: Butsuzo Tectonic Line; ATL: Aki Tectonic Line.  1107 

 1108 

Figure 5. Two different interpretations of the structure of Sanbagawa-Chichibu-Kurosegawa 1109 

 domain. a) Interpretation advocated in this article, cross-section modified after Charvet 1110 
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 et al. (1985): the Kurosegawa unit is part of a previous block (South Kitakami-1111 

 Kurosegawa) underthrust during the Early Cretaceous, affected by strike-slip faulting, 1112 

 and re-thrust during the Late Cretaceous-Paleocene event involving Sanbagawa 1113 

 thrusting above N Shimanto. b) Interpretation assuming that the Kurosegawa old rocks 1114 

 are olistoliths in the Chichibu klippe system (after Masago et al., 2005). 1115 

 1116 

Figure 6. Block-diagram showing the relationships between Shimanto, Sanbagawa, and 1117 

 Chichibu-Kurosegawa in eastern Kii Peninsula (after Kato and Saka, 2006). Note the 1118 

 faults within the Kurosegawa Terrane cut by the BTL, thrust contact with Shimanto.  1119 

 1120 

Figure 7. Schematic geodynamic model, in cross-section, for the Late Permian-Triassic 1121 

 orogeny, advocating a collision between the Hinterland (Hida s. l.) and a Honshu 1122 

 Block. 1123 

 1124 

Figure 8. Schematic geodynamic model, in cross-section, for the 140-130 and 80-60 Ma 1125 

 orogenies, assigned to the two successive collisions of South Kitakami-Kurosegawa 1126 

 and Shimanto blocks. Note that the Izanagi-Pacific ridge arrives at the active margin 1127 

 after the main tectonic episode involving the exhumation of the Sanbagawa HP 1128 

 schists. 1129 
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