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ABSTRACT 

 

We define uplift and denudation, then review the basic principles underlying the 

mechanisms for producing uplift, and the methodologies used to quantify the geological 

timescale denudation history of uplifted regions. Uplift is represents work done against 

gravity, and does not necessarily lead immediately to rapid denudation. The causes of 

uplift can be categorised according to the principal driving mechanism – stress, thermal 

or gravitational factor, although all three can operate to varying degrees. Simple 

formulations and examples. are presented to demonstrate the magnitude of uplift in 

various situations. The magnitude of denudation over geological timescales is quantified 

through various methods, which are sensitive to depth, pressure or temperature. These 

include cosmogenic surface exposure dating, thermochronology (apatite fission track 

analysis, (U-Th)/He dating), porosity-depth relationship (overcompaction), and by 

comparing predicted subsidence to the observed subsidence history.  
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INTRODUCTION 

 

In this chapter, we review some of the mechanisms and methods relevant to 

understanding uplift and/or denudation. Here we use the phrase “and/or” to indicate that 

one may occur without the other. The Earth Science literature has many examples where 

the phrase “uplift and denudation”, or more commonly “uplift and erosion” are used 

almost as one word. Clearly, an uplifted region may undergo denudation, although the 

absolute elevation of a given region is not necessarily the dominant control on 

denudation. The Tibetan Plateau, for example, is at a present day elevation of about 5.5 

km, but not apparently undergoing rapid denudation. Similarly, changes in the rate 

denudation may occur in response to changes in drainage, which may reflect 

geomorphological processes, such as river capture, rather than being intimately linked 

with the timing of uplift. 

 Firstly, we describe some of the terminology used in the context of 

uplift/denudation, and then consider some of the causes of uplift, focussing on the first 

order physical controls. We also provide an overview of the methods used to quantify 

denudation and denudation chronologies on geological timescales. Finally, we briefly 

consider some approaches used to model regional denudation on large scales, and how 

these are linked to tectonics. We focus on the basic principles, but do not review in detail 

the many applications of these methods, preferring to cite comprehensive review papers 

and representative case studies, where appropriate  

  

 



 4 

SOME DEFINITIONS 

One consequence of denudation is the removal of any direct evidence of uplift, 

and the problem is then one of inferring denudation, and linking this to uplift. This is not 

a straightforward procedure, and typically relies on assumptions regarding cause and 

effect. Over the years, the terms uplift and denudation (as well as exhumation and 

erosion) have come to mean different things to different people, depending on their point 

of view, or particular application. England and Molnar (1990) and Summerfield (1991) 

wrote down some basic definitions for  uplift and denudation, respectively, and here we 

follow their general terminology.  

 Uplift is defined as a displacement relative to the gravity vector and is the 

consequence of force(s) doing work against gravity. Furthermore, uplift needs to be 

expressed relative to a reference level. This is typically defined as mean sea level, or 

more correctly, the geoid (an equipotential surface, where gravity is the same 

everywhere). Uplift can be considered in terms of surface uplift, rock uplift and 

exhumation (although this term needs to be defined appropriately too), as illustrated in 

figure 1.  

 

Surface uplift (Us): displacement of the Earth‟s surface with respect to the geoid 

Rock uplift (Ur) :  displacement of a rock with respect to the geoid 

Exhumation (Ue) : displacement of a rock with respect to the Earth‟s surface. 

 

There is a simple algebraic relationship between these 3 , given as  
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 Us = Ur-Ue (1) 

 

Confusion has arisen in the geological literature where these terms are misused (e.g. by 

implicitly assuming Ur = Us, which is only true if Ue = 0, and also by neglecting the role 

of isostasy (we return to this aspect later). In terms of understanding uplift resulting from 

tectonic forces, we are primarily interested in surface uplift. Often, however, absolute 

values and rates of uplift are quoted when the authors really mean exhumation or rock 

uplift. 

Numerically, surface and rock uplift are equivalent if there is no erosion, and 

generally this requires us to consider a rock at the surface. In practice, beach deposits 

currently at 1000m elevation are a good indication of 1000m of integrated vertical 

motion since deposition (integrated because the surface and rock may have gone up to 

2000m then back down to 1000 m). 

 One trivial consequence of uplift is that the uplifted region is higher than the 

surrounding area. One less trivial consequence is that the uplifted region has excess 

potential energy, and this emphasises the role of doing work against gravity. In terms of 

understanding the role of tectonic forces in generating topography, we need to consider 

surface uplift in the strict sense defined above.  

Let us consider now a plateau region with thickened crust and its adjacent 

lowlands (figure 2). These two regions may both be in isostatic equilibrium, or having 

equal pressure at the compensation depth, zc. (which requires the mountain to have a low 

density root). However, the pressure in each region will vary as a function of depth, 



 6 

creating a difference in horizontal force, down to the compensation depth. The force (per 

unit of horizontal area) is related to pressure (P) through an integral over depth (z) so,     

 F P(z)dz
0

zc
 (2a) 

or  

 F gdz
0

zc
 (2b) 

 

where  is density and g is the gravitational acceleration.  

The horizontal force associated with the thickened crust (of thickness Hc) is 

 

 F1
1

2
CgHC

2
  (3a) 

and for the normal thickness crust (of thickness Hc
0
) is  

F2 CgHC
0 HC h

1

2
HC

0

M g HC h
1

2
HC

0

2

 (3b) 

where M and C are the density of the mantle and crust respectively, and we have 

Hc Hc
0 h M

M C

 (3c) 

 

The net horizontal force is given as  

 

FR F1 F2

     Cgh HC
0 M h

M C

 (3d) 
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The difference in the force is such that the stresses are tensional in the elevated crust and 

compressional in the adjacent highlands. It is significant that the force difference 

increases as the square of the elevation.. Therefore, we can envisage there will be a limit 

to the elevation that can be constructed before the strength of the crust/lithosphere is 

exceeded.  For reasonable values of the density terms ( C ~ 2700 kgm
-3

, and M ~3300 

kgm
-3

), we can generate kilobar stresses with about 3km of topography and 2 kilobars 

with 5 km. In general, we do not expect the Earth‟s crust to be able to support much 

larger stresses. Furthermore, these calculated forces give some indication of the amount 

of work (against gravity) required to create topography. Again, the dependence on the 

square of the elevation is critical as it means that it gets harder and harder to increase the 

elevation by a given amount as the elevation increases. Faulting can occur because it is 

easier (requires less work or energy) to fail than create higher topography. In this 

situation, the elevated region can grow in width rather than height (the required work 

increases linearly with width) and various styles faulting can occur, depending on the 

locality in the growing plateau. Typically, we expect thrusting at the margins and 

extensional faulting in the centre (e.g. in the Tibetan Plateau). Note the above statements 

require a large number of simplifying assumptions, such as the operation of local isostasy 

and that stress and strain are linearly related).  

Denudation is a surface process that leads to the removal of material from the 

Earth‟s surface, and generally leads to a lowering of the surface (with respect to sea-

level). Material may be removed in solid form or solution, and these two situations can be 

referred to as mechanical denudation (or erosion), and chemical denudation (or 

weathering) respectively.  Exhumation, as defined in physical geography, refers to 
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exposure of a relict surface or palaeosurface, i.e. one that was buried under a cover, and 

this cover was subsequently removed. However, in the geological literature, exhumation 

is typically used to refer to the process by which rocks are brought from depth to the 

Earth‟s surface (e.g. England and Molnar 1990, Willett and Brandon 2002). While this 

may be regarded as purely a semantic difference of little consequence in the definition of 

uplift, it is important to be aware that such differences exist when dealing with different 

forms of data to constrain erosion/exhumation/denudation, an aspect discussed later. 

