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ABSTRACT  10 

Recent sedimentation along the Hikurangi subduction margin off northeastern New Zealand is 11 

investigated using a series of piston cores collected between 2003 and 2008. The active Hikurangi 12 

Margin lies along the Pacific-Australia subduction plate boundary and contains a diverse range of 13 

geomorphologic settings. Slope basin stratigraphy is thick and complex, resulting from sustained high 14 

rates of sedimentation from adjacent muddy rivers throughout the Quaternary. Turbidites deposited 15 

since c. 18 ka in the Poverty, Ruatoria and Matakaoa re-entrants are central to this study in that they 16 

provide a detailed record of the past climatic conditions and tectonic activity. Here, alternating 17 

hemipelagite, turbidite, debrite and tephra layers reflect distinctive depositional modes of marine 18 

sedimentation, turbidity current, debris flow and volcanic eruption, respectively. Turbidites dominate 19 

the record, ranging in lithofacies from muddy to sandy turbidites, and include some basal-reverse 20 

graded turbidites inferred to be derived from hyperpycnal flows. Stacked turbidites are common and 21 

indicate multiple gravity-flows over short time periods. The chronology of turbidites is determined by 22 

collating an extremely dense set of radiocarbon ages and dated tephra, which facilitate 23 

sedimentation rate calculation and identification of the origin of turbidites. Sedimentation rates 24 

range from 285 cm/ka during late glacial time (18.5-17 ka) to 15 to 109 cm/ka during postglacial time 25 

(17-0 ka). Turbidite deposition is controlled by: (1) the emplacement of slope avalanches reorganizing 26 

sediment pathways; (2) the postglacial marine transgression leading to a five-fold reduction in 27 

sediment supply to the slope due to disconnection of river mouths from the shelf edge, and (3) the 28 

Holocene/Pleistocene boundary climate warming resulting in a drastic decrease in the average 29 

turbidite grain-size. Flood-induced turbidites are scarce: nine hyperpycnites are recognized since 18 30 
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ka and the youngest is correlated to the largest ENSO-related storm event recorded onland (Lake 31 

Tutira). Other turbidites contain a benthic foraminiferal assemblage which is strictly reworked from 32 

the upper slope and which relate to large earthquakes over the last c. 7 ka. They yield a shorter 33 

return time (270-430 years) than the published coastal records for large earthquakes (c.670 years), 34 

but the offshore record is likely to be more complete. The deep-sea sedimentation along the New 35 

Zealand active margin illustrates the complex interaction of tectonic and climate in turbidite 36 

generation. Climate warming and glacio-eustatic fluctuations are well recorded at a millennial 37 

timescale (18 ka), while tectonic deformation and earthquakes appear predominant in fostering 38 

turbidite production at a centennial timescale (270-430 years). 39 

 40 

Keywords: hyperpycnite; earthquake; debris avalanche; marine transgression; triggering mechanism; 41 

sediment cores. 42 

1. INTRODUCTION 43 

Gravity-driven flows are ubiquitous and fundamental process that control sediment dispersal where 44 

steep bathymetric gradients, enhanced tectonic activity and voluminous terrigenous sediment supply 45 

prevail such as at active margins. They range from submarine avalanches, cohesive debris or grain 46 

flows, liquefied and fluidized flows and turbidity currents (Stow and Mayall, 2000; Stow et al., 1996). 47 

Such processes can generate complex sets of sedimentary structures from a variety of triggering 48 

mechanisms and scales including giant avalanches consisting of >100 km3 of lithified sediment (e.g. 49 

Collot et al., 2001; Canals et al., 2004), thick successions of density-variable turbidites (Bouma, 1962; 50 

Stow and Shanmugam, 1980; Lowe, 1982), to centimetre-thick hyperpycnites that can be linked to 51 

individual flood events (Mulder et al., 2003). As such, gravity flow deposits contain invaluable 52 

information about past stratigraphic, climatic and tectonic history (Adams, 1990; Goldfinger et al., 53 

2003; St Onge et al., 2004; Blumberg et al., 2008; Noda et al., 2008; Nakajima et al., 2009). However, 54 

due to the geomorphologic complexity of active margins lateral correlation of events is often 55 

problematic, both in terms of dealing with the spatial variability of gravity events and recognising 56 

synchronous “event assemblages”. 57 

The active Hikurangi convergent margin, New Zealand is an excellent locality for the study of gravity-58 

driven events because of the diversity of geomorphological settings, the intense tectonic activity 59 

(e.g., Lewis and Pettinga, 1993; Collot et al., 1996) and the high rates of sedimentation that produce 60 

an expanded stratigraphic record at an exceptional resolution. As the Hikurangi Margin lies along the 61 

Pacific-Australia subduction plate boundary, it is subjected to intense seismic activity. Here, a well 62 
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documented upper-plate earthquake record exists for magnitude Mw < 7.8 (Reyners, 1998; Webb 63 

and Anderson, 1998) but only a poorly documented record of inferred plate interface ruptures 64 

capable of generating ~Mw 8.8 earthquakes (Reyners, 1998; Reyners and McGinty, 1999; Wallace et 65 

al., 2009; Cochran et al., 2006). At the northern extent of margin, intense mass wasting and margin-66 

collapses activity is manifested as large morphological re-entrants in the continental slope (Collot et 67 

al., 2001; Lamarche et al., 2008a; Pedley et al., 2010). Due to the vigorous maritime climate, floods 68 

are a common feature of northeastern New Zealand (Hicks et al, 2004). Some prehistoric 69 

catastrophic floods have been inferred from river flood-plains and continental shelf sediments 70 

(Brown, 1995; Gomez et al., 2007; Brackley et al., 2010) which might be capable of rapidly 71 

transporting sediment directly from the coast to slope basins via hyperpycnal flows. The occurrence 72 

of numerous tephra originating from the Central Volcanic Zone (Fig. 1) provide excellent 73 

chronological control in the offshore stratigraphic record (e.g. Carter et al., 2002). The northern 74 

Hikurangi Margin was intensely studied over the last 20 years, and contributed to a robust 75 

understanding of long- and short-time scale tectonic deformation (Collot et al., 1996; Reyners, 1998; 76 

Reyners and McGinty, 1999), sedimentary processes and stratigraphy (Foster and Carter, 1997; 77 

Joanne et al., 2010; Orpin, 2004, Gomez et al., 2007; Paquet et al., 2009; Kniskern et al., 2010) and 78 

Holocene sediment budgets (Orpin et al., 2006; Alexander et al., 2010; Gerber et al., 2010; Paquet et 79 

al., 2011). But the thick and complex suite of Quaternary turbidites that infill the slope basins remain 80 

largely understudied and their event stratigraphy underutilised.  81 

In this paper, we use a series of sediment cores collected in the Poverty, Ruatoria and Matakaoa re-82 

entrants along the northern Hikurangi Margin to identify and characterise a complete and 83 

comprehensive series of turbidite events. We generate a chronology of catastrophic sedimentation 84 

over the last 20,000 years for the northeastern Hikurangi Margin, and detailed characterisation of 85 

turbidites is used to compare and contrast depositional patterns. The excellent chronological control 86 

afforded by tephra and radiocarbon dating allows us to develop a methodology for investigating 87 

turbidite origin, and determine the relative contribution of trigger and controlling mechanisms. The 88 

balance of these processes are likely to be applicable to active margins globally. The study suggests 89 

that large earthquakes, catastrophic floods and volcanic eruptions are the principal triggering 90 

mechanisms of turbidites in the deep water sedimentary systems, and that over the past 20 ka, 91 

turbidite systems activity was primarily controlled by glacio-eustatic fluctuations and basin 92 

morphology. 93 

2. GEOLOGICAL AND SEDIMENTOLOGICAL SETTINGS 94 
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2.1. Geomorphology 95 

The Hikurangi Margin marks the region where the oceanic crust of the Pacific Plate is being 96 

subducted obliquely beneath the Raukumara Peninsula (Fig. 1). The zone of active deformation 97 

covers from east to west, the Hikurangi Trough, the continental slope and shelf and the east coast of 98 

the North Island of New Zealand (Lewis, 1980; Lewis and Pettinga, 1993; Collot et al., 1996). 99 

Subduction-related underplating beneath the Raukumara Peninsula is actively uplifting the axial 100 

ranges at an estimated maximum rate of 3 mm/a (e.g. Reyners and McGinty, 1999). A narrow 101 

accretionary prism forms locally at the toe of the slope. To the west lies the rhyolitic Central Volcanic 102 

Zone which is a prolific source of geochemically-distinct tephra that punctuate the terrestrial and 103 

offshore stratigraphic record throughout the Quaternary (Lowe et al., 2008). 104 

The northern Hikurangi Margin includes a flat, 20-30 km-wide continental shelf, a steep sediment-105 

starved slope, and a 3500 m-deep subduction trough (Fig. 1). Tectonic erosion has produced three 106 

large slope avalanches: the 30-50 km-wide, Poverty re-entrant (Pedley et al., 2010); the 30-40 km 107 

Ruatoria re-entrant (Collot et al., 2001); and landward of the trench wall and immediately north of 108 

the Raukumara Peninsula, the Matakaoa passive margin contains the 50 km-wide Matakaoa re-109 

entrant (Lamarche et al., 2008a). Elsewhere smaller debris slides, slumps and head-wall scarps are 110 

abundant, indicating ongoing slope instability (e.g. Lewis et al., 1998). The current study focuses on 111 

sediment cores within the Poverty, Ruatoria, and Matakoa re-entrants. The 1500 km2 Poverty re-112 

entrant is a major continental margin depression resulting from successive margin collapses since 113 

1,500±500 ka (Pedley et al., 2010). The bathymetry of the Poverty re-entrant is complex and 114 

comprises several basic morphologic components (Orpin, 2004) including: a heavily gullied upper 115 

slope; the beheaded Poverty Canyon System; the gently sloping mid-slope Paritu Trough; margin-116 

parallel North and South Paritu Ridges that are cross-cut by a small canyon feeding into the Lower 117 

