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Abstract 

Investigation of the climatic and environmental impacts of the Youngest Toba Tuff (YTT, 

∼74 ka BP) eruption of Toba volcano, Sumatra, is crucial for understanding the consequences 

of the eruption for contemporaneous human populations. The Middle Son Valley, in India, 

was the first locality on the Indian subcontinent where the YTT was reported. The ash bed 

forms a discontinuous layer stretching for over 30 km along the river. Here we report on the 

stratigraphic contexts of YTT ash layers in alluvial deposits of the Middle Son Valley, in 

order to reconstruct the taphonomy of the ash deposits and the dynamic of their deposition. 

Although the distal ash has been studied since the 1980s, its stratigraphic integrity and the 

mechanisms and pathways involved in its transport and deposition have bit previously been 

assessed. We find that the YTT occurrences in the Middle Son Valley may not be reliable 

chronostratigraphical markers for millennial scale palaeoenvironmental reconstruction. 
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1. Introduction 

The first reported finds of Youngest Toba Tuff (YTT) deposits in India were made in the 

Middle Son Valley (Madhya Pradesh, North Central India; Williams and Royce, 1982). 

Initially these sites were investigated for their abundance of Middle Palaeolithic 

archaeological assemblages (Acharyya and Basu, 1993), but since the 1980s they have 

become the focus of palaeoenvironmental studies concerned with understanding the 

immediate and longer term impacts of the YTT super-eruption on climate and human 

occupation (Basu et al., 1987). 

The ∼74 ka YTT super-eruption of the Toba volcano in northern Sumatra (Fig. 1) is the 

largest eruption known for the Quaternary (Chesner and Rose, 1991). The total mass of 

rhyolitic magma ejected has been estimated crudely as 7 × 10
15

 kg (or 2800 km
3
 dense rock 

equivalent, DRE) ( [Rose and Chesner, 1990], [Chesner and Rose, 1991] and [Chesner et al., 

1991]). This deposit includes ∼1000 km
3
 (DRE) of co-ignimbrite tephra fallout, which 

covered ∼2 × 10
7
 km

2
 of southern and southeast Asia. The tephra deposits are preserved in 

alluvial settings across India and peninsular Malaysia (e.g. [Ninkovich et al., 1978a], 

[Ninkovich et al., 1978b] and [Westgate et al., 1998]), and in deep-sea tephra layers in the 

Indian Ocean, the Bay of Bengal and South China Sea ( [Ninkovich, 1979], [Pattan et al., 

1999], [Gasparotto et al., 2000], [Song et al., 2000] and [Schulz et al., 2002]). 

The YTT eruption must also have injected substantial quantities of sulphur into the middle 

atmosphere argued in early works to have induced a „volcanic winter‟ (Rampino and Self, 

1992). Later studies suggested the climate forcing due to the volcanic aerosol veil might have 

accelerated the onset of stadial conditions during the 1000 year-interval between Dansgaard-

Oeschger events 19 (70–68 ka) and 20 (75–71 ka) (Zielinski et al., 1996) though there is no 

strong evidence to substantiate this hypothesis. Proponents of extreme change scenarios have 

concluded that ecosystems and hominid populations were devastated as a result (Ambrose, 

1998). However, others have cautioned against assuming extreme global climate impacts 

given the limited constraints on the sulphur yield of the eruption and on the date of any 

palaeodemographic „bottleneck‟ in anatomically modern human populations (Oppenheimer, 

2002), as well as a lack of evidence for population crashes in contemporary fauna ( [Ambrose, 

2003] and [Gathorne-Hardy and Harcourt-Smith, 2003]). 

To improve understanding of the extent and severity of environmental impacts of the YTT 

eruption it is critical to determine how long it took for the ash to be redeposit and consolidated 

in the receiving landscape; the longer the ash remained mobile in the environment, the more 

chronic the impact on vegetation and associated ecosystems would have been (Jones, 2010). 

Tephra successions, if suitably preserved, provide chronostratigraphical markers within 

sedimentary sequence (Sarna-Wojcicki and Davis, 1991). Hydrological systems may also be 

inundated with sediment following ash fallout which results in rapid accumulation rates and 

preservation of indicators of sudden remobilisation and re-deposition of unconsolidated 

pyroclastic material ( [Hayes et al., 2002], [Manville et al., 2005] and [Kataoka et al., 2009]). 