 As described above, uplift can lead to extension (e.g. Platt and England 1994) - 

and extension (with movement on normal faults) can lead to footwall rocks being brought 

from depth to the surface. This is often referred to as tectonic denudation, and is relevant 

to the situation where rocks on the footwall of a normal fault are exposed as a 

consequence of tectonic processes. In contrast, the phrase erosional denudation has been 

used to refer to the response to surface processes. The general geomorphological 

terminology would categorise these two as endogenic (internal) and exogenic (external) 

processes respectively (Summerfield 1991). In general, it seems erosional denudation is 

typically slower than tectonic denudation, although both can occur together (e.g. Wheeler 

and Butler 1994), and they can be difficult to separate. Erosional denudation can lead to 

further long wavelength uplift because of isostatic rebound, the magnitude of which 

depends on the effective strength of the lithosphere (e.g. Molnar and England 1990, 

Gilchrist and Summerfield 1991). We return to this later. 
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CAUSES OF UPLIFT 

Analogous to the mechanisms that produce accommodation space in sedimentary basins, 

the causes of uplift can be broken down broadly into thermal, loading and stress-based 

factors, although all can operate to varying degrees. Typically these factors lead to 

density variations in the Earth‟s crust and upper mantle, and the isostatic response to 

these density variations leads to vertical motion of the Earth‟s surface. In terms of the 

processes involved in producing uplift it is useful to discriminate between transient and 

permanent uplift. In this sense, transient uplift disappears once a driving force is 

removed, and the rate of decay depends on the nature of the mechanism. Permanent uplift 

remains indefinitely, in the absence of any other forcing or modifying factors. In the 

following section we consider some simple formulations to quantify the surface uplift, 

generally assuming local isostasy operates unless stated otherwise. 

 

Stress mechanisms  

Compression is commonly invoked as a mechanism to produce uplift and this can 

be a consequence of both crustal and whole lithosphere thickening. Under appropriate 

conditions extension can also produce uplift. Similarly, compression can lead to 

subsidence. The sense of motion in response to applied stress depends on the initial and 

final density structure of the lithosphere. In general the crust has lower density than the 

underlying subcrustal lithospheric mantle, which itself is generally more dense than the 

sub-lithospheric mantle, or asthenosphere. Therefore, crustal thickening alone tends to 

reduce the average density of the lithosphere, and leads to uplift, while thickening of the 

sub-crustal lithosphere alone will tend to produce subsidence. Thinning of the whole 
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lithosphere can lead to uplift, if the initial crust is thin enough. Thickening of the whole 

lithosphere may produce subsidence or uplift depending on the relative contribution to 

the average density from the crust and sub-crustal mantle, which itself depends on their 

thicknesses and densities. 

 A basic relationship that allows us to quantify this is discussed by  Stuwe (2002) 

for the elevation change, H 

 

 H hC fC 1 hL fL 1  (4a) 

 

where hc, and hl are the reference crustal and lithosphere thickness (prior to thickening or 

thinning), ƒc and ƒL are the ratios of the initial to final thickness of the crust and 

lithosphere, respectively,  is determined from the density of the crust ( C) and mantle 

( M), i.e. 

  M C

M

 (4b) 

and  allows for the change in density due to the thermal structure defined by the 

temperature at the top and base of the lithosphere, TS and TL, i.e. 

 
2
TL TS  (4c) 

where  is the volume thermal expansion coefficient. The vertical motion predicted from 

this formulation is given in figure 3. This illustrates how homogenous thickening 

produces relatively little uplift, and the thickening of the low density crust trades off with 

thickening of the high density mantle. Thinning of the whole lithosphere generally leads 

to subsidence (if the initial crustal thickness is greater than about 15 km, McKenzie 
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1978), as does thickening of just the mantle. Thickening just the crust leads to uplift, and 

the highest magnitude uplift is produced by thinning the mantle while simultaneously 

thickening the crust. This latter situation may arise during compression, followed by 

delamination (e.g. Houseman et al. 1981, Platt and England 1994).   

In-plane forces (both compression and tension) can lead to uplift (and 

subsidence). If the lithosphere, or part of it, behaves as an elastic or viscoelastic plate and 

has a pre-exisiting deflection, then an applied inplane force acts through the plate 

curvature as a vertical applied load (Lambeck 1983). Thus, a flexural bulge or trough will 

increase in amplitude under compression, while both tend to flatten out under tension. 

This mechanism has been invoked as an explanation for rapid apparent sea-level change 

(Cloetingh et al. 1985). In general, the amount of surface uplift for an elastic plate model 

in response to kilobar levels of in-plane compression is relatively small, tens to a few 

hundred metres. If viscous relaxation is important, then it is possible to produce larger 

amounts of uplift, at a rate determined by the viscous time constant of the lithosphere 

(e.g. Lambeck 1983). 

 

Thermal mechanisms 

Thermal driven uplift occurs when lithospheric material becomes hotter or when hot 

material replaces colder material. For the first case, assuming a constant density for the 

lithosphere ( ) and that the average temperature change over a thickness hL is T, the 

amount of uplift, H, is given as  

  (5a) 
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where ‟ is the density difference for the material before and after the temperature 

change, and ‟ is the density after the temperature change, given as  

 L

'

L 1 T  (5b) 

This leads to transient uplift, which disappears as the hot material cools. The rate of 

cooling is determined by the diffusivity ( ), and the length scale of the system (L), with a 

time constant , given as 

 
L2

2
 (5c) 

   

For lithosphere of thickness 120 km or so, this is equivalent to about 60 m.y. (with  ~ 32 

km m.y.
-2

) 

When material of a given density, 1 is replaced by material of a different density, 

2, over a thickness interval hL, the elevation change is given as  

 H h1

1 2

M

 (6) 

This relationship is appropriate to magmatic underplating (McKenzie 1984), where low 

density melt or melt residue replaces the upper mantle at the base of the lower crust. This 

mechanism can produce permanent, long wavelength uplift. 

Thermally driven dynamic uplift can occur in response to mantle convection. 

Considering a thermally driven mantle plume, for example, and following Davies (1998), 

it is straightforward to show that the relationship between uplift (per unit area) and heat 

loss (Q) is 

 H
Q

MCP
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where Cp is the specific heat capacity at constant pressure for the mantle rocks. Removal 

of dynamic support will obviously lead to subsidence, at a rate effectively equal to 

removal of the support (e.g. Houseman and England, 1986). In the absence of an obvious 

tectonic mechanism, Rohrman et al. (2002) have argued that the apparently recent 

(Cenozoic) uplift of parts of the North Atlantic margins, in particular southern Norway, is 

the result of thermal buoyancy due to mantle upwelling. Supporting evidence for this 

mechanism was the presence of seismically slow region between 50 and 250 km depth. 

Mitrovica et al. (1989) have shown how induced convection in the mantle wedge above a 

subducting plate can lead to subsidence of the continental interior and, similarly, once 

this dynamic mechanism ceases, the system responds in the opposite sense, i.e. uplift will 

occur. This appears to have been the case in Eastern Australia during the late Cretaceous, 

where prolonged subsidence of the continental interior abruptly ceased, and was 

succeeded by denudation (Gallagher et al. 1994),  

Transient thermal uplift can also occur at rift margins, as a consequence of the 

rifting process itself. The introduction of relatively hot mantle in the rift zone against 

colder mantle/crust in the rift margins leads to lateral heat transfer from the former to the 

latter (Cochran 1983). This reduces the mean density of the unrifted region, and through 

isostasy, there will be surface uplift. Similarly, the initially hot mantle at the edge of the 

rift zone will cool, and tend to sink setting up secondary convection cells, which can 

produce dynamic uplift of the rift flanks (Buck 1986). Both methods lead to uplift on the 

order of a few hundred metres. As the whole rift system cools and thermal subsidence 

ensues, so to the thermally driven uplift decays with a similar time constant as the 

subsidence (typically 60-70 Ma). Consequently, these mechanisms cannot explain the 
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presence of apparently long lived (or permanent) uplift at old (> 100 Ma) rift margins 

such as the South Atlantic, but may be relevant to younger margins like the Red Sea. 

 

Loading/unloading mechanisms 

In general, loading of the lithosphere causes subsidence. However, if regional isostasy (in 

the sense of flexural support of applied loads) operates then uplift can occur in the form 

of peripheral bulges in response to surface loading. This effect is a well known 

consequence of the ocean island loading situation (e.g. Lambeck and Nakiboglu 1981) 

and also occurs in front of thrust belts, on the outer margin of the evolving foreland basin 

(e.g. Beaumont 1981). The magnitude of surface uplift at the flexural bulge is relatively 

small (10-100m), but may be enough to modify the proximal stratigraphy of the evolving 

foreland sedimentary basin.  