Paritu Basin (Fig. 2). The Paritu Trough is filled with the Poverty Debris Avalanche (PDA), which is 118 

blanketed by sediments. Although the PDA is undated, the surface of the avalanche is rough and 119 

hummocky suggesting a recent event. The 3300 km2 Ruatoria re-entrant formed following a giant 120 

debris avalanche 170±40 ka ago (Collot et al., 2001). The re-entrant consists of a gullied upper slope, 121 

a vast highly chaotic debris avalanche composed of individual blocks of several cubic kilometres in 122 

size, and the subduction trough (Fig. 3). The 1000 km2 Matakaoa re-entrant resulted from multiple 123 

mass transports events, which occurred between 1,300 and 35 ka ago (Carter, 2001; Lamarche et al., 124 

2008a; Joanne et al., 2010) (Fig. 4). The eastern half of the re-entrant is infilled by the Matakaoa 125 

Turbidite System (MTS), which developed subsequently to the Matakaoa Debris Avalanche, 600±150 126 

ka ago (Joanne et al., 2010). The MTS is a classical channelized turbidite system with a canyon 127 
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incising into the shelf break, a well-developed channel/levee turbidite plain and a fan growing in the 128 

Raukumara Plain.  129 

In the Hikurangi Trough, the 2000 km-long Hikurangi Channel drains large turbidity currents parallel 130 

to the North Island East Coast (Lewis et al., 1994; 1998; Lewis and Pantin, 2002) (Fig. 1). At the 131 

latitude of the Poverty re-entrant, the channel is redirected sharply eastward (Fig. 1).  There, well 132 

developed overbank sediment waves grew over the last 2 Ma, due to the combined effect of 133 

centrifugal and southern hemisphere Coriolis force. Sediment waves in the channel axis are 134 

comprised of stacked coarse turbidites overlain by a hemipelagic drape, suggesting limited activity 135 

during interglacial periods with episodic flows contained into the channel.  136 

2.2. Sedimentology  137 

Up to a kilometre of Quaternary sediment fill accumulates in ponded basins along the northern 138 

Hikurangi Margin continental shelf (Lewis et al., 2004) and slope (Orpin, 2004; Orpin et al., 2006; 139 

Paquet et al., 2009) as well as in the Hikurangi Trough (Lewis and Pettinga, 1993) and Raukumara 140 

basin (Kohn and Glasby, 1978) (Fig. 1). The mass accumulation rate along the margin is generally high 141 

over the last 1 My (4 Mt/a in Hawkes Bay), with millennial variations over glacio-eustatic cycles 142 

(Carter and Manighetti, 2006; Paquet et al., 2009). Over the last 30 ka, the highest rates were 143 

recorded during last-glacial lowstand through to the early highstand stage (30-7 ka). The Holocene 144 

highstand period (7-0 ka) shows a declining flux to the lower continental slope as more sediment is 145 

retained in subsiding shelf basins (Gerber et al., 2010) and baffled in intra-slope basins bounded by 146 

imbricate thrust ridges (Lewis et al., 1998; Paquet et al., 2011), where the hemipelagic flux is around 147 

60 cm/ka since the mid–late Holocene (Orpin, 2004).  148 

Driven by the vigorous maritime climate across the Raukumara Ranges, the present day sediment 149 

flux delivered to the adjacent shelf and slope basins is 70 Mt/a. Forest clearing by early Polynesian 150 

settlers 500-700 y BP and then by European colonisation in the mid-eighteenth century resulted in 151 

present day river sediment fluxes an order of magnitude greater than pre-human colonization (e.g. 152 

McGlone et al., 1994; McGlone and Wilmshurst, 1999). Paquet et al. (2009) estimated an increase of 153 

110-250% in Hawkes Bay whereas Kettner et al. (2007) calculated a rise of 660% for the Waipaoa 154 

river alone (Fig. 1).  155 

Regional oceanography plays a major role in the offshore dispersal of sediments from Raukumara 156 

rivers (Fig. 1). On the continental shelf, swell waves, wind direction, the northward-flowing 157 

Wairarapa Coastal Current (WCC) and large ephemerical gyres affect current direction (Foster and 158 

Carter, 1997; Chiswell, 2000). Beyond the shelf break, the southward-flowing East Cape Current (ECC) 159 
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is the dominant current affecting the region during the Holocene (Stanton, 1998; Stanton et al., 160 

1997; Carter et al., 2002). During the Last Glacial Maximum (LGM), the ECC strength decreased while 161 

the proto-WCC, flowing northward near the shelf break, increased (Carter and Manighetti, 2006). 162 

Deep circulation in the Hikurangi Trough is influenced by the Southwest Pacific Deep Western 163 

Boundary Current (DWBC). The main flow of the DWBC is confined by the northeast scarp of the 164 

Hikurangi Plateau, but a shallower westward-flowing branch reaches the Hikurangi Trough at Poverty 165 

Bay where it deviates northward and joins with the main DWBC over the Kermadec trench (McCave 166 

and Carter, 1997). 167 

The New Zealand terrestrial and marine climate record over the past 30 ka shows three climatic 168 

intervals: (1) the Last Glacial Cold Period between 28 and 18 ka, which includes the Last Glacial 169 

Maximum at 21±3 ka (Mix et al., 2001; Barrows et al., 2002); (2) the Last Glacial Interglacial 170 

Transition extending from 18 to 11.6 ka, including the Late Glacial Climate Reversal (13.5-11.6 ka), 171 

which extends from the early Antarctic Cold Reversal to the end of the Younger Dryas; and, (3) the 172 

Holocene Interglacial stage from 11.6 ka to present (Alloway et al., 2007). Glaciers during the Last 173 

Glacial Cold Period did not reach the Raukumara Ranges (McArthur and Shepherd, 1990; Pillans et 174 

al., 1993; Brook and Brock, 2005). Palynological studies demonstrate a strong climatic impact on East 175 

Coast vegetation, with grass and shrub dominating during cold and dry conditions at the Last Glacial 176 

Cold Period and large stands of podocarp and hardwood forest prevailing during warm and moist 177 

conditions of the Holocene (McGlone, 2001; Okuda et al., 2002; Mildenhall and Orpin, 2010). The 178 

protection provided by vegetative cover is an important control on erosion rates in the region (Page 179 

et al., 2004; Litchfield and Berryman, 2005).  180 

3. DATA AND METHODS 181 

3.1. Collection of sediment cores  182 

Sixteen sedimentary cores are used in the current study, collected in water depths ranging from 650 183 

to 3520 m below sea level (mbsl; Table 1, Fig. 1). Four of these are giant piston cores collected from 184 

the Poverty and Ruatoria re-entrants during the MD152 MATACORE voyage of R.V. Marion-Dufresne 185 

(Proust et al., 2006). Twelve short piston cores were acquired in the Ruatoria and Matakaoa re-186 

entrants onboard R.V. Tangaroa research voyages TAN0314 (Carter et al., 2003) and TAN0810 187 

(Lamarche et al., 2008b). 188 

High-resolution 3.5 kHz seismic reflection data and multibeam bathymetry were systematically 189 

acquired prior to coring in order to ascertain the suitability of the sampling sites, providing sub-190 
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surface stratigraphic information up to 20 m below the seafloor with a vertical resolution of <1 m. 191 

The bathymetry is compiled from data acquired during the Geodynz survey using the 12 kHz EM12 192 

echo-sounder of R/V L'Atalante (Collot et al., 1996) and  a large number of surveys using the 30 kHz 193 

Kongsberg EM300 echo-sounder of R/V Tangaroa with an optimal accuracy of ~0.2 % of the water 194 

depth. The margin morphology is provided by Digital Terrain Models (DTM) generated from the 195 

multibeam bathymetry database maintained at NIWA (CANZ, 2008).  196 

Sedimentary cores targeted recent gravity sedimentary activity, including intra-slope basins fed by 197 

turbidite flows, aprons of avalanche debris and intra-canyon levees. In the Poverty re-entrant, two 198 

giant piston cores were collected in the Paritu Trough (MD06-3003) and the Lower Paritu Basin 199 

(MD06-3002, Fig. 2). In the Ruatoria re-entrant, sediment cores were collected on the gullied upper 200 

slope (Tan0810-1, -2, -3, -5), on the Ruatoria Debris Avalanche  (MD06-3009) and in the Hikurangi 201 

Trough (MD06-3008, Tan0810-6) (Fig. 3). In the Matakaoa re-entrant, short cores were collected 202 

along the Matakaoa Turbidite System (MTS), on the canyon floor (Tan0314-86), in the channel/levee 203 

complex (Tan0810-9 and 12 in channel; Tan0810-10, -11 and -13 in levees) and in the deep-sea fan 204 

(Tan0314-8) (Fig. 4).  205 

3.2. Sedimentological analyses 206 

Detailed logs were generated for all cores and analyses were undertaken to further characterise the 207 

turbidites. Geotek Multi-Sensor Track (MST) analyses were run at University of Otago (New Zealand) 208 

to provide continuous gamma density, magnetic susceptibility and P-wave velocity measurements as 209 

well as high definition photos of split cores. These measurements were complemented by X-Ray 210 

radiographs of split cores, performed using a Varian PaxScan 4030E veterinary digital imaging system 211 

from NIWA, to characterise the internal structure of sediments. We performed grain-size analyzes of 212 

selected samples using a Beckman-Coulter LS 13 320 Lasersizer (size range of 0.38-2000μm). Physical 213 

properties complement the visual descriptions of turbidite events and are critical to refining the 214 

location of their boundaries. 215 

Compositional analysis of the silty-clay fraction was undertaken to characterise the transition 216 

between turbidite tails and hemipelagite sediments. The coarse and dense silt fraction was extracted 217 

by decantation and analysed with a stereomicroscope to provide a semi-quantitative estimate of the 218 

main component. The composition of the sand fraction (>53µm) of turbidites was determined 219 

following the same semi-quantitative approach on wet sieved 2 cm-thick samples taken at the base 220 

of selected turbidites. Benthic foraminifers were then extracted from the medium sand fraction (125-221 
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500µm), to determine the source of the sediments deduced from the distribution of modern benthic 222 

foraminifers in New Zealand (Hayward et al., 2010; Camp, 2009).  223 

3.3. Age Dating 224 

Timing and age downcore are provided using tephrochronology and 14C radiochronology. All cores 225 

are densely dated with one age every 0.5 to 1.4 m of core. Tephra were systematically sampled and 226 

characterised by glass chemistry, mineralogy and stratigraphic position and identified by comparing 227 

with the data bank of well-established terrestrial occurrences (Shane, 2000). Tephra ages follow the 228 

convention proposed by Lowe et al. (2008). In the channel-levee complex of the MTS, tephra were 229 

sampled in three out of the five cores (Tan0810-9, 10 and 12). In the two neighbouring cores 230 