The YTT stratum in the Middle Son Valley has been repeatedly used as a marker in geo-

archaeological investigations of sediment sequences ( [Williams and Royce, 1982] and [Jones 

and Pal, 2005]). However, its reliability as a stratigraphical marker has until now not been 

considered. In this paper, we contextualise the distal YTT stratum of the Middle Son Valley 

through study of the stratigraphy of the volcaniclastic sequences, and we provide textural and 

structural details about the ash units. We present a series of stratigraphic sections containing 



YTT tephra located within the modern riverside cliffs. Specifically, we describe the tephra 

sites between the Rehi River and the site of Khunteli (Fig. 2). 

We provide an interpretation of the river activity before and after the eruption, revealing the 

characteristics of the ash preserved in selected environmental niches. This is the first 

sedimentological and geomorphological study of the YTT deposits in the Middle Son Valley. 

The model, together with the field evidence, suggests that the YTT deposits of the Son Valley 

area do not provide a reliable chronostratigraphical marker in the region for long-term 

palaeoenvironmental reconstructions and archaeological correlations, except for the site of 

Ghoghara. 

2. Study area 

The Middle Son Valley is located 100 km south from Allahabad and 130 km southwest of 

Varanasi, in north central India (24° 7′ N 80°/83° 50′ E, Fig. 2). The regional climate is sub-

tropical, characterised by hot humid summers (April–September, temperatures > 40 °C), and 

cooler winters (October–March) with low precipitation. Affected by the summer monsoon 

from June to September, the topography and geomorphology of the hills and valleys reflect 

the intense summer runoff, which has deeply incised the river terraces. 

The Son (784 km long) is one of the longest rivers of India and the longest of the southern 

tributaries feeding into the River Ganges. It flows, as does the Narmada River, along the line 

of a major E-W tectonic lineament, the Narmada fault (Williams and Royce, 1982). 

Originating in Madhya Pradesh, just east of the Narmada River, the Son flows north-

northwest and cuts through Middle Proterozoic limestone and shale of the Vindhyan Super-

Group (Singh, 1980) and Middle-Pleistocene and Holocene alluvial plains, before turning 

eastwards to encounter Middle Proterozoic sandstones of the Kaimur Range (Morad et al., 

1991). The modern channel has incised the metamorphic bedrock to a depth of about 30–

35 m, forming deposits of fluvial sand (Williams and Royce, 1982). Throughout its history, 

the passage of the Son river has been strongly influenced by climatic factors (reflected in 

changes in its floodplain deposition and channel down cutting), since the river is constrained 

laterally as a consequence of its geological setting (Sharma and Clark, 1982). 

The area of study includes the river-cut cliffs in the alluvial zone between the confluence of 

the Rehi and Son rivers and Khunteli (or Khuteli) (Fig. 2). The reported YTT deposits ( 

[Acharyya and Basu, 1993] and [Jones and Pal, 2005]) comprise a discontinuous tephra bed 

covering an area of ∼90 km
2
. Between Rehi and Ghoghara (first described by Williams and 

Royce in 1982), lateral variations within the ash deposits are minimal, and the ash layer 

appears repeatedly at a height between 4 and 6 m above the present river bed (Fig. 3). 

The Son River alluvial basin includes terraced surfaces flanked by floodplains, point-bar and 

alluvial fan deposits. The main river channel is bounded by a series of Middle and Late-

Pleistocene and Early-Holocene sedimentary terraces that reach altitudes of as much as 30 m, 

and deeply-incised seasonal channels known as „nalas‟. The terrace, incised by the modern 

Son River, has been intensively studied due to the presence of the YTT marker and the 

coincidence of archaeological sites, where Middle Palaeolithic and Neolithic artefacts have 

been found ( [Sharma and Clark, 1982], [Williams and Royce, 1982], [Williams and Royce, 

1983], [Jones and Pal, 2005], [Jones and Pal, 2009] and [Haslam et al., 2010]). 



Four formations have been historically ascribed to the alluvial deposits of the Son Valley. In 

chronological order they are: Sihawal Formation, Patpara Formation, Baghor Formation and 

Khetaunhi Formation ( [Williams and Royce, 1982], [Williams and Royce, 1983], [Williams 

and Clarke, 1995] and [Williams et al., 2006]). The geological context of the incised terrace is 

unclear, mainly due to the absence of absolute dates and robust stratigraphic correlation 

(Jones and Pal, 2009). 