Tectonic settings where flexural uplift in response to a combination of in-plane 

stress and loading is potentially important are rift settings. In this case, the mass 

redistribution due to extension produces buoyancy forces which can lead to uplift of both 

the basin and the rift flanks. As shown by Braun and Beaumont (1989), the important 

parameter is the necking depth (figure 4a) which is effectively a reference level about 

which thinning occurs. If the necking depth is deeper than the isostatic compensation 

depth, then uplift can occur (figure 4b), while if it is shallower then subsidence occurs 

(figure 4c). The mass redistribution due to what is referred to as the intrinsic necking 

needs to be considered before determining the isostatic response to changes in 

lithospheric density. Superimposed on the regional isostatic response is the geometrical 

change in crust/lithospheric thickness laterally. In the canonical pure shear model 
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(McKenzie 1978), this reference level is at the surface, and in this case extension 

introduces a mass excess relative to the necking depth. The flexural response leads to a 

broad zone of subsidence and an overdeepened basin. However, if the necking depth is 

deeper than the depth of compensation, then the isostatic response can lead to a broad 

uplift enough such that the rift flanks are elevated and the basin is shallower than 

expected. 

Another secondary mechanism for local uplift, but relevant to the unloading 

mechanism is uplift related to denudation unloading. Denudation leads to mass removal 

so isostatic rebound occurs in response. Consequently, to denude an Airy isostatically 

compensated plateau at elevation H to sea-level requires denudation in excess of H. This 

is because the crust needs to be thicker under the plateau than the surrounding regions, 

i.e. there will be a crustal root whose excess thickness needs to be removed also.  

Assuming local isostasy, the appropriate expression for the rebound R and the total 

denudation D are 

R H C

M C

 (8a) 

and 

D H M

M C

 (8b) 

For the typical crustal and mantle densities mentioned before, this implies equivalent 

denudation of 5-6 times the elevation. The isostatic response is wavelength dependent, 

and for length scales in excess of 100-200 km, local (Airy) isostasy is generally 

appropriate. Therefore, for regional, but spatially variable denudation, it is possible to 

increase local peak heights (which do not erode), by removing material from intervening 
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valleys (e.g. Molnar and England 1990, and figure 5a) although this process cannot 

continue indefinitely, as the valley sides will tend to become gravitationally unstable.  

Erosional unloading can also lead to uplift outside the region of unloading if the 

earth responds to unloading by flexure, as demonstrated by Gilchrist and Summerfield 

(1991) in the context of passive margin scarp retreat (figure 5b). For the case of flexure, 

the relationships analogous to those above are best expressed in the wavenumber domain 

(k is wavenumber, proportional to the inverse of wavelength), and we have the responses 

as a function of wavenumber as : 

 

R(k) H(k)
g C

Nk 4 g M C

 (9a) 

and 

D(k) H(k)
Nk 4 g M

Nk 4 g M C

 (9b) 

 

where N is the effective flexural rigidity of the mechanical lithosphere. When N = 0, 

these reduce to the expressions above for Airy isostasy, and as N becomes large, then 

there is no rebound, and the required amount of denudation is equal to the elevation. 

These relationships demonstrate that the response is a function of wavelength (for 

constant N), and short wavelength (large k) features tend to be uncompensated, while 

long wavelength (small k) features tend to be compensated by local, or Airy, isostasy. 
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QUANTIFYING DENUDATION 

 Uplift will typically lead to changes in relative base-level for rivers and also in 

drainage systems, perhaps allowing previously unconnected systems to merge (drainage 

capture), or dividing/diverting an existing drainage system. This can then lead to changes 

in denudation rate and sediment/solute delivery to connected depositional basins. 

Furthermore uplift can lead to changes in atmospheric circulation (e.g. Ruddiman and 

Kutzbach 1989), which in themselves can modify denudation. However, as noted earlier, 

uplift does not necessarily lead to denudation, and even when it does, the temporal 

relationship may not be straightforward. Here we do not consider potentially direct 

indicators of uplift such as palaeobotany (e.g. Wolfe et al. 1997), stable isotopes in 

authigenic minerals (Page Chamberlain and Poage 2000) or vesicle size in lavas 

(Sahagian and Maus, 1994). These interesting methods have not been widely applied, and 

their applicability over geological timescales is complicated, partly due to removal by 

denudation, or uncertainty regarding other factors such as climatic effects (for 

palaeobotany). Although climate change and surface uplift undoubtedly have the 

potential for exhibiting complex feedback behaviour, which is beyond the scope of this 

chapter. 

 In sedimentary basins, the geological timescale record of vertical motion 

is at least partially preserved through the stratigraphy. In contrast, uplifted regions tend to 

be eroded and remove any direct record of vertical motion. Consequently, one of the key 

issues is how to constrain uplift. As mentioned earlier, there is a degree of confusion 

concerning uplift and erosion. In general, it is erosion that is inferred, and then 

(mistakenly) referred to as uplift, although this is just the exhumation term defined in 1. 
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 Qualitative denudation chronologies in the more traditional geomorphological 

sense, based on correlating surfaces, are still used in recent work. For example, Partridge 

and Maud (1987) have applied this concept in South Africa, Lidmar-Bergstrom and 

Nalsund (2002) in Scandinavia, and Widdowson (1997) in India. Often, there many 

problems inherent in this approach and great care is required with field observations. 

Summerfield (2000) presents the historical context for the development of these 

chronologies and discusses some of the main problems. These include the uncertainty 

inherent in correlating palaeosurfaces over large distances, effectively ignoring tectonics 

and isostasy, the difficulty in resolving structural and lithological controls from baselevel 

changes, and the difficulty in dating weathering surfaces and timing overall. Although 

Vasconcelos (1999), and Shuster et al. (2005) discuss the application of radiometric 

dating to this problem, they have yet to be widely applied. We do not consider 

denudation chronologies based essentially on visual inspection in this chapter. 

Here, we consider some of the more common quantitative approaches for the 

inference of denudation operating over geological timescales (e.g. timescales in excess of 

100,000 years) and depth scales of up to a few kilometres (1-2 kbars). These approaches 

include techniques which are sensitive to the exposure time of a surface (to cosmic rays), 

techniques which are sensitive to temperature (as denudation generally leads to cooling of 

a rock as it approaches the Earth‟s surface), those sensitive to pressure (which reduces as 

overburden is removed), and, less commonly applied, those which infer erosion from the 

discrepancies between observed and theoretical subsidence in sedimentary basins. In 

table 2 we briefly summarise an example of each method we discuss in the subsequent 

sections, and the references provide other examples of applications. 
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Exposure Age Methods 

The exposure time methods are known under the umbrella term of cosmogenic surface 

exposure dating, and rely on the interaction of secondary cosmic rays (predominantly 

neutrons produced by the interaction of primary cosmic rays and the Earth‟s atmosphere) 

with atoms in common minerals (e.g. quartz, olivine,feldspar) in the upper metre or so of 

the Earth‟s surface. When secondary cosmic rays (fast neutrons) interact with rocks, 

spallation reactions occur, producing elements (daughter isotopes) of lower atomic 

number than the parent element. Lower energy particles (thermal neutrons) can also 

produce new isotopes by neutron capture, which can lead to both heavier and lighter 

daughters. The new cosmogenically produced isotopes may be radioactive (
26

Al, 
10

Be, 

36
Cl) or stable (

21
Ne, 

3
He).  

The daughter element formed depends on the parent element, in turn dependent 

on the mineral host. Typical pairs are shown in table 1, together with the half-life where 

appropriate. The depth to which cosmic rays penetrate solid rock depends on the type of 

particle, but the more common particles will only reach 1-2 m, before becoming 

effectively undetectable. Muons can travel further, perhaps as much as 50 m or so. The 

attenuation of rays depends on the density of the material but follows an exponential 

function of depth. As the rays are attenuated with depth, so to then is the production of 

the daughter isotopes (figure 6a) and the production rate follows essentially the same 

form as that given above  
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J(z) J0e
z / z* (10) 

 

where z is depth,  J0 is the surface value production rate and z* is a characteristic depth 

scale for the material of interest (which depends on the density).  