(Tan0810-11, 13), identified tephra were correlated using geophysical data and stratigraphic 231 

position.  232 

Radiocarbon dating was performed on handpicked mixed planktonic foraminifers at the Rafter 233 

Radiocarbon Laboratory, GNS Science. The 0.7-1.0 cm-thick samples were collected in hemipelagite 234 

layers, 0.7-1.0 cm below gravity-flow deposits to prevent any contamination and mixing by 235 

bioturbation. AMS 14C were calibrated to calendar years by using the MARINE09.14 calibration curve 236 

(Reimer et al., 2009) in CALIB Rev 6.0 program (Stuiver and Reimer, 1993), applying an average 237 

regional reservoir age of 395±57 years calculated from published East Cape reservoir age (Higham 238 

and Hogg, 1995; Kalish, 1993; Calib database at http://calib.qub.ac.uk/marine/). A reservoir age of 239 

800±110 years has been applied for the time of the Waiohau tephra deposition (13,635 cal. yr BP; 240 

Table 3), as defined by Sikes et al. (2000) and Carter et al. (2008). The 14C radiochronology calibration 241 

is adequate for most of the samples from the Marion Dufresne cores as shown by the good 242 

correlation with tephrochronology. Two samples on MD06-3002 located less than 10 cm above the 243 

Waiohau Tephra suggest a stratigraphic reversal. Reservoir age modification during that period may 244 

explain the inconsistency between AMS 14C and tephra ages. For this study, we prefer the tephra age 245 

and discarded the two AMS 14C samples. 246 

3.4. Sedimentation Rates  247 

Based on lithofacies identification, we distinguish uncorrected and corrected sedimentation rates. 248 

Uncorrected sedimentation rates includes the total sediment thickness from all lithofacies, whereas 249 

corrected sedimentation rate includes only the hemipelagite. Corrected sedimentation rate is 250 

calculated by subtracting the thickness of the turbidites and tephra layers from the total sediment 251 

thickness, and assumes limited erosion at the base of the turbidite layers. Corrected rate is used here 252 

http://calib.qub.ac.uk/marine/�
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to estimate the age of turbidites. Hemipelagites represent a continuous and steady mode of 253 

deposition whereas gravity-driven depositional events are emplaced instantaneously. The 254 

Terrigenous Accumulation Rate (TAR) is the difference between uncorrected and corrected 255 

sedimentation rates, representing the cumulated thickness of gravity-driven deposits (mostly 256 

turbidites) through time. Because of the high density of dated samples in each core, deformation in 257 

the piston core does not significantly influence our results and interpretations. Deformation is 258 

localised and easily identified in the age model by a change in the slope of the age curve. 259 

4. RESULTS 260 

We define four end-members facies: tephra, debrites, hemipelagites and turbidites. In this section, 261 

we describe these facies and provide a detailed description of the turbidites in terms of their 262 

composition, foraminiferal content and facies. We subsequently provide age models and 263 

sedimentation rates for the Poverty, Ruatoria and Matakaoa re-entrants.  264 

4.1. End-members facies 265 

4.1.1. Tephra 266 

All cores contained several tephra composed of 1 to 2 cm-thick (rarely up to 6 cm-thick), pinkish, 267 

normally graded silts, capped by a clay-rich bioturbated horizon (Fig. 5). They are exclusively 268 

composed of volcaniclastic debris (glass shards and pumiceous lapilli mostly) and identified by their 269 

typical colour and high values of magnetic susceptibility (>40 SI). In places, tephra are thoroughly 270 

reworked by intense bioturbation, which suggests that the original depositional layer was less than 1 271 

cm-thick, preventing asphyxia of the benthic fauna (Hess and Kuhnt, 1996). In this case, corrected 272 

sedimentation rates are calculated using a 1 cm thickness for highly bioturbated tephra. In this study, 273 

we assume that all tephra originate from ash-fall coincident with volcanic eruptions (Wiesner et al., 274 

1995; Carter et al., 1995).  275 

In places, tephra are made up of a cm-thick normally-graded lapilli layer, which differs from other 276 

tephra by their coarser grain size. These layers are composed of >90% of volcaniclastic grains of 277 

monomagmatic origin i.e. coming from the same volcanic eruption, and correspond to primary 278 

monomagmatic turbidites as defined by Schneider et al. (2001). Hence, primary monomagmatic 279 

turbidites can be treated like airfall tephra as they emplace directly after the eruption, and are 280 

therefore datable. 281 
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4.1.2. Debrites  282 

This end-member facies consist of < 35 cm thick chaotic intervals of dark olive-grey silty-clay with 283 

sand, granules, pebbles and occasionally deformed stratified lithoclasts (Fig. 5). The sand to granule 284 

size material shows weak reverse grading. Debrites are composed of quartz, volcaniclastic clasts, 285 

bivalve and gastropod shells and 2-3 cm-large clasts of poorly laminated silty clays and laminated 286 

fine- to medium-clayey silts. This facies is rare, representing only five events in two cores (Tan0810-5 287 

and MD06-3003). The chaotic facies, the absence of well-defined basal erosion and the matrix 288 

supported texture, suggest a mass transport deposit from a debris flow (Mulder and Alexander, 289 

2001). 290 

4.1.3. Hemipelagite 291 

Hemipelagites consist of heavily bioturbated light olive-grey silty-clay. The silt fraction typically show 292 

more than 50% of volcaniclastic grains, mainly pumiceous lapilli and less than 20% of quartz grains 293 

(Figs. 5 and 6A). Foraminiferal content shows low and stable values like in turbidite tails and thus 294 

cannot be used to distinguish facies. Hemipelagites usually have the finest grain size (<10 µm). This 295 

facies is interpreted as the result of deposition by pelagic rain in stable, deep offshore environments. 296 

It represents 20% to up to 90% of sediment volume in cores.   297 

4.1.4. Turbidites  298 

Together with hemipelagites, turbidites dominate the sedimentary record. There are a maximum of 299 

101, 89 and 20 single turbidites per core in the Poverty, Ruatoria and Matakaoa re-entrants, 300 

respectively. Turbidites are recognized by their coarser grain size and a typical fining upward trend 301 

(Fig. 5). Thickness ranges from 1–75 cm. Turbidites are usually interbedded with hemipelagites. The 302 

basal boundaries are easily identified from a change to coarser-grain size, darker color and increase 303 

in density, magnetic susceptibility and P-wave velocity. The top boundary is progressive with 304 

bioturbated contact from the turbidte tail, grading into the hemipelagite background.  Compositional 305 

analysis shows a doubling in quartz grain concentrations in turbidite tails (> 50%) and slightly higher 306 

values of rock fragments and micas than in hemipelagite (Fig. 6A).  All turbidites in this study are 307 

interpreted as deposited by low to medium density turbidity current as defined by Stow and 308 

Shanmugam (1980) and Bouma (1962). 309 

Several turbidites can be stacked in sequences over up to 75 cm thick bounded by hemipelagites. 310 

These are termed herein “stacked turbidites”, as opposed to “isolated turbidites”, which consist of a 311 

single gravity-flow deposit under- and overlain by hemipelagite (Fig. 5). The small thickness of 312 
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individual turbidites, the lack of thick coarse grain basal unit (<20cm) and the thick uppermost silty-313 

clay unit in stacked turbidites suggests very low erosion at the base of individual gravity events. 314 

Hence we infer that the lack of intervening hemipelagite in stacked turbidites is due to non-315 

deposition rather than erosion. These conditions suggest only a short duration of time between 316 

successive turbidites.  317 

4.2. Turbidite composition and facies 318 

4.2.1. Sand Composition 319 

The turbidite sand fraction is predominantly composed of volcaniclastic grains and angular to 320 

rounded light mineral grains of quartz with rare feldspar (Fig. 6B). Volcaniclastic grains include 321 

angular and massive type glass shards with rare inner bubbles, and coarse and rounded pumiceous 322 

lapilli. Bubble-wall type glass shards are rare. All volcanic glass is fresh implying rapid emplacement 323 

after volcanic eruptions and reduced storage time onland or on the shelf. All cores contained a small 324 

amount of rock fragments. Other detritic grains include wood fragments, micas and heavy minerals 325 

such as pyroxene and hornblende. This class shows generally low values, but high concentrations 326 

occur in core MD06-3008 in the Hikurangi Trough where some mica-rich turbidites have been 327 

described. Rare bioclastic grains include well-preserved benthic and planktic foraminifers and shell 328 

fragments. 329 

The turbidite composition varies between cores in the Ruatoria re-entrant, whereas it is 330 

homogeneous in Poverty re-entrant (Fig. 6B). Poverty re-entrant turbidites have higher 331 

concentrations of quartz grains compared with the Ruatoria re-entrant turbidites, probably due to 332 

the proximity of the coastal rivers (70 km and 100 km, resp.). In terms of water depth, the deepest 333 

turbidites in Poverty and Ruatoria re-entrants (Lower Paritu Basin and Hikurangi Trough, 334 

respectively) show higher concentrations of light minerals and foraminifers and reduced amount of 335 

volcaniclastic grains. In the Matakaoa re-entrant, composition is dominated by volcaniclastic grains 336 

with only minor concentrations of light minerals. 337 

 338 

4.2.2. Foraminiferal assemblages 339 

We identified 28 benthic foraminifera species, of which Uvigerina peregrina, Bulimina marginata f. 340 

aculeata, Evolvocassidulina orientalis, Notorotalia depressa, Bolinita quadrilatera, Globobulimina 341 

pacifica and Quinqueloculina auberina largely dominate. These species are indicative of a variety of 342 
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environments from the inner shelf to the abyssal plain. However, most of them are characteristic of 343 

environments seaward of the shelf break (>150m).  344 

We defined four benthic foraminiferal associations from their living water depth (Fig. 7A). The 345 

associations are basin dependant. Association 1 (0–200 m) includes shelf species and indicates 346 

remobilization of shelf sediments, such as might be expected by storm waves or hyperpycnal flows. 347 

Association 1 is only present in the Poverty re-entrant and on the Ruatoria Debris Avalanche. 348 