Several models have been proposed for the geomorphological evolution of the alluvial plain 

of the Middle Son Valley through the period Early Pleistocene to Late Holocene ( [Williams 

and Royce, 1982], [Williams and Royce, 1983], [Williams and Clarke, 1995] and [Williams 

et al., 2006]). These authors analysed the large-scale evolution of the river based on 

differences between the four formations and distinct climatic regimes. A stratigraphical model 

(at 1 km scale) of the emplacement of all the four formations within the river basin was also 

proposed by Williams and Clarke (1995) and modified by Williams et al. (2006). 

3. Methodology and site selection 

For this work we aimed to assess the validity of the tephra as stratigraphic marker. In an 

attempt to correlate the tephra layer across sections we surveyed a 30 km length along the 

river banks, logged and sampled specific sites. Serial photographs of cliff sections were taken 

from boat and bank traverses, and photomosaics were constructed to aid contextualisation of 

the YTT layer in the stratigraphy. Modern topography was characterised using a Total Station 

(Zeiss Elta R55 EDM). The 600 points grid obtained was interpolated using the programmes 

Surfer 3.0 and ArcMap (Fig. 3) providing a further means of investigating the distribution of 

tephra. 

We describe here six tephra type- sections, out of the nine discovered and surveyed during the 

2009 field work (Table 1). Two of these sites, GG1 and KH, have been previously described 

in the literature ( [Williams and Royce, 1982], [Jones and Pal, 2005], [Jones and Pal, 2009], 

[Williams et al., 2006] and [Jones, 2010]). The six sites were selected on the basis of their ash 

characteristics (Par. 2.1.), sedimentological structures and spatial distribution. 

In order to isolate the depositional environments in which the tephra were identified, the 

sediments have been assigned facies and floodplain associations using the codes proposed by 

Miall (1996) and Nanson and Croke (1992), respectively. We identified the major facies 

assemblages and the depositional settings prevailing at the time of the ash deposition. This 

leads us to propose a geomorphological model for the dynamic activity of the river through 

the critical period of interest. 

3.1. Criteria for discriminating primary ash fallout and reworked tephra deposits 

For this work, we selected sites representing primary and/or reworked ash, and considered 

textural, sedimentological and stratigraphic characteristics of the ash and its associated 

sediments. Primary (non-reworked) ash-fall is characterised by its: i) colourist whiteness 

(Munsell code 7.5 YR or 10 YR 8/1 or 8/2); ii) thickness ranging 4–5 cm; iii) sharp lower 

contact with siliciclastic sediments; iv) homogeneous texture. Secondary (reworked) ash 

deposits are characterised by: i) post-deposition structures (cross-bedding, root casts, 

bioturbation); ii) discontinuous/mixed contacts with units above/below; iii) geomorphological 

features indicating displaced facies (including, blocks of ash within older sediments, traces of 

slumping, etc.). 



4. Tephrostratigraphy 

Six sections exposing volcaniclastic deposits were logged and their sedimentological 

structures described in terms of facies. The resulting logs reveal seven different facies 

(Table 2). 

4.1. Primary and secondary ash sites 

This section deals with units that include both primary and secondary ash. The sites are 

located within an area between the Rehi-Son confluence and the cliff on the northern bank of 

the Son, in the vicinity of the Ghoghara temple (Fig. 2). 

Excavations demonstrated that the sites in which primary ash was identified all present a 

similar stratigraphic context (Fig. 4). The sections include 2–8 m of cross-bedded brownish 

medium sand (Facies Scp) and a 5 cm clay layer (Facies Cl) at the base of the sections and 1–

3 m of micaceous coarse silt (Facies Smc) enriched in calcrete on the top of the sequence, 

capped with soil (Facies P) (Fig. 4). The ash horizon can be distinguished within all the 

studied sections, but only three provide important tephrostratigraphic markers: section RH1, 

GG1 and GG4. These horizons consist of a 2–8 cm thick stratum of primary ash (Facies PA) 

always in sharp contact with the underlying clay, and 1–2 m thick unit of reworked ash 

(Facies SA), gradationally overlying Facies PA. The primary ash is characterised by powdery, 

finer grains and whiteness (10YR or 7.5 YR 8/1 and 8/2). The secondary ash is texturally 

coarser, darker (10 YR 8/3 or 7/1), and appears in massive beds with no apparent depositional 

structures. The ash sequence gradually coarsens upwards and the contact between the 

secondary ash and the siliciclastic silt is indistinguishable. 