In addition, as the cosmic ray flux depends on latitude and elevation, then so too 

does the daughter production rate. For a constant altitude, cosmic rays are more 

attenuated at the equator than the poles. Furthermore, the Earth's magnetic field varies not 

only spatially but also with time. As the field changes, the variations in cosmic ray 

attenuation is more marked at the equator (i.e. the flux is more sensitive here), and 

similarly, the relative variations are greater at higher altitudes. 

  Gosse and Phillips (2001) recount an intuitive analogy (originally from 

Everson) to cosmogenic surface exposure dating through a comparison to obtaining a 

suntan. The intensity (degree of tan, measured abundance of cosmogenic nuclide) 

depends on elevation, latitude and exposure time, shielding (sunscreen, or ice, vegetation, 

rock cover) to prevent accumulation, The intensity depends on the nature of the material 

(skin type, mineral), repeated exposure can be cumulative and the loss of the surface 

material (skin peeling, erosion) affects the inference of exposure time, and the effect 

fades with time (for radioactive systems).  

The relevant equation for the concentration of a cosmogenic radionuclide as a 

function of depth and time, assuming an initial concentration of zero and no additional 

sources, is 

 C(t)
J0e

z / z*

E /z*
1 e (E / z* )t

 (11a) 
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where E is erosion rate and  is the decay constant for a radiogenic isotope. For surface 

samples (z = 0), we have 

C(t)
J0

E /z*
1 e (E / z* )t  (11b) 

In the general case, there are two unknowns, the erosion rate, and the exposure time. For 

a single surface sample, we can fix one, and infer the other. In the case of zero or 

constant (and known) erosion, the age measures the duration of exposure. If zero erosion 

is assumed but is invalid, then the exposure age is a minimum value, and this age is a 

function of the erosion rate (figure 6b). The maximum value attainable for the exposure 

duration is a function of the decay constant for the radiogenic isotopes, which reach a 

steady state, or equilibrium value, reflecting the balance between production and decay as 

shown in figure 6. This is typically around 4-5 half-lives, and then the maximum time is 

around 5-6 m.y. (for 
10

Be). Stable isotopes can accumulate progressively, but their 

interpretation over long timescales is complicated by the potential for burial and 

shielding.  

The use of two isotopes  in principle allows the inference of both erosion and  

exposure duration. The ratio of two isotopes is given as 

C
1

(t)

C 2(t)

J
0

1 E /z* 2

J
0

2 E /z* 1

1 e (E / z* 1 )t

1 e (E / z* 2 )t
 (12) 

  

The only differences between the terms are in the decay constants and the production 

rates. Thus, to be useful, these need to differ between the two isotopes.  An isotope with a 

longer half-life takes longer to reach the steady state value, for a given erosion rate. The 
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shorter half life isotope can be used to infer the erosion rate, and the longer (non-steady 

state) isotope, or a stable isotope can be used to infer the exposure age (see Gosse and 

Phillips 2001). Cockburn et al. (2000) combined 
10

Be and 
26

Al to determine denudation 

and scarp retreat rates for the Namibian passive margin. Given the distance from the 

escarpment to the passive margin edge, a constant rate of retreat implies ~1 km/m.y. The 

measured denudation and retreat rates were far too low (< 20m/m.y. and < 10 m/m.y.) to 

be consistent with a constant rate of scarp retreat since continental break-up 130 Ma. 

They concluded a downwearing model with a pinned internal drainage divide was more 

appropriate. 

The potential for using cosmogenic isotopes to infer uplift directly has been 

considered, as the production rate is a function of elevation. Consequently, the ratio of 

the present day production rate to that at time t, is given as  

 
J0(0)

J0(t)
e u*/ z* 

  

where u* is the uplift rate – erosion rate, and here z* is the atmospheric attenuation rate 

of cosmic rays. In practice, the production rate is difficult to constrain (Dunai 2000), and 

to date, this approach has had only limited success.  

In contrast, the application of cosmogenic methods to sediments has grown 

significantly over the last few years (e.g. Granger et al. 1996, Clapp et al. 2002). The 

motivation for this is that the sediments sample a broad region of the eroding catchment, 

and so provide an integrated representation of the regional denudation rate, compared 

with single location samples in bedrock, which can lead to very site specific estimates. 

Obviously, the two approaches have their merits in different situations.  
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 Comprehensive reviews of cosmogenic surface exposure dating are provided by 

Cerling and Craig (1994), Gosse and Phillips (2001), Bierman and Nichols (2004), and 

Summerfield and Cockburn (2004), and these papers cite many applications and 

examples.  

 

Temperature sensitive methods 

The relevant temperature-sensitive methods include apatite fission track analysis, (U-

Th)/He dating of apatite, and vitrinite reflectance. There are other methods , such as the 

illite-smectite transformation, but these are not as widely applied in this context. The 

former two of these provide information on the thermal history of a rock (this is referred 

to as thermochronology), while the latter two provide only information the maximum 

temperature of the rock. Furthermore, the former two can be applied to both in basement 

and sedimentary basin settings, while the latter two are pretty much limited to sediments. 

All methods can be applied to surface samples, as well as samples from drill holes down 

to the level where the system is no longer sensitive. In practices this is 2-6 km depth 

depending on the method and the temperature gradient.  

 

 

Apatite fission track thermochronology  

The basics of apatite fission track (AFT) thermochronology have been summarised in 

Gallagher et al (1998) and here we provide a brief overview drawn from this earlier 

publication. Fission tracks are linear damage features formed from the spontaneous 
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fission of 
238

U, which occurs in trace amounts (10-100 ppm) in apatite. A typical fission 

reaction can be written in terms of the mass of the fragments as  

 238U 90Kr 143Ba Q  (14) 

 

where Q is energy. The decay products are large ions (not alpha particles), and these 

repel each other, stripping electrons from nearby atoms in their paths, leaving a linear 

damage trail in the crystal lattice that is a fission track. This spontaneous fission of
 238

U 

occurs at a constant rate over time, so this system can be used for dating, in the same way 

that any radioactive decay system. In this case, the parent is 
238

U and the daughter 

produced is a fission track. An age can be determined by counting the number of tracks 

and measuring the present day uranium content. 

When first formed the tracks are more or less constant length (~17 m), although 

they seem to rapidly shorten to around 16 m within a few weeks at room temperature 

(Donelick et al. 1990). Tracks are metastable and are particularly sensitive to 

temperature, and less to time. The consequence of this sensitivity is that that a given track 

becomes progressively shorter, with relatively minor amount of radial shrinking – this is 

known as annealing. This process means that the daughter product (i.e. tracks) can 

disappear, and so the estimated age will be younger than the true age of the host mineral. 

Therefore, to understand the significance of the fission track age, it is critical to know the 

underlying track length distribution. Thus, a typical fission track analysis produces two 

types of basic data – single grain ages, and track length distribution (typically sampled 

from individual tracks in many crystals). The former provides information on timing, and 

the latter provides information on the temperature, so together these data allows us to 
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reconstruct the thermal history of the host rock. As denudation leads to cooling, in many 

cases the thermal history can then be used as proxy for denudation history.  

 Laboratory experiments and geological case studies have been used to constrain 

the temperature and time dependence, Based on these experiments, empricial annealing 

models have been developed, and a typical mathematical representation for isothermal 

annealing is (Laslett et al. 1987) 

g(r) c0 c1T(ln(t) c2)  (15a) 

with 

g(r)
1 rb /b

a

1

a
 (15b) 

 

where r is the reduced track length (the length normalised by the initial, 

unannealed length), and T is temperature (K), and t is time (seconds), and the other terms 

are empirically derived constants. Other formulations have been presented by Carlson 

(1990), Laslett and Galbraith (1996) and Ketcham et al. (1999). These also involve a 

similar log time : linear temperature dependence to that given above. The models 

calibrated by Ketcham et al. (1999) differ from other published models in that they 

explicitly allow for compositional variation (in particular the influence of variable 

chlorine and fluorine contents - tracks in fluorine rich apatite anneal more rapidly than 

those in chlorine rich apatite). The temperature range over which annealing occurs is 

known as the partial annealing zone (PAZ). For geological timescales (1 - 100 m.y.), the 

upper limit of the PAZ is around 110-120°C, and tracks are effectively annealed 

instantaneously above this. The lower limit is generally taken to be 50-60°C, although 



 26 

this is less well defined, and it is clear that there is some annealing below this 

temperature range (e.g. Vrojlick et al. 1992). 