Association 2 (0–600 m) includes species from the shelf and the upper slope, and is characteristic of 349 

turbidites from the Matakaoa Turbidite System. Association 3 (0-1200 m) includes species with a 350 

depth range shallower than the base of the upper slope and is observed in small quantities in all 351 

basins. Association 4 (200–5000 m) has deep water species only and is characteristic of turbidites 352 

from Poverty and Ruatoria re-entrants.  353 

The proportion of planktic foraminifers shows a constant increase with depth, and therefore distance 354 

from shore, ranging from 32% at c. 1100 mbsl in the Matakaoa re-entrant to 87% at c. 3500 mbsl in 355 

the Hikurangi Trough (Fig. 7B).  356 

4.2.3. Turbidites facies  357 

Five turbidite facies were determined based on grain size, internal structures, sand composition and 358 

foraminiferal assemblage, namely muddy turbidites (T I); silt laminae turbidites (T II); silty turbidites 359 

(T III); sandy turbidites (T IV); and reverse-graded basal turbidites (T V) (Fig. 5, Fig. 6C). These are 360 

summarised below. 361 

Muddy turbidites (T I) are characterised by dark olive-grey silty-clays, which differ from the 362 

hemipelagic background by being more darker and coarser grained (10 to 22 µm) (Fig. 5). Muddy 363 

turbidites are 1–40 cm-thick, fining upward sequences with a sharp basal contact and gradational 364 

upper boundary, in places overprinted by bioturbation. The occurrence of occasional wavy basal 365 

contacts suggest some basal erosion. Typically, muddy turbidites are composed of poorly-laminated 366 

silty-clays with occasional basal silt laminae (<1 cm-thick), overlain by massive silty-clay. The 367 

composition of sand grains shows a predominance of light minerals (83%), negligible volcaniclastic 368 

grains (3%) and a relatively high percentage of foraminifers (10%). The foraminiferal content is 369 

predominantly planktic species (85%), with benthic species only occurring as Association 4 (Fig. 6C). 370 

Muddy turbidites are interpreted as the upper subdivisions Td, Te of medium density turbidites 371 

(Bouma, 1962) or T4 to T8 subdivisions of low density turbidites (Stow and Shanmugam, 1980) 372 

deposited by very low density turbidity currents.  373 
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Silt laminae turbidites (T II) consist of irregular, <40 cm-thick sequences of interbedded, thinning and 374 

fining upward clay and silt laminae (Fig. 5). Silt laminae are usually <1 cm-thick and stacked in sets of 375 

2 to 10. Weak cross-stratification in the basal silt laminae merge up section to planar lamination, 376 

followed by poorly laminated, then homogeneous silty-clay. Sand grains are predominantly light 377 

minerals (59%) and volcaniclastic grains (30%). Foraminiferal assemblages show a majority of planktic 378 

species (80%) and a benthic assemblage dominated by Association 4 (81%) with rare species from 379 

Associations 2 (11%) and 3 (8%) (Fig. 6C). Silt laminae turbidites are interpreted as fine-grained 380 

turbidites deposited by a low density turbidity current (T2 to T8 subdivisions of Stow and 381 

Shanmugam (1980)). They differ from stacked turbidites by their specific grain-size showing a single 382 

sequence (Fig. 5). 383 

Silty turbidites (T III) are composed of 0.5–55 cm-thick, fining upward clayey silt sequences (Fig. 5). 384 

The basal contact is usually sharp, with little evidence of erosion. A complete graded sequence shows 385 

from base to top: (1) a massive coarse clayey silt base; (2) laminated coarse clayey silt; (3) cross-386 

stratified coarse clayey silt; (4) laminated fine to medium clayey silt; and in places, (5) a laminated silt 387 

and clay and (6) poorly laminated to homogeneous silty-clay top. Sand grains within silty turbidites 388 

are composed of volcaniclastic grains and light minerals (33% each) and a relatively high proportion 389 

of foraminifers (9%). In core MD06-3008, some mica-rich silty turbidites (>90% of mica) artificially 390 

increase the average value of the class “other detritic grains” (Fig. 6C). Silty turbidites are also 391 

characterised by 69% of planktic foraminifers and benthic assemblage is composed of Association 4 392 

(73%) with a minor component from other associations (from 6 to 12% each). These clayey silt 393 

sequences are interpreted as the upper subdivisions Tc to Te of medium density turbidites (Bouma, 394 

1962) deposited by low density turbidity currents. 395 

Sandy turbidites (T IV) are characterised by a clean sand at the base, fining upward to clayey and silty 396 

sand sequences, typically <75 cm-thick (Fig. 5). A complete graded sequence shows from base to top: 397 

(1) massive coarse to fine-grained sand base; (2) laminated fine sand; (3) cross stratified very fine 398 

sand; (4) laminated clayey silt; and, (5) poorly laminated to homogeneous silty-clay. In places, the 399 

laminated clayey silt interval (i.e. 4) is graded and thick, and shows cross stratification passing 400 

upward to horizontal lamination and silt laminae. The basal contact is usually erosive with some 401 

evidence of scour. The composition of sand grains show high proportions of light minerals (57%) and 402 

volcaniclastic grains (29%), similar to silt laminae turbidites. However, sandy turbidites contain more 403 

rock fragments (6%) and other detritic grains (17%) than the other facies. Sandy turbidites have the 404 

lowest planktic foraminifers content (49%). Benthic foraminiferal assemblages show a high 405 

concentration of Association 4 (51%) with 19% of Associations 2 and 3 and 11% of Association 1 (Fig. 406 
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6C). These sequences are interpreted as the Ta to Te subdivisions of medium density turbidites 407 

(Bouma, 1962). 408 

Basal reverse-graded turbidites (T V) range from 3 to 45 cm in thickness and are characterised by a 409 

reverse graded silty-sand basal unit overlain by a fining upward silty to sandy unit (Fig. 5). The basal 410 

contacts are usually sharp. Sharp to irregular contacts are observed between the reverse and 411 

normally grading units. The normally-graded upper unit consists of T II, T III or T IV. The T V turbidites 412 

are interpreted as deposits from a waxing then waning flow (Kneller, 1995). Approximately half of 413 

the T V turbidites display a basal unit composed of light coloured clayey silts with horizontal 414 

laminations, abundant large foraminifers (over 20% of the sand fraction) and sparse plant debris. 415 

These particular turbidites are labelled T Va, and show a basal texture finer than that of the 416 

hemipelagite background (eg. 920-990 cm in MD06-3009, Fig. 5). The boundary between the reverse 417 

and the normal graded sections in T Va show a sand grain composition and planktic foraminiferal 418 

concentration similar to silt laminae turbidites (TII). The benthic foraminiferal assemblage has high 419 

concentrations of Association 2 (49%) and a relatively low concentration of Association 4 (31%) 420 

compared to other turbidites (Fig. 6C). We interpret T Va as hyperpycnites as described by Mulder et 421 

al. (2003).  422 

4.3. Age controls and sedimentation rates 423 

Ages recovered from core material are compiled in Table 2 and 3 and summarised in Fig. 8. In the 424 

Poverty re-entrant core MD06-3003 offers a continuous chronology from c.1 ka to c.16.5 ka, but in 425 

MD06-3002 a truncated range from c.6 to c.17 ka was recovered. In the Ruatoria re-entrant MD06-426 

3009 presents the longest record from c.1 ka to c.18 ka, whereas ages in core MD06-3008 range from 427 

c. 0.5 ka to c.16.5 ka. All short cores in the Ruatoria and Matakaoa re-entrants exhibited dates 428 

spanning a shorter period from c.8 ka to present day except for core Tan0314-8, which shows a 429 

truncated range from c.5 to c.17 ka.  430 

Uncorrected sedimentation rates since 17 ka are highly variable on the Hikurangi Margin (Fig. 8A). 431 

They range from 15 cm/ka in the MTS deep-sea fan to 109 cm/ka in the Hikurangi Trough. These 432 

rates contrast with the 285cm/ka calculated before 17 ka on the Ruatoria Debris Avalanche. The 433 

hemipelagite corrected sedimentation rate throughout the Holocene (11.7 ka to present) has a 434 

considerably tighter range of 34 to 38 cm/ka along the margin and is variable during the Late 435 

Pleistocene (17-11.7 ka) ranging from 8 cm/ka in the Poverty re-entrant to 21 cm/ka in the Ruatoria 436 

re-entrant. 437 
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We re-calibrated the ages from Marion Dufresne core MD97-2121 in southern Hawkes Bay (Carter et 438 

al., 2008), following our methodology to yield a revised sedimentation rate (Fig. 8B) of ~37 cm/ka, 439 

constant for the last 40 ka. Since, MD97-2121 reportedly only contains hemipelagite sediments 440 

(Carter et al., 2008), this value corresponds to the corrected sedimentation rate in that location. This 441 

rate is similar to the corrected Holocene sedimentation rates that we calculated in this study 442 

suggesting that turbidite deposition did not significantly affect the background sedimentation record. 443 

For the Late Pleistocene, the rate of 37 cm/ka contrasts with the observed fluctuations in Poverty 444 

and Ruatoria re-entrants (8-21 cm/ka), suggesting either differential erosion by successive gravity 445 

flows or a localised decrease of hemipelagite sediment fluxes. Considering the coarser grain size of 446 

turbidites during that time, the basal erosion hypothesis is preferred here. 447 

4.4. Main patterns of turbidite activity in the different re-entrants 448 

4.4.1. Poverty re-entrant  449 

The recent (<17ka) turbidite activity of the Poverty re-entrant is sampled in the two Paritu mid-slope 450 

basins. Upslope over the last c. 17 ka, the Paritu Trough records variable Terrigenous Accumulation 451 

Rate (TAR), turbidite frequencies and grain size with less than 20-30% of stacked turbidites. A change 452 

in recorded sedimentation appears at c. 12 ka with high TAR (95 cm/ka), high turbidite frequency (6.2 453 

turb/ka; turb for turbidites), and a majority of coarse grained turbidites from 17 to 12 ka, and 454 

moderate TAR (49cm/ka), moderate turbidite frequency (3.7 turb/ka) and a majority of fine grained 455 

turbidites from 12 ka to present day (Figs. 9 and 10, Table 4).  456 

Downslope, during the truncated period sampled c. 17 – 6 ka, the Lower Paritu Basin shows a high 457 

and constant TAR (69 cm/ka) with 30% of stacked turbidites. As in the Paritu Trough, a change at c. 458 