4.2. Sites showing only reworked ash 

The two sequences with reworked ash show only particular stratigraphic characteristics. 

RH2 section (Fig. 5a) is composed of dark brown carbonate cemented clay (Facies Cm); 

lenses of gravel, in which an admixture of fine sand is also observed within the clay, the latter 

becoming coarser and carbonate-rich towards the top (Facies Csc and P). The reworked ash 

(∼1.3 m thick) is intermixed with the same micaceous silt that overlies the other sequences 

(Facies Smc). The Munsell colour of the secondary ash of RH2 is 7.5YR 7/4 (pink). 

Compared to the primary and secondary sequence, it appears RH2 has only the final part of 

the volcaniclastic reworked units. Again no sedimentary structures are recognized within the 

ash unit. 

KH (Fig. 5b) is stratigraphically similar to section GG1, as it exposes the same cross-bedded 

sand seen at the base of the section (∼8 m thick). The cross-bedded sand alternates with fine 

bands of clayey silt, 2–3 cm thick: 11 m above the river bed, the cross-bedded medium sand 

unit is capped by a fine stratified sand unit and a thick carbonated band. A thin ash layer 

overlies the latter, 1-cm thick and mixed with clay. The secondary ash unit of KH appears 

sedimentologically similar to a 2-m lens of volcaniclastic material mixed with clay and 

laminated sand. The unit is yellowish brown (10 YR 5/4). Although fine laminations appear 

within the lower sand units and the clay, their origin is uncertain. 



4.3. Tephra sedimentological structures and geometry 

Much of the tephra deposits in the Son Valley present no evidence of sedimentological 

structures in the upper reworked tephra layers. The exception is site GG1.b, located in a gully 

nearby the Ghoghara main section. The site (Fig. 6) presents ∼8 cm basal ash, revealing a 

“primary” ash layer that itself may be subdivided into the lowermost ash (ash 1), in direct 

contact with the clay unit; it is 1.5 cm thick, white (7.5YR 8/1), powdery; on the top, divided 

by a sharp darker contact, 2.5 cm of darker ash (ash 2), 7.5YR 8/2, pinkish white; on the top 

of ash 2, ∼8 cm from the bottom, a 1 cm thick lens of darker ash, including medium sand 

grains impurities, is evidenced (ash 3). On the top of ash 3, ∼3 cm of white (5YR 8/1) 

powdery ash (ash 4), visually very similar to ash 2. Ash 4 is overlain by a heavily bioturbated 

palaeosurface, ca. 1 mm thick. The palaeosurface is in sharp contact with a 1.5 m thick 

sequence of reworked ash deposits. The unit is characterised by several sedimentary structures 

(Fig. 6): ∼1–2 mm thick ripple-like laminations, grouped in cm-thick bands, repeated 

cyclically every 10 cm; light–dark wavy bands, 1–3 mm thick, and thicker parallel bands. The 

volcaniclastic component gradually decreases towards the top of the sequence. No traces of 

post-depositional disturbance (i.e. slumped blocks, roots, rhyzoliths, carbonate nodules), are 

found within the ash sequence. 

5. Discussion 

Although the ash of sites GG1 and KH have been explored since the 1980s to elucidate the 

Quaternary geology and prehistoric environment in the Son Valley, examination of the 

taphonomy of the ash units has been minimal ( [Jones and Pal, 2009] and [Williams et al., 

2006] and 2009). To date, the ash of GG1 was described as “well preserved” and “80 cm 

relatively pure” (Jones and Pal, 2005), “compact” (Jones, 2010), “discontinuous bed of pure 

volcanic ash up to 1.5 m thick” (Williams et al., 2006), “laterally discontinuous unit of 

volcanic ash up to 4 m thick” (Williams and Royce, 1983). The reworked ash received less 

attention, being described only by Williams et al. (2009) as “completely cemented with 

carbonate from 3.45 to 3.83 cm above the base of the ash” in the Ghoghara section and “The 

upper 70 cm of the ash is reworked” in Khunteli (Williams et al., 2009). 

