
HAL Id: insu-00710566
https://insu.hal.science/insu-00710566

Submitted on 27 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

TIARES Project–Tomographic investigation by seafloor
array experiment for the Society hotspot

Daisuke Suetsugu, H. Shiobara, Iroko Sugioka, Aki Ito, Takei Isse, Takafumi
Kasaya, Noriko Tada, Kiyoshi Baba, Natsue Abe, Yoso Hamano, et al.

To cite this version:
Daisuke Suetsugu, H. Shiobara, Iroko Sugioka, Aki Ito, Takei Isse, et al.. TIARES Project–
Tomographic investigation by seafloor array experiment for the Society hotspot. Earth Planets and
Space, 2012, 64 (4), pp.i-iv. �10.5047/eps.2011.11.002�. �insu-00710566�

https://insu.hal.science/insu-00710566
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


RESEARCH NEWS Earth Planets Space, 64, i–iv, 2012

TIARES Project—Tomographic investigation by seafloor array experiment
for the Society hotspot

Daisuke Suetsugu1, Hajime Shiobara2, Hiroko Sugioka1, Aki Ito1, Takehi Isse2, Takafumi Kasaya1, Noriko Tada1,
Kiyoshi Baba2, Natsue Abe1, Yozo Hamano1, Pascal Tarits3, Jean-Pierre Barriot4, and Dominique Reymond5

1Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan
2The Earthquake Research Institute, the University of Tokyo, Tokyo 113-0032, Japan

3UEB, IUEM, CNRS, France
4Laboratoire Geosciences du Pacifique Sud, Université de Polynésie Française, Tahiti, French Polynesia
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We conducted geophysical observations on the French Polynesian seafloor in the Pacific Ocean from 2009 to
2010 to determine the mantle structure beneath the Society hotspot, which is a region of underlying volcanic ac-
tivity responsible for forming the Society Islands. The network for Tomographic Investigation by seafloor ARray
Experiment for the Society hotspot (TIARES, named after the most common flower in Tahiti) is composed of
multi-sensor stations that include broadband ocean-bottom seismometers, ocean-bottom electro-magnetometers,
and differential pressure gauges. The network is designed to obtain seismic and electrical conductivity structures
of the mantle beneath the Society hotspot. In addition to providing data to study the mantle structure, the TIARES
network recorded unprecedented data of pressure and electromagnetic (EM) signals by tsunamis associated with
large earthquakes in the Pacific Ocean, including the 2010 Chilean earthquake (Mw 8.8).
Key words: Hotspot, mantle plume, tsunami, ocean-bottom seismograph, ocean-bottom electro-magnetometer.

1. Introduction
The French Polynesian region is characterized by pos-

itive topographic anomalies of 700 m, a concentration
of hotspot chains, and a broadly-distributed low-velocity
anomaly in the lower mantle revealed by seismic tomog-
raphy (e.g., Garnero, 2000). These previous observations
suggest the presence of a “superplume”, which is a large-
scale mantle flow rising from the bottom of the mantle
beneath the region (e.g., Larson, 1991). We performed
broadband ocean-bottom seismometer (BBOBS) observa-
tions over the entire French Polynesian region, from 2003
to 2005, to determine a large-scale seismic structure of
the mantle (Suetsugu et al., 2005). Our previous data re-
vealed that large-scale low-velocity anomalies (on the or-
der of 1000 km in diameter), indicative of the superplume,
are located from the bottom of the mantle to a depth of
1000 km, and small-scale low-velocity anomalies (on the
order of 100 km in diameter) are present above the super-
plume (Fig. 1, modified from Suetsugu et al., 2009). The
small-scale anomalies, possibly mantle plumes, are present
beneath the Society and Macdonald hotspots, which agrees
with the results obtained from early magnetotelluric to-
mography (Nolasco et al., 1998). However, the explana-
tion remained unclear because the insufficient station cov-
erage impeded the investigation of the anomaly routes to
the hotspots and their depth extents. If the hotspots are fed
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by the mantle plumes ascending from the lower mantle, a
substantial mixing of materials may be occurring between
the upper and lower mantle. The results may lead to a sig-
nificant contribution in understanding the evolution of the
Earth.