The empirical annealing models allow prediction of the expected length of a given 

fission track at the present day for a specified thermal history. As fission tracks form 

continually over time, then each one will experience a different proportion of the total 

thermal history of the host mineral. We can simulate the response of each track to a given 

thermal history, and predict the length distribution and fission track age (e.g. Green et al. 

1989, Ketcham et al. 1999). Fission track data are most informative when dealing with 

cooling, as each successively young track experiences a different temperature maximum, 

and so a complete analysis provides detail on the nature of the cooling history (figure 7b). 

In contrast, a continuous heating thermal history, where the present day temperature is a 

maximum, really only tells us that we are at the maximum temperature today (figure 7a). 

Given that we can forward model the fission track data by specifying a thermal 

history, it is then possible to infer the thermal history directly from observed fission track 

data (Gallagher 1995, Willett 1997, Ketcham et al. 2000). In order to convert the inferred 

thermal history to an equivalent depth, it is commonly assumed that transient thermal 

effects and 2D/3D heat transfer are not significant. Then it is necessary simply to assume 

a surface temperature (Ts) and adopt either a temperature-depth gradient (dT/dz), or heat 

flow (Q) and thermal conductivity (k). The relationship between these two is given by 

Fourier‟s law,  

 

. Q k
dT

dz
 (16a) 
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and the depth, ZT equivalent to a give temperature TZ is  given as 

 

ZT
TZ Ts

dT dz
 (16b) 

 

or  

 ZT TZ Ts
k

Q
 (16c) 

 

Typically, temperature gradients of 25-20°C/km are adopted often with little justification 

other than these are more or less normal values. However, as the thermal conductivity of 

rocks can vary by a factor of 2-3, then if there are independent data on thermal 

conductivities, and the heat flow, this is generally a preferable approach.  

 Gallagher et al. (1998), Dumitru (2000), Gleadow and Brown (2000), provide 

reviews of fission track analysis, and their application to denudation modelling, while 

Gunnell (2000) reviews the methodology from a geomorphological viewpoint. More 

specifically, Brown et al. (2000), Gunnell et al. (2003) and Kohn et al. (2002) present 

results of modelling regional denudation based on apatite fission track analysis from 

surface samples in Africa, South America, India and Australia. Brown (1991) outlines 

how to „backstack‟ the estimated denuded section back on the present day topography to 

try and infer the change in elevation. Fitzgerald et al. (1995) used vertical profile samples 

over an elevation range of 4.5 km to infer rapid cooling (and denudation) in a relatively 

restricted region (effectively a single mountain) in an attempt to infer absolute uplift 

using backstacking. They inferred 8.5 km of rock uplift, 5.7 km of denudation and 2.8 m 
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of mean surface uplift, at rates of ~1.5, ~1 and 0,.5 km/m.y., respectively. Green et al. 

(1995, 2002) consider the application of apatite fission track analysis from borehole and 

surface samples to constrain inversion of sedimentary basins, often a key unknown in 

hydrocarbon exploration. 

 

 

 

Apatite (U-Th)/He dating  

This method relies on the production of helium (as alpha particles) from uranium and 

thorium. The relevant decay systems are  

 

238U 206Pb 82

4He

235U 207Pb 72

4He

232Th 208Pb 62

4He

 (17) 

 

This was proposed as a dating method by Rutherford in 1908, but it was quickly realised 

that the ages were anomalously young as a consequence of thermally activated diffusive 

loss of helium. Zeitler et al. (1987) suggested exploiting the temperature sensitivity to use 

apatite (U-Th)/He for thermochonology, in a manner similar to fission track annealing. 

Diffusive loss of helium occurs over a temperature range, known as the partial retention 

zone. For geological timescales, the partial retention zone of helium ion apatite is around 

40-80°C, based on the extrapolation of laboratory diffusion experiments (Wolf et al. 

1996, Farley 2000). Thus, the partial retention zone overlaps with the partial annealing 

zone of fission tracks in apatite (figure 8). This has been demonstrated in geological 

settings by House et al. (1999), using borehole samples from volcanogenic sediments in 
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the Otway Basin, Australia, and by Stockli et al (2000) on basement rocks from an 

exhumed fault block in California. 

The helium concentration, C, (as a function of time, t, and position, r) is given as  

C(t,r)

t
D(t)

2C(t,r)

r2

n

r

C(t,r)

r
P(t) (18a) 

where P(t) the production rate of helium (from the decay equations above), and n is 

constant whose value is determined by the geometry of the system being modelled (n = 2 

is a sphere, n = 1 is an infinite cylinder, and n = 0 is an infinite sheet). D(t) is the 

temperature dependent diffusion coefficient, given as  

  D(t) D0e
E

RT  (18b) 

 

where E is activation energy, R is the universal gas constant and T is absolute 

temperature. For a single analysis (which may or not involve individual crystals), the 

(U-Th)/He system does not provide as much direct information as a single apatite fission 

track analysis. Similarly, the interpretation of a single helium age is difficult, unless the 

sample cooled rapidly through the partial retention zone. However, multiple analyses 

(involving either single grains, or grains of similar size) have great potential, if a range of 

different grain sizes can be analysed (Reiners  and Farley, 2001). This is because the 

diffusion domain for helium in apatite appears to be the whole crystal. Consequently, the 

measured age and effective closure temperature is a function of the grain size, with 

smaller grains expected to have younger ages (and lower closure temperatures) than 

larger grains.  
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Farley (2000), Reiners (2002) and Ehlers and Farley (2003) provide reviews of 

the methodology and application of (U-Th)/He dating as a thermochronological tool, and 

it should be noted here that future research will also focus on zircon and sphere (U-

Th)/He analysis, although these systems are currently not as well characterised as apatite. 

This method was has not yet been widely applied in sedimentary basin settings, but as a 

consequence of the very low temperature sensitivity, has provided useful constraints for 

topographic evolution in terms of relief changes. For example, House et al. (1998) used 

the method to infer the timing of relief change (valley cutting) in the Sierra Nevada, 

California. This exploited the facts that isotherms close to the surface are warped due the 

topography, and leads to horizontal variations in temperature between ridges and valleys. 

The results implied deep valleys and the high topography had developed by the late 

Cretaceous, some 50-60 Ma older than previously thought. Braun (2002) developed a 

method for exploiting regional data sets to infer the timing of relief change, based on the 

correlation of topography and (U-Th)/He ages over different wavelengths. 