We will discuss the stratigraphical characteristics of YTT sites contextualised in their 

depositional environment, demonstrating how ash facies associations can unravelled the 

dynamics of a river depositing, redepositing and preserving the tephra. These features should 

be considered carefully since using a tephra layer as chronostratigraphical marker. 

5.1. The local environment pre- and post-deposition of the YTT in the middle Son Valley 

The lithofacies assemblages identified represent specific styles and sub-environments of 

deposition within the catchment. Fig. 7 illustrates the stratigraphical units of the six type-

sections, the corresponding facies and their lithofacies association. 

The sedimentary structures within this facies (cross-lamination, imbrication, poor sorting) 

indicate that the sand was deposited on a point-bar or counterpoint-bar (cfr. Miall, 1996). The 

medium grain-size, cross-bedded sand observed at all the sites at the base of the succession 

(except RH2 and GG1.b), suggests proximity to the active channel. These characteristics 

indicate a large-scale depositional environment of lateral accretion from the main river 

channel. The river eroded on one side of the channel and deposited its finer sediments on the 

other side, creating point-bars and shallow-water deposits. Facies Cl is suggestive of a distal, 



shallow-water, low-energy environment. This is consistent with the presence of very fine, 

powdery volcanic ash on the top of this clay. Both Facies PA and SA also suggest a low 

energy aqueous environment, favourable for preservation of the deposits. The facies 

association characteristics suggest an overbank environment, established prior to ash 

deposition. Facies Smc and P are characterised by coarser silt, and pervasive pedogenic 

features and carbonate nodules. The presence of carbonate nodules and roots clearly indicates 

a cessation of fluvial activity, and the facies association may represent an abandoned terrace 

surface, or distal deposits that the river was unable to reach even during floods events. 

These multi-facies associations indicate a fluvial floodplain setting consisting of ephemeral 

ponds and oxbow lakes isolated from the main channel through point-bars and floodplain 

surfaces, where the ash could be preserved. This is in accordance with microanalyses of the 

tephra units of Ghoghara and Khunteli by Jones (2010), which highlighted a sensible 

difference between the particle size distribution of the primary ash (∼60 μm) and the upper 

secondary ash layer (>125 μm), thus suggesting the primary ash deposited into an aqueous 

environment. 

Fig. 8 shows the lateral accretion and deposition on the point-bar of coarse sediments (gravel-

size), the deposition of medium sediments in the near-channel overbank environment 

(medium and fine sand-size), and accumulation of fine sediments in the distal overbank areas 

(silt and clay). 

As a result of its lateral accretion-aggradation style in this area, the river deposits its 

sediments laterally and not vertically (Fig. 8a, note the arrow indicating the preferential 

aggradation direction). In such a setting, following the eruption, primary ash would have been 

preserved only in protected low-energy niches that were rapidly buried by later sediments. 

The remaining ash, especially if left exposed at the surface, would have been rapidly eroded 

to be re-deposited downstream or in lateral channels. The progression from lateral accretion to 

overbank to abandoned terrace environments apparent in the Ghoghara section suggests a 

gradual shift in the river morphology. This change in depositional style is reflected in changes 

in grain size of the deposits (from medium sand to silt) that are typical of fining-upward 

fluvial sequences: the river fills the channel and its active bed laterally shifted further south. 

5.2. YTT deposits in the middle Son Valley as a chronostratigraphical marker? 

Several attempts have been made to place the YTT within the broader alluvial stratigraphy of 

the Son Valley, in order to reconcile the history of the alluvial plain with the archaeological 

artefacts. After reviewing the literature, the exact stratigraphic position of the YTT bed in 

relation to the Quaternary Formations is unclear. The YTT has been placed within the Baghor 

Coarse Member ( [Williams and Royce, 1982], [Basu et al., 1987] and [Acharyya and Basu, 

1993]), beneath the Baghor Coarse Member (Williams and Clarke, 1995), at the junction 

between the Patpara Formation and in the Baghor Coarse Member ( [Jones and Pal, 

2005] and [Jones, 2010]). More recently it has been proposed that the tephra lies between a 

newly described Khunteli Formation, dated to 73 ka, and the Patpara Formation, with an age 

of 56 ka assigned to the latter (Williams et al., 2006). 