12 ka is discernible with moderate turbidite frequency (4.4 turb/ka) and coarse grained turbidites 459 

from 17 to 12 ka as opposed to high turbidite frequency (6.7 turb/ka) and fine grained turbidites 460 

from c. 12 to 6 ka (Figs. 9 and 10, Table 4).  461 

These results shows two distinct periods of sedimentation in the Poverty re-entrant (Table 4): (1) the 462 

17-12 ka period characterised by coarse grained, silty to sandy turbidites and (2) the 12-0 ka period 463 

characterised by fine grained, silt laminae to silty turbidites (Figs. 9 and 10). This change in turbidite 464 

grain size is punctuated by a sharp spatial migration of high turbidite frequencies and TAR from the 465 

Paritu Trough during the 17-12 ka period to the Lower Paritu Basin through the 12-0 ka one. 466 

4.4.2. Ruatoria re-entrant Turbidite Sedimentation 467 
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The three areas sampled in the Ruatoria re-entrant show distinct sedimentation patterns, with 468 

turbidites fining and increasing in frequency basinward. 469 

(1) The gullied upper slope shows a stable depositional pattern from 7.9 ka to the present day. 470 

However, turbidite sedimentation varies laterally depending on geomorphology. The sampled 471 

channelized area comprises from north to south (Fig. 3): a northern channel (Tan0810-5) 472 

characterised by a stack of debrites and turbidites with the youngest dated at c.0.8 ka, a levee 473 

(Tan0810-2) with low TAR (28 cm/ka) and turbidite frequency (2.1 turb/ka), variable turbidite grain 474 

size and up to 40% of stacked turbidites, and a southern channel (Tan0810-3) characterised by 475 

extremely low TAR (3-18 cm/ka) and turbidite frequency (0.4cm/ka), and fine grained turbidites. 476 

These results suggest that turbidite activity is concentrated in the northern channel. In contrast, the 477 

isolated plateau northern of the channelized area (Tan0810-1) records no turbidites except one, the 478 

Taupo primary monomagmatic turbidite.  479 

(2) Small troughs on the Ruatoria Debris Avalanche (MD06-3009) record strong variations in turbidite 480 

sedimentation over the last c.18.5 ka with a sharp boundary at c. 17 ka (Figs. 11 and 12, Table 5). The 481 

period 18.5-17 ka is characterised by extremely high TAR (261 cm/ka) and turbidite frequency (9.1 482 

turb/ka), and coarse grained turbidites while the period 17-0 ka shows moderate TAR, low turbidite 483 

frequencies and fine grained turbidites. A minor change is supposed at c. 7 ka with slightly lower TAR 484 

(56 cm/ka) and turbidite frequency (1.5 turb/ka) from 17 to 7 ka than during the 7-0 period (62cm/ka 485 

and 1.9 turb/ka).  486 

 (3) The Hikurangi Trough shows temporal variations in turbidite sedimentation over the last c. 17 ka 487 

as well as spatial fluctuations depending on geomorphology. At the mouth of the Ruatoria channel 488 

(MD06-3008, Fig. 3), a boundary at c. 7 ka separates the 17-7 ka period characterised by high TAR (91 489 

cm/ka) and turbidite frequency (5 turb/ka), variable turbidite grain size with 30% of stacked 490 

turbidites, and the 7-0 ka period characterised by moderate TAR (56 cm/ka) and turbidite frequency 491 

(2.4 turb/ka), fine grained turbidites with only 5% of stacked turbidites. During the first 17-7 ka 492 

period, minor changes in turbidite grain size are recorded at c. 12 ka with coarse grained turbidites 493 

from 17 to 12 ka and fine grained turbidites occurring from 12 to 7 ka. In isolated areas not fed by 494 

large channels (Tan0810-6), turbidite sedimentation during the period 7-0 ka is different, 495 

characterised by low TAR (28 cm/ka), low turbidite frequency (1.4 turb/ka), coarse grained turbidites 496 

and 50% of stacked turbidites. 497 

Consequently, the turbidite sequence in the re-entrant can be divided into three periods (Table 5): 498 

(1) 18.5-17 ka characterised by high TAR and turbidite frequencies, a majority of stacked turbidites 499 
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and coarse grained, silty to sandy turbidites; (2) 17-7 ka characterised by a decrease in the overall 500 

TAR and turbidite frequencies, fewer stacked turbidites and a progressive fining upcore; and, (3) 7-0 501 

ka characterised by a moderate TAR and low turbidite frequencies, generally high proportions of 502 

stacked turbidites except in the Hikurangi Trough and a dominance of fine grained turbidites.  503 

4.4.3. Matakaoa Turbidite System Sedimentation  504 

Geographically, we differentiate three regions, from the shelf edge to the deep basin (Figs. 5 and 13, 505 

Table 6):   506 

(1) The canyon floor (Tan0314-86) which contains a stack of turbidites. No ages are available to date 507 

these deposits, but the absence of hemipelagite drape at the top of the core argues for very recent 508 

deposits and a high frequency of flows.  509 

(2) The channel-levee complex which contains c. 90% of hemipelagites from ~5 ka to Present both on 510 

levees (cores Tan0810-10, -11 and -13) and into the channel (cores Tan0810-9 and -12). This period 511 

shows extremely low TAR (8 cm/ka in the channel and 3 cm/ka on the levees), low turbidite 512 

frequency (up to 1.8 turb/ka on levees) and relatively rare stacked turbidites (<25%). Turbidite grain 513 

size ranges from sandy to muddy turbidites.  514 

(3) The deep-sea fan (Tan0314-8) which records turbidites in a truncated period starting before 17 ka 515 

to 5 ka. A sharp boundary at c. 17 ka is identified. The period pre-17 ka contains only a stack of fine 516 

grained turbidites. The lack of datable material below 16,677 cal. yr BP (Fig. 13, Table 3), prevents an 517 

estimate of sedimentation rate and turbidite frequencies. The period 17-5 ka is characterised by 518 

extremely low TAR (7 cm/ka) and turbidite frequency (0.9 turb/ka), with rare stacked turbidites 519 

(10%). Turbidite grain size and occurrence show a period from 12 to 9.5 ka free of turbidites, that 520 

separates silty turbidites from 12 to 17 ka from muddy turbidites from 9.5 to 5 ka. A thin 521 

hemipelagite drape is recorded younger than 5 ka, suggesting that no turbidite deposition occurred 522 

since that age.  523 

These results show three depositional periods in the MTS (Fig. 13, Table 6). (1) The first period, older 524 

than 17 ka, is characterised by a deep-sea fan with a stack of turbidites implying a constant growth 525 

with continuous activity of the MTS. (2) The period 17-5 ka is characterised by a decrease in turbidite 526 

frequency and TAR in the fan, and a progressive fining-up texture. (3) The period 5-0 ka is 527 

characterised by hemipelagite sedimentation in the turbidite plain and deep-sea fan, low TAR 528 

concentrated in the channel and a moderate turbidite frequency, with thin and fine turbidite layers 529 

infilling the head of the canyon. 530 
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5. DISCUSSION 531 
 532 

The detailed characterisation of the turbidites in this study enables a wider re-examination of the 533 

parameters that control turbidite deposition at a c. 18 ka timescale along northeastern New Zealand 534 

including: (1) changes in slope morphology, (2) glacio-eustatic sea-level variations and (3) changes in 535 

sediment supply. Triggering mechanisms generating turbidites at a centennial timescale are then 536 

examined with a particular discussion on the relative contribution of climate (floods) and tectonic 537 

(earthquakes).  538 

5.1. Control parameters on turbidite sedimentation  539 

5.1.1. Local changes in slope morphology 540 

Large continental slope failures, such as the one that formed the Matakaoa re-entrant, are known to 541 

reorganize down-slope sediment pathways controlling basin sediment supply (e.g. Joanne et al., 542 

2010). In the Poverty re-entrant, the successive margin collapses have created two distinct 543 

sedimentary systems : the Poverty Canyon System and the Paritu mid-slope basins (Orpin, 2004; 544 

Pedley et al., 2010). In the Paritu Trough, the Poverty Debris Avalanche (PDA) has also most likely 545 

impacted the sedimentary dynamics of the mid-slope basins. Our data provide evidence of 546 

reorganisation of the sedimentary system over the last 17 ka and incidentally allow a first age 547 

estimation of the PDA. 548 

Since the emplacement of the PDA in the Paritu Trough, gravity flows descending from the upper-549 

slope gullies are pseudo-channelized along the Paritu Channel, constrained by the relief of the PDA, 550 

and flow downslope to the Lower Paritu Basin (Fig. 2). Core data confirm this dynamic with overbank 551 

deposits in the Paritu Trough and fan lobes deposits in the Lower Paritu Basin (Table 4). This 552 

channelized activity has been constant for the last c.12 ka. Prior to that time, sediment was mainly 553 

captured in the Paritu Trough, as demonstrated by the higher TAR and higher frequency of coarse-554 

grained turbidites in the Paritu Trough, compared with that of the Lower Paritu basin (Table 4). This 555 

change in the sedimentary routing at c.12 ka is not recorded in the nearby Ruatoria re-entrant, 556 

suggesting that it is not controlled by global climatic drivers. We interpret this change to a local 557 

reorganization associated with the emplacement of the PDA. Such event would have also eroded the 558 

widespread Waiohau tephra (13,635 cal. yr BP) in the Paritu Trough. Based on these observations, 559 

we estimate the age of the PDA at 12-13.5 ka. Similar basin evolutions have been interpreted in 560 

Miocene trench-slope basins along the Hikurangi Margin (Bailleul et al., 2007) with : (1) the pre-PDA 561 
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period corresponding to a low-gradient submarine ramp system, when the Paritu Trough is the main 562 

collecting basin, (2) the emplacement of the PDA to a large submarine slide, and (3) the post-PDA 563 

period to a fine-grained sand-rich submarine fans system, when the two basins are connected. 564 

5.1.2. Influence of glacio-eustatic sea-level variations  565 

During the late lowstand – early transgressive period (LLET; 18.5-17 ka), the coastline along the 566 

northern Hikurangi margin was c.120 m below present day sea level (Gibb, 1986; Pillans et al., 567 