 

 

Vitrinite reflectance  

 

Vitrinite is a common type of organic matter whose reflectance increases with increasing 

temperature and  it is widely used in the hydrocarbon exploration industry as an indicator 

of the temperature of hydrocarbon source rocks. The reflectance is measured with a 

microscope under oil immersion and photomultiplier, and is expressed as a percentage in 

terms of reflection of the incident light, usually written as %Ro. A variety of different 
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models have been proposed to relate vitrinite reflectance to temperature, but a discussion 

of the validity of these is beyond the scope of this paper. Morrow and Issler (1993) have 

assessed a variety of commonly used vitrinite models. They recommend the kinetic 

model of Burnham and Sweeney (1989), which is based on a series of first order 

Arrhenius-type reactions, i.e. 

 
dC

dt
kC   (19a) 

where C is the concentration of the reactant and k is the rate constant given as 

k Ae
E

RT  (19b) 

where A is the pre-exponential, or frequency, factor, and the other terms have been 

defined earlier. The reactions simulate the breakdown of vitrinite as follows 

 
vitrinite residual vitrinite product

 (20) 

 

where the products are CO2, H2O, CH4 or a general hydrocarbon, CHn. The reactions are 

assumed to be independent, and parallel, with a distribution of activation energies for 

each reaction. The model is calibrated against vitrinite reflectance using the following 

relationship 

 %Ro 12exp 3.3 H C O C  (21) 

 

A major difference between vitrinite reflectance and apatite fission track analysis is that 

the former is essentially just a maximum temperature indicator, while the latter provides 

information on the temperature variation over time (figure 9). However, in sedimentary 

basin settings, the two methods are most useful in combination (Arne and Zentilli 1994). 
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This is partly because of practical considerations (apatite tends to occur in immature 

clastic sediments, while vitrinite is obtained from mud rocks), but also because the two 

systems seem to have important parallel behaviour in terms of their sensitivity to time 

and temperature. Furthermore, apatite in sediments can retain a provenance, or inherited, 

signature, while vitrinite does not. As vitrinite provides an indication of the overall 

maximum temperature of the rock sample, then this provides independent an constraint 

which aids in interpreting the potentially complex thermal history recorded in the apatite 

fission track data. Kamp et al. (1996), Ventura et al. (2001), Arne et al. (2002) and Green 

et al. (2002) integrated vitrinite reflectance and apatite fission track analysis to constrain 

timing and magnitude of basin inversion. In these studies, the combination of the two 

methods provided more information than either taken separately.  Green et al. (2002), 

using a series of vertical samples, claimed to have resolved changes in heat flow as well 

as the response to denudation. Although there is clearly a trade-off between the two 

parameters, this is reduced if a series of samples over depth are used.  

 

 

Pressure-sensitive methods  

Probably the most widely applied pressure sensitive method relies on the 

progressive reduction of porosity in sediments due to burial. It is assumed that the 

porosity reduction is irreversible and follows a simple trend as a function of maximum 

burial depth.  Subsequently, when denudation occurs, the sediment resides at a shallower 

depth, but the average porosity is less than expected for that depth, as a consequence of 

the removal of overburden. Assuming the relationship between porosity and depth is 
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known, then it is possible to estimate the maximum burial depth from the observed 

porosity (figure 10). 

 Typically, porosity ( ) as a function of depth (z) is parameterised in the following 

form 

 (z) 0e
cz  (22a) 

 

where 0 is the surface porosity, and c is length scale constant. Clearly, this relationship 

ideally needs to be defined in a region where there has been no denudation (or diagenetic 

alteration of porosity). An estimate of the amount of removed section can be made using 

the observed (
o
) and predicted (

p
) porosity at a present day depth, z,, the amount of 

denudation, D, is given as 

 D
1

c
Ln 1

p o

0

ecz  (22b) 

 

Commonly, sonic velocity data are used to estimate porosity (e.g.Bulat and Stoker, 1987, 

Hillis 1995, Japsen 1998). In this case, the basic porosity function given above is 

combined with the Wyllie et al. (1956) average velocity equation,  

 
1

V

1

Vma V f
 (23a) 

 

where Vma and Vf are the rock matrix and fluid sonic velocities, respectively, to give 

 
1

V

1

Vma

(Vma V f )

VmaV f
0e

cz   (23b) 
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which can be linearised in z if c
-1

 is much greater than z to give 

 

1

V

1

Vma

(Vma V f )

VmaV f
0cz  (23c) 

 

Then, the maximum depth is given as 

 zmax 1

0c

1

Vma

1

V

VmaV f

(Vma V f )
 (23d) 

 

and the amount of denudation (missing section) is then the difference between zmax and 

the present day depth. 

 Alternatively, the thickness of the missing section can be expressed in terms of 

interval travel time as (Hillis 1995) 

 D
1

m
tz t0 z  (24) 

 

where tz is the interval travel time over the formation interval and t0
 
and m are the 

surface intercept and slope of the linear depth- interval travel time relation defined for 

that particular formation. In the relationships above, the sonic velocity or travel time are 

taken as the mean of the appropriate interval represented by the formation under 

consideration, and the present depth is the mid point of the formation. 

 The method requires a reliable estimate of the normal compaction trend, which 

can be based on the highest measured porosities or the lowest sonic velocities over a 

given depth interval. To identify this background trend requires data from stable areas 
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often well outside the region of inversion. Then, we need to be confident that there are no 

significant lateral variations in the controls on porosity or the facies of a particular 

formation. If sediments have been buried, and later lost overburden, followed by reburial 

to a shallower depth than originally reached then this method will potentially 

underestimate the amount of section lost, unless the second phase of burial is corrected 

for (e.g. Hillis 1995, Japsen 1998). 

If the second phase of burial is deeper than the first phase, then the record of the 

denudation will be overprinted. Similarly, it is not straightforward to reconstruct the total 

lost section after multiple phases of denudation and reburial. As shown by Hillis (1995), 

the relationship between the present day (zp) depth, maximum burial depth (zm), and the 

inferred  missing section ( z) is  

 

 zm zp z (25) 

 

Hillis (1995), Menpes and Hillis (1995), Japsen (1998), Densley et al. (2000), Ware and 

Turner (2002) have all exploited seismic velocity-depth anomalies to infer the magnitude 

of missing section around the North Sea, Irish Sea and Australia. In general, the 

applications use shale or chalk velocities, as these tend to be less variable than 

sandstones, as a consequence of diagenetic effects, or lack thereof. However, in Japsen 

(1995), he identified negative anomalies in chalk interval velocities in the central and 

southern North Sea, indicative of overpressure, such that porosity reduction was less than 

the normal compaction trend, or equivalent to underburial of ~1 km. The positive 
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anomalies imply up to 1 km over burden has been removed from the basin margins in the 

Neogene. 

 

 

Subsidence methods  

The final method we consider briefly is applicable in situations where the subsidence of a 

sedimentary basin can be expected to follow a predictable trend over time. The difference 

between the predicted and final depth of a given stratigraphic horizon in the basin then 

provides a estimate of the missing section. In practice, this method requires reliable 

assumptions concerning the tectonic mechanism driving subsidence. Generally, such 

assumptions are only convincingly valid in the extensional setting, as typified by the pure 

shear model of McKenzie (1978), and its variants. This approach relies on specifying the 

theoretical subsidence curve, either as a forward model, or undertaking some form of 

inverse modelling, using the observed subsidence as a constraint, and inferring the 

missing part of the section from the model predictions (Figure 11). In practice, this 

involves the usual approach to backstripping to determine the tectonic subsidence, i.e. 

allowing for compaction, sea-level and palaeobathymetry changes over time, and 

assuming some form of isostatic correction for the sediment load. In foreland basins, it is 

not possible to predict the subsidence history a priori unless the loading history is known 

and so this approach is not suitable, In extensional basins, it requires knowledge, or 

inference, of the extension history, and the relevant parameters required to predict the 

thermal subsidence phase. Rowley and White (1998) have shown that this approach tends 
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to give lower estimates of denudation (or missing section) than vitrinite reflectance or 

apatite fission track thermochronology, but the 3 methods are broadly consistent. 

 

DENUDATION AND SEDIMENT SUPPLY 

The products of denudation eventually end up in a sedimentary basin, The stratigraphy of 

a basin will clearly reflect the rate of sediment supply, which itself depends on factors 

such as relief, slope, climate, lithology, vegetation and runoff in the drainage catchment, 

all potential influences on denudation. This aspect is beyond the scope of this chapter, but 

Hovius and Leeder (1998) edited a special issue containing various modelling and case 

studies. However, another method to assess regional denudation is to consider the 

sediment volumes preserved in a basin as a proxy for the amount of material removed by 

denudation. This seemingly intuitive approach has some problems. Firstly, we do not 

know the area of the region that was denuded, so comparison of sedimentation and 

denudation rates is difficult and the size of both the source and deposition regions are 

likely to have changed over time. Secondly, denuded material may be removed in 

solution and/or transported away from an adjacent depositional basin. Conversely, the 

source region of the basin may have changed over time, and then it is not appropriate to 

associate the volume of sediments with one source. Finally, there may be some unknown 

time delay between denudation and final deposition, either due to storage in a drainage 

basin (or catchment), and so we do not necessarily expext a 1:1 correspondence in timing 

of denudation and deposition.  