Here we suggest that these inconsistencies are related to the assumption that the tephra always 

occurs in its correct stratigraphical position and the lack of dates in direct association with the 

tephra sediments. Furthermore, the geomorphological model indicates that river aggradation 



has tended to create a lateral discontinuity that disturbs the vertical accumulation, therefore 

assigning the ash to a specific vertical unit could be misleading. 

5.3. Reliability of the YTT as palaeoenvironmental marker 

A more recent study (Williams et al., 2009) also focused on the Rehi and Khunteli sections, in 

an attempt to gain insights into the environmental impacts of the YTT eruption. In this work, 

carbon and oxygen isotopic ratios were measured in calcareous nodules and root casts found 

below, within and above the ash taken from the GG1 and KH sites. The results suggested 

replacement of C3 forest that had thrived prior to the YTT fallout by C4-dominated grasslands 

or wooded grasslands. They concluded that the YTT eruption led to these changes. Similarly 

Jones (2010) considered the silt-dominated facies overlying the ash a sign of abrupt climatic 

change immediately after the eruption. 

While we are aware that the time-frame and pace of aggradation of the post-tephra units, 

together with the time of restabilisation of the system, cannot be constrained using 

stratigraphy only, we also note that there are no evidences that the units above the ash have 

been deposited immediately after the eruption. The model proposed here implies that the river 

deposits at Ghoghara and Khunteli were exposed to erosion and reworking, such that the 

stratigraphy of the ash deposits could result from incision, lateral erosion and redeposition on 

a timescale of weeks to decades to centuries to millennia. The silt-dominated facies overlying 

the ash is widespread on the top of all the Middle, Late-Pleistocene and Early Holocene 

terraces. The post-Toba silt could indicate either that the dynamics of the river channel 

changed substantially following the eruption (suggesting a strong post-Toba environmental 

and climatic effect), or that the coarse/medium sand above the ash layer is no longer 

preserved. The latter could indicate instead a migrating channel and change in facies, 

suggesting a major geomorphological control on the river rather than eruption-related climatic 

changes. 

The major issue in tackling the palaeoenvironmental impact of the Toba super-eruption is that 

existing methods of palaeoenvironmental reconstructions lack the analytical precision needed 

to answer this timescale issue (Williams, in press), and the sedimentation rate in fluvial 

environments lacks the temporal resolution needed to address questions regarding climate 

change after the YTT eruption. We consider that the Ghoghara site GG1.b, which fine 

stratification indicates slow sedimentation conditions, the one locality suitable for 

chronology-critical work. 

5.4. Reliability of the YTT as an archaeological marker 

Archaeological studies ( [Jones and Pal, 2005], [Jones and Pal, 2009] and [Jones, 2007]) 

attempted to establish an associations between the ash and the Palaeolithic artefacts in the 

Middle Son Valley. Using artefacts in secondary contexts Jones and Pal (2009) observed a 

change in lithic technology and proposed a shift in hominids behaviour during the Upper 

Pleistocene, suggesting that the Toba eruption may have further contributed to behavioural 

changes. 

We note artefacts have not been recovered from stratigraphic units that show clear evidence 

of YTT primary ash and the time at which evidence for human populations reappeared may be 

of the order of millennia (based on the uncertainty of the dating methodologies previously 

employed, see Jones and Pal, 2009). We have demonstrated the evidence for reworking at 



many of the Middle Son Valley sites, suggesting that the chronological relationship between 

the artefacts and the YTT strata in the Son Valley is insufficient to allow a robust connection 

between the eruption and its human impact. The palaeogeomorphology of the area suggests 

that new archaeological sites in association with primary YTT horizons might be found closer 

to the interior of the fluvial plain, towards the Rehi River. 

6. Conclusions 

The lithofacies associations revealed from the Rehi-Ghoghara-Khunteli sites indicate an 

environment conducive to the preservation of primary ash fallout. Nevertheless, the YTT was 

preserved only in selected geomorphic environments that offered protection to the 

unconsolidated volcanic particles. This environment was a low energy, shallow-water 

depression. Before the YTT fallout, the Son River had adopted the characteristics of a sand-

dominated, medium-sinuosity and low-gradient river, with laterally stable single channel, 

seasonal floods, floodplains and point-bars. The fining-upwards sequence (reflected in the 

shift from lateral accretion to overbank and distal channel) could represent the gradual filling 

of the river bed due to meander migration. 