2. Seismic, Electromagnetic, and Pressure Obser-
vation on the Seafloor

We focused on the Society hotspot by deploying the
TIARES network in its vicinity from 2009 to 2010. We
installed nine pairs of BBOBSs and ocean-bottom electro-
magnetometers (OBEMs) in February 2009 on the seafloor
at a depth of 4000–5000 m aboard the research vessel
MIRAI of the Japan Agency for Marine-Earth Science and
Technology (JAMSTEC) (Fig. 2). The recovery cruises
were conducted in November–December 2010 aboard the
Tahitian fishing boat Fetu Mana. The project was con-
ducted as a Japan-France cooperative effort. The Japanese
BBOBS and OBEM have been developed by the Earth-
quake Research Institute of the University of Tokyo since
1990 (Fig. 3). The BBOBS was equipped with a broadband
sensor that can record ground motions at periods from 0.02
to 360 s, and the OBEM was equipped with a fluxgate mag-
netometer and two mutually-orthogonal pairs of electrodes
that measure variations in three components of the mag-
netic field and two horizontal components of the electric
field (Fig. 3). The differential pressure gauge (DPG) sen-
sors were attached with the BBOBS at two stations (SOC2
and SOC8 in Fig. 2). All instruments were operational for
1.5 years. Refer to Shiobara et al. (2009) for details of
the BBOBS and the OBEM, and Araki and Sugioka (2009)
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Fig. 1. Cross-sections of seismic structure in the entire mantle. S-wave velocities are shown for the upper mantle (0–410 km) and the MTZ (410–660
km). The model of Ritsema and van Heijst (2000) is shown for the MTZ structure. P-wave velocities are shown for the lower mantle (660–2900 km).
Velocity scales are ±3% in the upper mantle and the MTZ and ±0.75% in the lower mantle. Green diamonds indicate hotspots in the Polynesian
region. (a) Cross-section A–A′, passing the Society and Pitcairn hotspots; (b) cross-section B–B′, passing the Society and Macdonald hotspots.
Narrow mantle plumes are indicated by arrows. (c) positions of the profiles. “SC,” “PT,” and “MD” in (c) indicate the Society, Pitcairn, and
Macdonald hotspots, respectively. Modified from figure 11 of Suetsugu et al. (2009).

Fig. 2. TIARES stations (large triangles) on a bathymetric map. Open,
red, and green triangles represent the stations equipped with BBOBS,
OBEMs, and DPGs; BBOBS and OBEMs; and OBEMs, respectively.
Other broadband seismic and electromagnetic stations are indicated by
small yellow and green triangles, respectively. The red star indicates the
Society hotspot.

for those of the DPG. The French team also installed two
IUEM/INSU OBEMs (EM1 and EM2 in Fig. 2) that were
used from 2009 to 2010 in the studied region. We designed
the TIARES network configuration to determine a detailed
structure beneath the Society hotspot down to the top of the
lower mantle. This network observation is expected to re-
veal the mantle plumes which ascend from the lower mantle
to the hotspot.

3. Planned Data Analyses
Figure 4 shows the noise spectra of the SOC1 records

computed from 1.5-year-long data. The noise level on the
vertical-component is well below that at high-noise land
stations (Peterson, 1993) at periods longer than 10 s. This
indicates that the vertical component of the BBOBS records
are suitable for analyzing Rayleigh waves, which are sensi-
tive to the upper mantle structure, and teleseismic P waves,
which are sensitive to the deeper mantle structure; both
types of waves have large long-period vertical motions. The
noise level of the two horizontal components is lower than
that at high-noise land stations at periods between a few
seconds and 30 s, indicating that teleseismic S waves in this
period range are useful. The horizontal noise level at peri-
ods longer than 30 s is comparable to, or greater than, that
at high-noise land stations.

Hot mantle plumes should be detectable as low seismic
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Fig. 3. (a) BBOBS on board R/V “MIRAI” just before installation. (b)
OBEM recovered by the fishing boat “Fetu Mana.”