Historically, one region where sediments have been widely studied in the context 

of denudation are the North Alpine Foreland Basin in the European Alps. The basin is 
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characterised by arrival of deepwater flysch in the Alpine basins, and a widespread 

transition to the shallow water/continental molasse. The changes in lithology and water 

depth have been interpreted in terms of initial erosion of the orogenic wedge, followed by 

rapid influx, reflecting rapid uplift in the hinterland. Sinclair (1997) determined the 

erosion rate increased by about 30% during the flysch-molasse transition. However, this 

was under the assumption that the drainage area at the time is the same as the present day. 

 There are various approaches to try and fingerprint the source region. One of the 

approaches relies on looking at mineralogical assemblages and compositions (particularly 

heavy minerals, e.g. Mange and Maurer 1992, Morton and Hallsworth 1994, Morton  and 

Hallsworth 1999, Morton et al. 2004) and linking the composition variation in sediments 

to that of potential source regions, or the mineral content of present day river sediments 

draining the source regions. The mineral groups considered need to be selected carefully, 

to allow for the potential of transport and diagenetic processes to filter the original 

detrital mineral population. Lonergan and Mange-Rajetzky (1994) exploited the sequence 

of heavy mineral assemblages of increasing grade in sediments deposited over ~10 m.y. 

in the Betics. The assemblages contained an inverted grade (relative to the sediment 

stratigrahy) and the maximum grade was equivalent to 30 km depth. Thus, they inferred a 

time-averaged erosion rate of 3 km/m.y. 

Another approach is to date detrital minerals and again try to link these back to 

ages of the same minerals in potential source regions. The more commonly adopted 

dating methods use single grains and include U-Pb zircon, zircon fission track analysis, 

and 
40

Ar/
39

Ar dating of micas In all approaches, it is implicit that the mineral system has 

been closed after erosion. Bernet et al. (2004) give an overview of the application of 
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zircon fission track analysis to provenance studies, using samples from both the source 

region and modern sediments carried in rivers from the same drainage system. Carter and 

Moss (1999) combined detrital zircon fission track analysis with zircon U-Pb dating, to 

exploit the different temperature sensitivity of these two dating systems. The effective 

closure temperature for the first system is about 200-320°C, while for the second it is 

generally inferred to be in excess of 700°C. Similarly, Rahl et al. (2003) combined zircon 

(U-Th)/He (closure temperature around 180°C) with zircon U-Pb, and Garver et al. 

(1999) combined apatite and zircon fission track detrital ages for the same reasons. The 

combination of two methods with different sensitivity can be used to identify the primary 

source terrain, and subsequent thermal events that may have affected it. The application 

of Sherlock et al. (2002) demonstrates that single grain 
40

Ar/
39

Ar ages can be misleading 

in that even a single crystal can be zoned in argon due to a complex thermal evolution, 

while Brewer et al. (2003) showed that analytical uncertainty combined with spatial 

variability in the denudation rates can lead to misleading inferences from river sediment 

samples.  

  

MODELLING REGIONAL DENUDATION  

In the last 10 years or so, a major research effort in the Earth Sciences has focussed on 

developing quantitative regional scale models for denudation as it operates over 

geological timescales. The models can be broadly subdivided in those which address 

surface processes, and those which aim to combine surface process models with 

tectonics. Overall, these approaches come under the Earth Systems Science umbrella, 

which can probably be regarded as 21
st
 century scientific discipline in its own right. In 
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more traditional terms, this is the integration of geology, geography, physics, chemistry, 

biology and mathematics to understand the interactions of the solid earth, atmosphere, 

hydrosphere and biosphere, addressing in particular the complex feedback systems that 

often emerge from modelling studies without prior specification. 

The improving quality of Digital Elevation Model (DEM) has increased their 

application to studies of denudation. They can be used as a general reference frame for 

calculating mass balances (Mayer 2000), essentially filling in the present day valleys to a 

chosen reference level. They are also useful for quantitative comparison to landscape 

evolution model predictions, and as the starting condition or input to these models. In 

terms of specific applications, Dadson et al. (2003) correlated their various estimates of 

denudation rate with stream power calculated from a Digital Elevation Model  (DEM) 

and precipitation, but found little to suggest that stream power is a factor on erosion over 

decadal timescales. Montgomery and Brandon (2002) analysed the link between slope, 

relief and long term erosion rates for both tectonically inactive and active regions using 

the GTOPO30 global DEM. They demonstrate that inactive regions conform to the well 

known linear relation between mean local relief and erosion rate of Ahnert (1970). In 

contrast, the more active areas show a non-linear relationship, with erosion rate 

increasing (in response to climate and tectonics) more rapidly than mean slope, which is 

limited by soil/rock strength. They conclude that the low relief areas are controlled by 

hillslope processes, while landsliding in response to tectonic forcing occurs when river 

incision keeps pace with rock uplift in high relief areas. 

 Although the development of quantitative surface process models began 20-30 

years ago (Carson and Kirkby 1972), the major applications in the more geological areas 
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of Earth Science took off perhaps only 10 years ago (see Merritts and Ellis 1994), and 

this marked the beginning of regional scale modelling incorporating surface processes 

and tectonics, and to some extent climate. Since, then there have been many studies 

exploring these interactions and considering what can be learnt and constrained from 

modelling. In addition, there is a wealth of geomorphological literature that generally 

focusses on smaller spatial and length scales but, although significant, these studies are 

not as relevant in the present context. The numerical surface process models have 

focussed on processes such as fluvial incision leading to bedrock erosion (the rate of 

which which can be transport or detachment controlled), and hillslope diffusion (e.g. 

Braun and Sambridge 1997, Willet et al. 2001, Whipple 2001, Simpson and Schunlegger 

2003). Among the main issues that that have been addressed are the significance of 

tectonics and climate in terms of producing surface uplift (e.g. Molnar and England 

1990), as well as the relative importance of steady state and non-steady state conditions 

in landscape evolution (e.g. Willet and Brandon 2002). 

 A demonstration of the current high profile of climate-tectonics-denudation 

interactions is given in the three papers published in Nature in 2003 (Burbank et al. 2003, 

Dadson et al,, 2003, Reiners et al. 2003), together with an overview by Molnar (2003), 

who also discusses another study by Wobus et al. 2003). In essence, all adopt the same 

overall approach in terms of quantifying the spatial variation in denudation rate using 

thermochronological data and then relating this to the present day precipitation (or 

similarly short term records, such as stream power or seismicity). One potential limitation 

of this approach is these inferences relate to different timescales and implicit in these 

approaches is then the assumption of steady state (in terms of denudation and climate 
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control). The four studies reach different conclusions about the importance of tectonics 

and climate on denudation, and this questions is still open. Intuitively, however, we might 

expect that these different factors will vary in the significance, both in time and spatially, 

and so the search for a single unifying or global model is unlikely to prove fruitful, unless 

it captures these scale dependent phenomena. 

The second aspect, regarding steady state, is similarly unresolved, and is also 

complicated by the large range of time and length scales which can be considered as well 

as nature of the system being regarded in terms of steady state (topographic, thermal, 

denudation – see Willett and Brandon 2002). Overall, the scale variation is such that 

some form of steady state may be approximated at one scale (e.g. long wavelength or 

mean elevation), while clearly not at another (local landsliding in river valleys). A recent 

commentary by Allen (2005), discussing the relative roles of continuity and catastrophe 

in landscape evolution, suggests that it is better to think in terms of response times. That 

is, landscapes will respond to different perturbations at different rates. If the response 

time is small compared to the periodicity of a perturbation, they will appear in steady 

state. If the response time is long, they will appear transient.  