1998)(Fig.1). The very high sedimentation rates recorded in MD06-3009 (261 cm/ka and 9.1 turb/ka 568 

being minimum values since the core is located on a perched basin; Table 5) and the high proportion 569 

of rock fragments contained in turbidites are consistent with strong connectivity between rivers and 570 

continental slope (Fig. 6D). Although no sedimentation rates could be derived for the Matakaoa re-571 

entrant (Fig. 13), the thick sequence of stacked turbidites indicates sustained high sediment supply 572 

from the nearby rivers. Here, the paleo-Waiapu River was very likely connecting to the Matakaoa 573 

Turbidite System (MTS) through the Matakaoa Canyon (Joanne et al., 2010) (Figs. 1 and 4) and to the 574 

Ruatoria re-entrant through the dense network of upper slope gullies (Fig. 3). Similarly, in the 575 

Poverty re-entrant, the Waipaoa River likely directly fed the Poverty Canyon System bypassing the 576 

Paritu Trough and Lower Paritu Basin (Lewis et al., 1998; Orpin, 2004).  577 

During the marine transgression (17-7 ka), the coupling between East Coast rivers and slope basins 578 

was progressively cut-off. Terrigenous sedimentation rates and turbidite frequencies decreased 579 

noticeably in the MTS (7 cm/ka and 0.9 turb/ka) and in the Ruatoria re-entrant (56 cm/ka and 1.5 580 

turb/ka). The proportion of rock fragments also drastically decrease (Fig. 6D). This net decrease in 581 

TAR to the slope basins is consistent with the large volume of postglacial sediment trapped on the 582 

shelf (Lewis et al., 2004; Orpin 2004, Paquet et al. 2009, Gerber et al, 2010). Further seaward in the 583 

Hikurangi Trough, the high level of activity in the channel (MD06-3008) compared to the low activity 584 

in the channel-levees overbank (MD06-3009) suggests that the size of gravity flows during the 585 

transgression was smaller than during the LLET period and contained within the channel.  586 

During the highstand (7-0 ka), Paquet et al. (2009), Gerber et al. (2010) and Wolinsky et al. (2010) 587 

showed that riverine sediments were stored in fluvial valleys onland and on the inner shelf. The 588 

constant and uniform rates of accumulation of terrigenous material (TAR) in the Poverty and 589 

Ruatoria re-entrant from the time of the Whakatane tephra (cal. 5530 BP), corroborate this 590 

observation. But a TAR value of 55 cm/ka in slope basins and in the Hikurangi Trough also suggests 591 

that riverine dispersal extends beyond the shelf basin to deliver sediments to the upper slope. This is 592 

in slight contrast with the near-full shelf capture scenario proposed by Gerber et al. (2010) for the 593 
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Poverty shelf, but consistent with observations in the Ruatoria outer shelf. There, Addington et al. 594 

(2007) and Kniskern et al. (2010) showed that part of Holocene river sediments by-pass locally the 595 

shelf and reach the upper slope. This is confirmed in this study by sedimentological and 596 

morphological evidence showing differential upper slope channelized activity: the active northern 597 

channel (Tan0810-5 and -2) connects upslope to incised V-shape gullies where  sediment bypassing is 598 

observed while the inactive southern channel (Tan0810-3) connects upslope to smooth gullies where 599 

shelf depocenters trap shelf sediments. In the MTS, the thin layer of hemipelagite draping the deep-600 

sea fan indicates that no turbidites reach the fan. In the channel-levee complex, low TAR (3 to 8 601 

cm/ka) and low turbidite frequency (1.8 turb/ka), together with the dominance of hemipelagites, 602 

indicate that the MTS is mainly inactive.  603 

From these observations we propose that during the LLET period, rivers were closely-coupled to 604 

submarine canyons, supplying point source sedimentary systems such as the MTS and the Poverty 605 

Canyon System. At this time, linear source systems, such as the Poverty mid-slope basins, may record 606 

low activity as they were nourished via advective dispersal and longshore transport. The Ruatoria re-607 

entrant represents a composite system because of its high activity and linear source morphology 608 

associated to a short-lived connection with the Waiapu River. As sea level rises, the coupling 609 

between riverine supply and submarine canyons wanes with a widening distance between river 610 

mouths and canyon heads and the sequestration of the sediment load on the shelf. Point source 611 

systems activity sharply decreases while linear source activity increases as rivers sediments are 612 

stored on the shelf edge and not flushed out to deep sea through the canyons. During highstand 613 

conditions, point source systems are mainly inactive because of the lack of direct sediment input: the 614 

head of the Poverty Canyon is partly buried by Late Holocene shelf sediments (Walsh et al., 2007); 615 

the Matakaoa Canyon is filled by thin turbidites which episodically reach the channel-levee complex. 616 

Linear source systems record stable activity because of the large width of their source area, active 617 

slumping at the shelf edge (Lewis et al., 2004), sediment by-passing the shelf (Addington et al., 2007; 618 

Alexander et al., 2010; Kniskern et al., 2010) and the presence of numerous gullies, preventing thick 619 

sediment wedge accumulation. 620 

5.1.3. Impact of changes in sediment supply to the slope 621 

Coarse sandy and silty turbidites deposited older than c. 12 ka contrast with the concentration of fine 622 

silty to muddy turbidites during 12-0 ka, with no variations in the TAR (Figs. 10, 12 and 13). The 623 

change in turbidite facies at c.12 ka, coeval of the Pleistocene/Holocene climatic boundary, is very 624 
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likely a consequence of the combined effect of abrupt climatic control on sediment supply and 625 

glacio-eustatic fluctuations.  626 

Deposition of coarse turbidites in deep basins is consistent with cold and dry climatic conditions 627 

favouring high erosion onland (McGlone, 2001; Okuda et al., 2002; Mildenhall and Orpin, 2010). The 628 

subsequent coarse eroded material is transported by Raukumara rivers to a narrow, 5-15 km wide, 629 

continental shelf with relatively low trapping efficiency. On the contrary to this, fine turbidites are 630 

associated with warm and moist conditions of the Holocene and a wide (20-30 km wide) continental 631 

shelf with high trapping efficiency (Paquet et al., 2009; Gerber et al., 2010). Despite the large 632 

sediment load provides by river incision (Litchfield and Berryman, 2005), the coarse material is 633 

trapped on the wide highstand continental shelf and cannot reach shelf edge and upper slope to 634 

generate coarse turbidites.   635 

This change in turbidite facies is well represented and abrupt in deep sea cores MD06-3002, -3003 636 

and -3008 (Figs. 10 and 12). For core MD06-3009 collected on the Ruatoria channel levee 250 m 637 

above the main sediment pathway, the fining in turbidite texture occurs at c.17 ka. Since channel 638 

levees construction is primarily controlled by flow volumes, their drastic decrease accompanying the 639 

disconnection between the Waiapu River mouth and the upper slope at the initiation of the marine 640 

transgression (c.17ka) have reduced the overbank deposition efficiency. As a consequence, the 641 

climatic impact in that core is less discernible and glacio-eustatic fluctuations may have primarily 642 

control the source and delivery of sediments. 643 

5.2. Turbidite generation and triggering mechanisms 644 

Known triggering mechanisms of turbidites generally involve large earthquakes ( Goldfinger et al., 645 

2003; St Onge et al., 2004; Blumberg et al., 2008; Noda et al., 2008; Beck, 2009), tsunamis 646 

(Shanmugam, 2006), storm waves (Mulder et al., 2001; Puig et al., 2004), volcanism (Schneider et al., 647 

2001) and catastrophic floods (Mulder et al., 2003; St Onge et al., 2004; Beck, 2009). Other possible 648 

mechanisms such as sediment overloading or gas hydrate destabilization are assumed to be indirect 649 

effects of regional changes like increase of sediment delivery or glacio-eustatic sea-level variations. 650 

Because large earthquakes, tsunamis and storm waves are all able to originate turbidity currents on 651 

the upper slope, the distinction by using their subsequent deposits is extremely hazardous. However, 652 

large storm and tsunami waves affect the seafloor up to a maximum depth of 80-120 mbsl (Mulder et 653 

al., 2001; Puig et al., 2004; Shanmugam, 2006). Since the present-day and highstand shelf edge is 654 

lying between 150 and 200 mbsl, these processes are unlikely to generate turbidites over the last 7 655 

ka at the difference of earthquakes. Only six large volcanic eruptions are directly associated with 656 
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primary monomagmatic turbidites in the last c. 18 ka (Figs. 9, 11 and 13), demonstrating that 657 

volcanism is a minor process for turbidite generation and will not be discussed fully in the following. 658 

Finally, catastrophic floods generating particular turbidites easily distinguishable from others are 659 

discussed below.  660 

5.2.1. Catastrophic floods 661 

Flood-induced turbidites, recorded as hyperpycnites (Mulder et al., 2003), have been recognized in 662 

deep sea basins as far as 700 km away of a river mouth when there is close spatial coupling to deeply 663 

incised canyon heads (Nakajima, 2006; Nakajima et al., 2009). In contrast, on the Hikurangi Margin, 664 

rivers were connected to canyon heads only during the last sea-level lowstand and disconnected 665 

during the present day highstand. Over the last 150 years of catchment deforestation on the 666 

Raukumara Peninsula, river discharges attain the threshold for hyperpycnal flows around once a year 667 

for the Waiapu River and every 40 years for the Waipaoa River (Hicks et al., 2004). The 1-in-100 year 668 

flood caused by Cyclone Bola in 1988 led to thick deposits on the Poverty shelf speculated to have 669 

been the result of hyperpyncal flows (Foster and Cater, 1997; Brackley et al., 2010). The 7,200 year 670 

sedimentary record of Lake Tutira (Orpin et al., 2010; Page et al., 2010) suggested seven catastrophic 671 

storms greater in magnitude than Cyclone Bola (Sinclair, 1993), and twenty-five large storm periods 672 

(40-400 year-long) similar to Cyclone Bola representing an average frequency of one storm period 673 

every 290 years. Such periods generate intense erosion of the catchment and increase sediment 674 

delivery to the shelf. Consequently, there is compelling circumstantial evidence that several 675 

hyperpycnal flows could have occurred in the Waipaoa and Waiapu Rivers since 18 ka, even under 676 

forest cover. 677 

We have identified a total of nine hyperpycnites since the LGM along the northern Hikurangi Margin. 678 