The stratigraphic context of ash deposits in the Middle Son Valley is rarely of the quality 

required to provide a well-defined chronostratigraphic marker horizon. The ash units are 

challenging to distinguish from the overlying silts and often show abundant evidence of 

reworking; the upper boundary is gradational and the reworked units may be several metres 

thick compared to an initial thickness of 4–5 cm. Most importantly the lower boundary of the 

ash layer needs to be sharp and undisturbed to provide a clear marker; it was rare to find this 

condition intact: out of 30 km of river bank surveyed (on either side of the river) we found 

only one localised occurrence where the ash could be considered “primary” in context, and 

neither of the ash locations corresponded to collocation of archaeological artefact 

assemblages. 

It is therefore critical that any future sampling for dating and palaeoenvironmental 

reconstructions should take full account of the sedimentation style and morphology of the 

river and the associated evolution of the local landscape through the period. 
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Fig. 1. Map showing the distribution of terrestrial and marine sites in which the YTT ash-fall has been 

identified. YTT deposits have been found in deep-sea sediments from the Indian Ocean, Bay of 

Bengal, Central Indian Ocean Basin, Arabian Sea and South China Sea; terrestrial sites are found in 

India, Bangladesh and Malaysia (data from [Oppenheimer, 2002], [Ninkovich et al., 1978a], 

[Ninkovich et al., 1978b], [Acharyya and Basu, 1993], [Pattan et al., 1999], [Song et al., 

2000] and [Gasparotto et al., 2000]). Red dot indicates the location of Toba; green dot indicates the 

Son Valley. 

 



 

Fig. 2. Location of the tephra sites in the Son valley. Red and yellow dots on the map represent the 

logged sites presented in this work. DEM from ASTER GDEM (ASTER GDEM is a product of METI and 

NASA) 



 

Fig. 3. Sites and position of YTT ash in the Ghoghara-Rehi cliffs. The topographic profile was derived 

from a survey carried out with a Zeiss Elta R55 EDM total station. The photomosaics show the 

morphology of the riverside cliffs and the position of the ash site RH1. 



Table 1. List of the sites investigated during the 2009 field campaign. Sites evidenced 

in grey are the type-sections used to determine the facies and represented in the logs in 

Fig. 7. 

Type Site 
Localit

y 

Coordinates 

 

Previo

usly 

describ

ed 

Thickn

ess of 

the 

primar

y ash 

(cm) 

Thickn

ess of 

the 

second

ary 

ash 

(m) 

Selection 

criteria 

Primary + Sec

ondary ASH 

RH1 Rehi 
24°30′9″

N 

82° 0′ 

56″E 
NO 5 1.6 Western site 

GG

1 

Ghogar

a cliffs 

(Main 

Site) 

24°30′7″

N 

82° 1′ 

2″ E 

Willia

ms and 

Royce, 

1982 

5 1.5 

Main ash 

site, firstly 

discovered 

GG

1.b 

Ghogar

a cliffs 

(gully) 

24°30′7.

5″N 

82°1′2.9

9″E 
NO 2–5 1.05 

Sedimentol

ogical 

structures 

GG

2 

Ghogar

a cliffs 

24°30′1

0″N 

82° 1′ 

8″E 
NO 

0.1 

(disturb

ed 

lenses 

only) 

0.90 / 

GG

3 

Ghogar

a cliffs 

24°30′8″

N 

82° 1′ 

9″E 
NO 

0.45 

(disturb

ed) 

1.4 / 

GG

4 

Ghogar

a cliffs 

24°30′7″

N 

82° 1′ 

11″E 
NO 0.1–0.4 2.28 Eastern site 

GG

5 

Ghogar

a cliffs 

24°30′1

4″N 

82°1′20.

6”E 
NO 

disturb

ed 

lenses 

only 

∼1 / 

Secondary 

ASH only 

RH2 

Rehi 

conflue

nce 

24°30‟6

″N 

82° 0′ 

55″E 
NO / 1.3 

Western 

secondary 

only site 

KH 
Khunte

li 

24°32′2

8″N 

82°16′ 

33″E 

Achary

ya and 

Basu, 

1993 

/ 2.2 

Situated on 

the right 

side of the 

river 

 