Some of the other notable large scale work includes that by Beaumont et al, (2000) 

which considered the coupling of surface processes to the evolution of different tectonic 

situations, including passive margins and convergent orogens, and demonstrates the 

potential for complex feedbacks, particularly for active orogens. Willet (1999) 

specifically focussed on the link between tectonics and climate in convergent orogens, 

and showed that the relative importance of vertical uplift and horizontal convergence 

exhibits a major control on the geomorphic evolution. Finally, van de Beek and Braun 
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(1998), and van der Beek et al. (2002) considered surface process models in the context 

of passive margin, and particularly the controls on escarpment retreat. In this case, the 

competing models are continuous horizontal scarp retreat, and vertical downwearing. The 

important factor the location of the drainage divide which, if located inland of the 

escarpment, can lead to both inland and seaward drainage, and favours the rapid 

downwearing model. These numerical models been complemented by targeted sampling 

for cosmogenic and thermochronological analysis from the great escarpment of southern 

Africa in Namibia (Cockburn et al, 2000) and  the Drakensberg (Brown et al., 2002). The 

combination of the new data and the model results implies that this model is more 

appropriate than a continuous scarp retreat model.  

 

 

 

SUMMARY STATEMENT 

Overall, the recent advances in our understanding of long term, large scale 

landscape evolution through uplift and denudation have occurred through new analytical 

and computational methods, stimulated partly through technological advances, and also 

through the current research effort focussing on Earth Systems Science. This is motivated 

by the need to understand the human interaction with the interface of the solid earth and 

atmosphere, i.e. the Earth‟s surface. The geological record of the key processes exists, but 

is often indirect, difficult to decipher and not always obviously linked to modern short 

term, small scale processes. New and higher resolution dating methods will no doubt 

emerge to address this issue. Similarly, new computational approaches and carefully 
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designed field studies will provide insights into the importance and interactions of 

different processes over a wide range of time and length scales. 
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Isotope Half-life Host mineral/rock 

  
3
He Stable  olivine 

21
Ne Stable  olivine, quartz 

10
Be  1.51 x 10

6
 a quartz 

26
Al 7.50 x 10

5
 a quartz 

36
Cl 3.01 x 10

5
 a calcite, whole rock 

 

Table 1. Cosmogenic isotopes, their half lives, and common host minerals. 
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Method  Reference Location Problem Key result 

Cosmogenic 

surface 

exposure dating 

Cockburn et 

al. (2000) 

Namibia Resolving scarp 

retreat rate  

< 10 m/m.y., 

incompatible 

with constant 

retreat since 

rifting. Implies 

a downwearing 

model. 

 

(U-Th)/He House et al. 

(1998) 

Sierra 

Nevada, 

California 

Timing of 

development of 

topography 

Late 

Cretaceous, 50-

60  m.y. older 

than thought 

 

AFT Fitzgerald et 

al. (1996) 

Alaska Infer denudation and 

absolute uplift 

magnitudes 

Rock uplift 8.5 

km, denudation 

5.7 km, mean 

surface uplift 

2.8 km 

 

Vitrinite 

Reflectance 

(and AFT) 

Green et al. 

(2002) 

Britain and 

Ireland 

Estimate denudation 

from 2 systems using 

vertical sections 

 

Infer changes in 

heat flow and 

and denudation 

since the early 

Cretaceous 

 

Porosity 

reduction  

Japsen 

(1998) 

North Sea 

Basin 

Explain anomalously 

high and low 

porosity in Chalk 

~ 1km of 

erosion on 

margins, 

overpressure 

due to low 

permeability 

chalk in centre 

 

Burial history Rowley and 

White 

(1998) 

East Irish Sea Estimate missing 

section 

< 1.5 km, 

generally a 

minimum 

relative to 

AFT/vitrinite 

reflectance 

 

Table 2. Examples of applications of some of the methods discussed in the text.  
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FIGURE CAPTIONS 

 

Figure 1.  

The relationship between surface uplift (Us), rock uplift (Ur), and denudation or 

exhumation (Ue). The geoid is typically approximated by mean sea level. 

 

Figure 2.  

The pressure (P1) associated with thickened continental crust (Hc) compare to the 

pressure (P2) in adjacent normal thickness crust (H
0

c). The compensation depth is 

the depth where these pressures are equal (local isostatic equilbrium) and c and m 

are the densities of the crust and mantle respectively. 

 

Figure 3.  

Elevation (in km) associated with crustal thickening (ƒc) and lithosphere thickening 

(ƒL). The shaded region is not viable. Redrawn from Stuwe (2002). 

 

Figure 4.  

The influence of the necking depth – the shaded band in (a) - on basin and rift flank 

geometries during extension. If the necking depth is greater than the compensation 

depth (b), buoyancy forces leading to regional uplift (the flexural response to these 

forces), while opposite occurs if the necking depth is shallower than the 

compensation depth (c). Modified from Braun and Beaumont (1989). 

 

Figure 5 

(a) Denudation can reduce the mean elevation of a plateau region from H 1to H 2 (and 

crustal thickness), although isostatic rebound can increase local peak heights if 

deep valley incision occurs (Molnar and England 1990) 

(b) Rapid denudation at a scarp front produced during rifting can lead to scarp retreat 

and the accompanying regional rebound can lead to uplift of the scarp front. The 

left panel shows the total denudation over 150 Ma, and the total regional rebound in 

response to this unloading. The scarp front retreats progressively over time, and the 

elevation of the scarp also increases (after Gilchrist and Summerfield 1991).  

 

Figure 6. 

(a) Production of cosmogenic isotopes (in this case 
10

Be with z* of 60 cm) as a 

function of depth for 3 times, assuming an initial concentration of zero. The 

cosmogenic isotopes progressively accumulate at a rate depending on the flux of 

secondary cosmic rays to a point  (T = ∞ ) which represents the steady state 

between production and decay (relevant to radioactive isotopes). 

(b) Concentration of 
10

Be as a function of time for different erosion rates (E). Faster 

erosion rates lead to a steady state value more rapidly. 

 

Figure 7. 

Predictions of the track length distribution and fission track age for two contrasting 

thermal histories, shown by the thick line in the top panels. The partial annealing 

zone is identified by the two dashed lines. The axis on the right of the top panels 
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refers to the reduced track length (the length normalised by the initial annealed 

length), and the grey lines show the progressive shortening of 20 tracks formed at 

successive time increments.  

(a) Tracks rapidly shorten to a length in equilibrium with the maximum temperature, 

which increases with time to the present day value, leading to a symmetrical length 

distribution, whose mean is indicative of the maximum temperature.  

(b) As the temperature decreases, tracks formed more recently experience a lower 

maximum than the earlier formed tracks and so are longer, leading to a 

characteristic negatively skewed length distribution 

 

Figure 8.  

A summary of the time and depth sensitivity of different dating methods. 

Cosmogenic surface exposure dating (CSED) is applicable over short length scales 

(few metres), and timescales up to a few million years (stable isotopes such as 
3
He 

and 
21

Ne may be extended to longer timescales). (U-Th)/He and AFT are generally 

applicable to longer timescales, and as a consequence of their respective 

temperature sensitivities are applicable to depth ranges between 1-4 km.  (U-

Th)/He is sensitive to lower temperatures than AFT, but the temperature ranges 

overlap (thanks to Roderick Brown for this figure). 

 

Figure 9.  

The temperature and time dependence of vitrinite reflectance compared with AFT. 

The grey lines are vitrinite reflectance (Ro%), and the dashed lines are mean track 

length ( m). The point of total annealing is marked by the thick line, corresponding 

to about 0.7 Ro%. The 2 systems behave similarly, but vitrinite reflectance can be 

extended to higher temperatures and is a useful maximum temperature indicator. 

However, fission track data provide additional information about the post-

maximum temperature thermal history (see figure 6). 

 

Figure 10. 

 The principles behind estimating denudation, or missing section, using porosity.  

The reference porosity-depth function (solid curve) is determined from porosity (or 

sonic velocity) data in regions with no denudation. The open circles represent 

porosity data which are anomalously low for the present depth. Denudation is 

estimated by the offset of the mean depth from the reference curve. 

 

Figure 11. 

 The principles behind the use of subsidence curves in extensional basins to estimate 

denudation. After backstripping, the tectonic subsidence curve is used to infer the 

extension history, separated into the syn-rift and post-rift thermal subsidence 

components. It is possible then to predict the expected subsidence, up to the present 

day, and denudation is estimated from the difference between the prediction and the 

observed subsidence. 
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