They are dated at 2,930±190, 7,657±137, 11,544±184, 12,863±288, 14,011±347 and 15,681±624 cal. 679 

yr BP, in Poverty re-entrant and at 9,266±170, 9,594±218, and 10,882±255 cal. yr BP in Ruatoria re-680 

entrant. None have been identified in the Matakaoa Turbidite System. They represent only ~3% of 681 

the total turbidites identified in Poverty and 4% in Ruatoria. Most of them are recognized during the 682 

marine transgression (17-7 ka). Another flood event is inferred to occur just after the Taupo eruption 683 

when we observe a primary monomagmatic turbidite, locally overlying the Taupo tephra and 684 

containing macroscopic wood fragments. This turbidite is interpreted as related to a catastrophic 685 

flood washing over the thick volcanic drape deposited all over the North Island. 686 

Only one hyperpycnite is recorded during the present day highstand. Compared to onland climate 687 

proxies, this 2,930±190 cal. yr BP hyperpycnite (MD06-3003, Fig. 9) is contemporaneous of a thick 688 
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heavy rainfall-related bed recorded in Lake Tutira at c. 2,950 cal. yr BP. This bed is the thickest one 689 

since 4 ka and the second thickest since the origin of the lake at 7.2 ka, and is part of a suite of seven 690 

thick storm beds interpreted as the result of catastrophic rainfall events over 500 mm/day (Orpin et 691 

al., 2010). These seven events exceeded in magnitude the 1988 Cyclone Bola (300mm/day; Sinclair, 692 

1993). The deep-sea record of only one of these seven events shows that there is no systematic 693 

relationship between hyperpycnite occurrence in deep basins and large onshore flood events. This is 694 

in good agreement with the presence of the 25-30 km wide shelf, which reduces connectivity 695 

between river mouths and the upper slope. However, the 2,930 cal. yr BP hyperpycnite occurs during 696 

the ENSO-dominated climatic regime described by Gomez et al. (2004), which began ~4 ka ago. This 697 

period corresponds to an increase in storminess and the transition from fluvial incision to landsliding 698 

as the dominant mode of sediment production onland. This particular climatic regime coupled with 699 

an exceptional heavy rainfall could possibly have increased the sediment load over the minimum 700 

threshold to produce a hyperpycnite in the deep sea. 701 

We believe that the two hyperpycnites dated at 11,544±184 and 10,882±255 cal. yr BP in the Poverty 702 

and Ruatoria re-entrants respectively can be related to large floods of the Waipaoa and Waiapu 703 

rivers. There is a temporal link between these floods and the warm climatic period (11.6-10.8 ka) 704 

defined by Alloway et al. (2007), which occurs just after the Late Glacial Cold Reversal, known as a 705 

cooler climatic period with temporary expansion of grassland and shrubland in northern North 706 

Island. Following the river incision model developed by Litchfield and Berryman (2005), the Late 707 

Glacial Climate Reversal (at 13.5-11.6 ka; Alloway et al., 2007) may have created high erosion and 708 

aggradation of fluvial terraces due to low stream power. The warm period increases the stream 709 

power which incises the newly formed terrace and consequently generate high river loading and 710 

delivery. The coupling with a large storm such as Cyclone Bola or greater, would have generated 711 

suitable conditions to deposit hyperpycnite in deep basins, as for the 2,930 cal. yr BP hyperpycnite. 712 

There is also a possibility with the age uncertainties that the two hyperpycnites in the Poverty and 713 

Ruatoria re-entrants were synchronous and record a single catastrophic event. A better age model is 714 

needed to confirm this synchronicity and the occurrence of a large storm at that time.  715 

The timing of other hyperpycnites recognised during the transgression period (7,657±137, 716 

9,266±170, 9,594±218, 12,863±288, 14,011±347 and 15,681±624 cal. yr BP) closely correspond to 717 

five stillstand periods (c. 7.5 , 9.5 , 12.5 , 13.7 , 15.7 ka) identified regionally (Carter and Carter, 1986; 718 

Carter et al., 2002). Similarly to previously, these hyperpycnites may be the record of extremely large 719 

storms and catastrophic floods occurring during stillstands resulting in periods of enhanced sediment 720 

flux reaching the deep ocean (Carter et al., 2002). 721 
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5.2.2. Large earthquakes 722 

Earthquakes have been identified as the dominant triggering mechanisms in numerous active margin 723 

settings during the Late Holocene (e.g. Adams, 1990; Goldfinger et al., 2003; Blumberg et al., 2008; 724 

Noda et al., 2008). Evidences of prehistoric large earthquakes Mw > 7 are derived from the 9 ka 725 

record of uplifted or subsided marine terraces (Cochran et al., 2006; Hayward et al., 2006; Wilson et 726 

al., 2006; Wilson et al., 2007), which provide an average return time of 670 years (150-1500 years). 727 

However, this earthquake record may be incomplete and underestimated since uplift and subsidence 728 

episodes are mainly driven by near-shore upper plate fault ruptures (Wilson et al., 2007).  729 

Sedimentological evidences have confirmed that volcanism and catastrophic floods are minor 730 

triggering mechanisms of turbidites since 18 ka i.e. a small amount of identified primary 731 

monomagmatic turbidites and flood-induced turbidites and low proportion of rock fragments in 732 

turbidites (Fig. 6B-D). Most of the turbidites contain material from environments deeper than the 733 

shelf break as confirmed by the dominance of deep water foraminiferal assemblages since 18 ka, 734 

despite sea-level fluctuations (Fig. 7A and D). This is particularly marked during the highstand (last 7 735 

ka; Fig. 7D) when foraminiferal assemblages show a majority of deep water species (70% of 736 

Association 4) and a negligible amount of shelf species (<5% of Association 1). The 20% of shelf and 737 

upper slope species (Association 2) are attributable to local conditions in the Matakaoa re-entrant 738 

(Fig. 7B). Considering the intense tectonic activity of the Hikurangi margin and according to studies 739 

undertaken in similar settings (e.g. Adams, 1990; Blumberg et al., 2008; Goldfinger et al., 2003; Noda 740 

et al., 2008), turbidites deposited during the present day highstand, unlikely to be flood or volcanism 741 

related, are supposed to be triggered by large earthquakes. Oceanographic processes such as storms, 742 

which are able to cannibalize upper slope material (Piper and Normak, 2009), are assumed to be 743 

efficient triggering mechanisms only during early marine transgression and lowstand. 744 

The calculated mean return times of turbidites for the last 7 ka in the Poverty (MD06-3003) and 745 

Ruatoria re-entrant (MD06-3008) and in the MTS (Tan0810-11) are 270, 410 and 430 years, 746 

respectively (Figs. 10 and 12). The return time in the three re-entrants is smaller than estimates of 747 

near shore upper plate fault ruptures from onland records (670 years; Cochran et al., 2006; Hayward 748 

et al., 2006; Wilson et al., 2006; Wilson et al., 2007). This is consistent with the high seismic activity 749 

of the Hikurangi Margin (Reyners, 1998; Reyners and McGinty, 1999; Wallace et al., 2009).  750 

Similar return times in the Ruatoria and Matakaoa re-entrants suggest that both basins share the 751 

same tectonic regime with a large earthquake every 420 year in average. The difference with the 752 

Poverty re-entrant may reflect a variation in tectonic activity. Poverty re-entrant is located at the 753 



Pouderoux et al.  

 

p.25/37 

 

boundary of two rupture segments of the subduction interface (Wallace et al., 2009) and is also the 754 

area where most of coastal paleo-earthquake evidences are reported. Consequently, the 270 year 755 

return time estimated for large earthquakes in the Poverty re-entrant very likely includes the 756 

fourteen near-shore faults ruptures identified and dated onland (Cochran et al., 2006; Hayward et al., 757 

2006; Wilson et al., 2006; Wilson et al., 2007), as well as offshore upper plate faults and subduction 758 

interplate ruptures.   759 

Core MD06-3009, collected on the Ruatoria Debris Avalanche 250 m above the main sediment 760 

pathway, shows the longest turbidite return time (850 years) over the last 7 ka (Fig. 11). Since core 761 

MD06-3009 is located on a topographic high, we infer that this return time represents only the large 762 

to very large earthquakes record (interplate?), which trigger extremely large turbidity currents able 763 

to deposit sediments onto the Debris Avalanche. Similar conclusions have been drawn along the 764 

Chile active margin (Blumberg et al., 2008). Furthermore, most turbidites identified in the core are 765 

stacked turbidites, which are interpreted elsewhere to be associated with very large subduction 766 

earthquakes (Goldfinger et al., 2003; Nakajima and Kanai, 2000).  767 

6. CONCLUSION  768 

This study presents a detailed history of turbidite sedimentation captured in a series of cores 769 

collected from the Poverty, Ruatoria and Matakaoa re-entrants that indent the active northern 770 

Hikurangi Margin, eastern New Zealand. Sedimentological analyses combined with strong 771 

chronological control afforded by numerous radiocarbon dates and tephra identifications, enabled us 772 

to identify and characterise more than a thousand turbidites in the late Quaternary basin sequence. 773 

The last postglacial sequence is overwhelmingly terrigenous, and composed of alternating cm-thick 774 

turbidites and hemipelagites, with sparse tephra layers and extremely rare mass transport deposits. 775 

Colour is the key parameter in the distinction between hemipelagite and turbidites. The composition 776 

of the silt fraction determines colour: hemipelagites mostly contain volcaniclastic grains, usually 777 

pumiceous lapilli, while turbidite tails are mainly quartz grains. Turbidite sand is predominantly 778 

composed of quartz and volcaniclastic grains indicative of a remobilisation of material supplied by 779 

the adjacent muddy rivers. Benthic foraminifers within the turbidites suggest an upper slope origin. 780 

Five facies of turbidites are recognised : muddy turbidites, silt laminae turbidites, silty turbidites, 781 

sandy turbidites and basal reverse-graded turbidites, which include flood-induced hyperpycnites.  782 

Turbidites are deposited continuously throughout the c. 18 ky period captured in the cores. Glacio-783 

eustatic variations strongly control turbidite accumulation. During the late lowstand – early 784 

transgressive period, closely-coupled fluvial sources directly fed submarine canyon heads for the 785 
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Poverty Canyon and Matakaoa Turbidite Systems, bypassing intraslope basins of the Paritu and 786 

Ruatoria re-entrants. In contrast, during highstand conditions, continuous and stable turbidite 787 

generation occurs within the intraslope basins but point source fed systems are inactive. Also, in 788 

deep portions of the margin, the Holocene/Pleistocene climatic boundary is imprinted as a sharp 789 

sedimentary boundary at c.12 ka, separating coarse silty-sandy turbidites (18-12 ka) from fine 790 

muddy-silty turbidites (12-0 ka) with no impact on the overall accumulation rate. Seabed morphology 791 

affects turbidites emplacement and frequency. A change in turbidite sedimentation provides new 792 

evidence of the emplacement of the Poverty Debris Avalanche in the Paritu Trough at 13.6-12 ka. 793 

Catastrophic floods are recognized as a rare triggering mechanism for turbidite generation, with only 794 

nine hyperpycnites recognized since 18 ka representing 3 to 4 % of the total turbidites. The most 795 

recent hyperpycnites, dated at c. 2,930±190 cal. yr BP is contemporaneous with a storm-bed from 796 

lacustrine records. Despite the high annual flood frequency for the muddy rivers draining the 797 

Raukumara ranges, hyperpycnites might only be generated during the most extreme climatic events.  798 

Because of the deep seated source of sediment located well beyond the shelf edge, large 799 

earthquakes are the most plausible triggering mechanism for the turbidite sequence described from 800 

the northern Hikurangi Margin over the last 7 ka. During that period, the average return time of 801 

turbidites is shorter than the coastal records of large earthquakes, since coastal records reflect only 802 

proximal near-shore fault ruptures and the preservation potential is reduced due to terrestrial 803 

erosion. The Matakaoa and Ruatoria re-entrants suggest similar return times, implying a similar 804 

tectonic regime, with an average return time for large earthquakes of 420 years. The Poverty re-805 

entrant shows many more turbidite-triggered earthquakes, with a mean return time of 270 years. 806 

One core, specifically collected on a topographic high, contains evidence of very large earthquakes 807 

with an average return time of 850 years.  808 

The 7 ka storm record of Lake Tutira indicates that storm periods associated to large river discharges 809 

show an average recurrence of 290 years. This recurrence time is close to the return time of 810 

turbidites caused by earthquake in Poverty re-entrant pointing to a possible link between periods of 811 

sediment flushing by earthquakes at the shelf edge and periods of recharge by storms and floods. 812 

These kind of interrelationships between climate and tectonic triggering on turbidite deposition still 813 

need to be explored and will certainly require very comprehensive datasets. 814 
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 1121 

Figure captions 1122 

Figure 1 - The Raukumara Peninsula and northern Hikurangi Margin, NE New Zealand along the 1123 

Pacific-Australia subduction front (teeth line). Onland, the Waipaoa, Uawa and Waiapu 1124 

river catchments are highlighted in grey. Contour interval is 100 m. The 120 m contour 1125 

(blue dashed line) provides an approximate position of the last glacial shoreline. 1126 

Frames indicate location of subsequent figures. Historical earthquakes M>6 (yellow 1127 

stars) are from the Geonet database (geonet.co.nz), including the MW7.8 1931 Napier 1128 

earthquake (orange star). East Auckland Current (EAC), Wairarapa Coastal Current 1129 

(WCC), East Cape Current (ECC) and Deep Water Bottom Current (DWBC) are from 1130 

Chiswell (2000), McCave and Carter (1997), Stanton (1998), and Stanton et al. (1997). 1131 

The main active fault earthquake sources identified so far, either normal, transverse or 1132 

reverse, are reported onland and offshore after Stirling et al. (in press). Their average 1133 

slip rate (in mm/a) is reported when > 1mm/a. Insert shows the New Zealand region 1134 

with the PAC-AUS plate boundary, the Hikurangi Trough (Hik T), the Kermadec Trench 1135 

(K T), the back-arc Havre Trough (Hav T) and the Central Volcanic Region (CVR) from 1136 

which all tephra identified in the cores originate. The relative plate motion of 50 mm/a 1137 

at the PAC-AUS boundary is from de Mets et al. (1994). Black arrows in the CVR 1138 

indicate the average extension rate of 6-8 mm/a from Villamor and Berryman (2001). 1139 

Black half arrows indicate the dextral strike slip of < 1 mm/a from Lamarche et al. 1140 

(2006). 1141 

Figure 2 -  The Poverty re-entrant seafloor morphology from EM300 multibeam echo-sounder 1142 

data. Red dots indicate the location of sediment cores used in this study. Contour lines 1143 

every 100 m; the 120 m isobaths (blue dashed line) indicates the approximate 1144 

shoreline during the last lowstand. Recent landslides and debris avalanches (grey 1145 
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shade) are from Pedley et al. (2010). Arrows show pathways of the main gravity-flows 1146 

supplying the basin. Location on Fig. 1. 1147 

Figure 3 - The Ruatoria re-entrant seafloor morphology. See Fig. 2 for full caption. Location on 1148 

Fig. 1. 1149 

Figure 4 -  The Matakaoa re-entrant seafloor morphology. See Fig. 2 for full caption. Location on 1150 

Fig. 1. 1151 

Figure 5 - Characterisation of the four lithofacies and the five turbidite facies identified in cores 1152 

from sediment color, internal structure from X-radiograph and grain-size (mean or 1153 

median (D50) and distribution). Red arrows show grain size trend (normal and reverse 1154 

grading). The two zooms in MD06-3008 0-50 cm and MD06-3009 610-680 cm show the 1155 

detailed grain size trend differenciating stacked turbidites and silt laminae turbidites : 1156 

no decantation phase (turbidite tail in pink) is observed between grain-size peaks in silt 1157 

laminae turbidites conversely to stacked turbidites which present decantation after 1158 

each pulse, characterized by sorting and skewness index. Horizontal black arrows in 1159 

MD06-3008 0-50 cm indicate silt laminae.  1160 

Figure  6 - Sediment composition. n is the number of samples. The error bars are 2σ error bar. a) 1161 

characteristic composition of hemipelagite silty-clays compared to turbidite silty-clays. 1162 

Analysis were undertaken on 21 samples from the Ruatoria basin. b-d show turbidite 1163 

sand grain composition from individual sedimentary systems (b, core locations in Figs. 1164 

1 to 4); classified by turbidite facies (c); and during the last lowstand, marine 1165 

transgression and actual highstand. c is the number of cores in which samples have 1166 

been taken. 1167 

Figure 7 - Foraminiferal assemblages from turbidite sand-size material. a) Identified species and 1168 

corresponding living water depth for the four associations. Foraminiferal assemblages 1169 

and percentage of planktic foraminifers grouped (b) by cores and sedimentary 1170 

systems; (c) by turbidite facies ; and (d) in the last lowstand, marine transgression and 1171 

actual highstand periods. c is the number of cores in which samples have been taken. 1172 

Figure 8 - Age model generated from dates obtained on samples collected along the core (see text) 1173 

vs. depth for the six longest cores. Total sediment depths provide uncorrected 1174 

sedimentation rate (a), whereas hemipelagite thickness provides corrected 1175 
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sedimentation rate (b). The TAR - Terrigeneous Accumulation Rate - (c) is provided by 1176 

the cumulated turbidite thickness. (d) The two components of the uncorrected 1177 

sedimentation rate (bold lines), namely the corrected (lines) and the TAR (dashed 1178 

lines) are plotted for two long cores to illustrate that fluctuations in the TAR control 1179 

variations in the uncorrected sedimentation rate, as the corrected sedimentation rate 1180 

remains roughly constant since 18 ka. Short cores with less than three ages are not 1181 

plotted. Circle: 14C age; square: Tephra. Insert shows sedimentation rate for 25, 50, 100 1182 

and 200 cm/ka for comparison. When available, tephra ages are preferred to 14C age 1183 

with a specific calibration (MD06-3002; see table 3). 1184 

 Figure 9 - Sedimentological logs of the cores collected in the Poverty re-entrant. Thick dotted lines 1185 

are time correlations between cores made from tephra identification with their age in 1186 

bold; 14C ages from foraminifers are in italic; thin dotted line at 11.6 ka is the 1187 

Holocene-Pleistocene boundary. Legend in Fig. 11. 1188 

Figure 10 - Turbidite records in Poverty re-entrant from MD06-3002 and MD06-3003 since ~18 ka 1189 

compared to climate boundaries and sea-level fluctuations. From top to base : (1) 1190 

Relative sea level (after Gibbs, 1986; Pillans et al., 1998), (2) Lithofacies distribution 1191 

expressed as cumulative turbidite lithofacies I to IV (Fig. 6) from a 9-turbidite rolling 1192 

mean (key and color from Fig. 12), (3) turbidite return time calculated as the time 1193 

difference between 2 consecutive events, (4) Thickness of isolated and stacked 1194 

turbidite layers. 1195 

Figure 11 - Sedimentological logs of the cores collected over the Ruatoria re-entrant. Thick dotted 1196 

lines are time correlations between cores made from tephra identification with their 1197 

age in bold; 14C ages from foraminifers are in italic; thin dotted line at 11.6 ka is the 1198 

Holocene-Pleistocene boundary. Important note: Vertical scale for Tan cores indicated 1199 

on the left is double that of MD cores indicated on right.  1200 

Figure 12 - Turbidite records in Ruatoria re-entrant for the last 18 ka. Full caption in Fig. 11. 1201 

Figure 13 - Sedimentological logs from the cores collected over the Matakaoa re-entrant. Thick 1202 

dotted lines are time correlations between cores made from tephra identification with 1203 

their age in bold; 14C ages from foraminifers are in italic; thin dotted line at 11.6 ka is 1204 

the Holocene-Pleistocene boundary. Legend in Fig. 11. 1205 
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Tables  1206 

Table 1 – Location and main analysis results for MD06 long cores and Tan0810 short cores. T: gravity 1207 

flow deposits (turbidites); H: hemipelagites; ST: Stacked turbidites; IT: Isolated Turbidites. *: 1208 

full recovered length; when core deformation is too high, the used core length is given 1209 

between brackets; ** total number of turbidite layers identified in the core.  1210 

Table 2 – Tephra stratigraphic position, uncorrected depth, corrected depth, identification, and 1211 

calibrated ages after Lowe et al. (2008). 1212 

Table 3 – Radiocarbon 14C ages from mixed planktonic foraminifers. A reservoir age of 395 years is 1213 

used expect for * where reservoir age is 800 years. 1214 

Table 4 – Poverty re-entrant turbidite sedimentation  1215 

Table 5 - Ruatoria re-entrant turbidite sedimentation 1216 

Table 6 - Matakaoa re-entrant turbidite sedimentation 1217 
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