Fig. 4. The noise model of the SOC1 BBOBS station. The blue curve
indicates vertical noise spectra. Green and red curves are noise spectra
of the two horizontal components. Thick curves behind show the low-
and high-noise models at land stations (Peterson, 1993).

velocity anomalies. Because of the low noise level of the
vertical component of the BBOBS records, Rayleigh wave
tomography should be the most effective method of de-
tecting such velocity anomalies. Travel time tomography

Fig. 5. 19 h records of (a) vertical component, (b) horizontal component,
and (c) water pressure of the 2010 Chilean earthquake. R1, R2, ... and
G1, G2, ... denote successive arrivals of Rayleigh and Love waves,
respectively, which circled the Earth’s surface. Bottom three panels:
(d) EW component, (e) NS component, and (f) vertical component of
3-h geomagnetic records of the tsunami generated by the earthquake
(black). The corresponding water pressure record (red) is superimposed.

of teleseismic body waves will be employed to determine
the seismic velocity structure in the mantle transition zone
(MTZ), a depth range from 400 to 700 km, and the lower
mantle. The topography of the mantle discontinuities (the
410-km and 660-km discontinuities) could be used as a
“mantle thermometer” because they are interpreted as min-
eral phase changes controlled by temperature and pressure.
Previous studies (e.g., Niu et al., 2002; Suetsugu et al.,
2009) showed that the MTZ is thin (hot) beneath the So-
ciety hotspot. However, the spatial resolution of the previ-
ous results is poor because of the sparse data in the region.
We will study the thermal structure in the MTZ by mapping
the topography of the mantle discontinuities with consid-
erably better spatial resolution by receiver function analy-
sis (e.g., Owens and Crosson, 1988). This should help in
determining whether the presumed mantle plumes ascend
through the MTZ. The OBEM data will be analyzed with
a three-dimensional magnetotelluric method (Tada et al.,
2011) to obtain the electrical conductivity structure down
to the MTZ beneath the Society hotspot. Electrical conduc-
tivity is sensitive to temperature and composition (includ-
ing the degree of mineral hydration) in a different manner
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from seismic velocities. Simultaneous use of BBOBSs and
OBEMs could provide information on the elastic proper-
ties and electrical conductivities in the mantle, respectively,
which would enable separate determination of the ther-
mal and compositional characteristics of the mantle plumes
(e.g., Fukao et al., 2004).

4. Seismic and Tsunami Records of the 2010
Chilean Earthquake

During the observation period, the Chilean earthquake
(Mw 8.8) occurred off the coast of Chile (35.846◦S,
72.719◦W) on February 27, 2010, which provided a unique
opportunity to observe seismic waves and tsunamis trig-
gered by the earthquake. Figures 5(a) and 5(b) show seis-
mograms recorded for approximately one day at station
SOC8, where BBOBSs, OBEMs, and DPGs were in op-
eration. On the vertical and horizontal components, the
surface waves circling the Earth several times were clearly
observed. Approximately 10 h after the arrival of the first
seismic wave, we observed a tsunami signal lasting for 5–
6 h on the DPG sensor (Fig. 5(c)). Interestingly, we ob-
served an electromagnetic (EM) signal simultaneously with
the pressure signals, of which OBEM and DPG waveforms
are similar (Figs. 5(d) and (f)), thus indicating that the EM
signal was also caused by the Chilean tsunami. It is theo-
retically well understood that the movement of electrically-
conductive ocean water in an ambient geomagnetic field in-
duces secondary EM fields in the oceans (Sanford, 1971).
However, until recent advances in high-precision measure-
ment of the EM fields enabled the seafloor and island mea-
surement of the tsunami signals (Manoj et al., 2011; Toh et
al., 2011), this type of research was restricted by the low-
signal tsunami EM levels. The EM measurement enables
the evaluation of tsunami propagation direction and particle
motion of the seawater, which could not be obtained from
the pressure measurement. This is the first array observa-
tion of the EM field caused by a tsunami. We will be able to
track the tsunami waves over eastern French Polynesia by
analyzing the data from the TIARES network, which will
enable the study of detailed tsunami propagation and its in-
teraction with bathymetry.
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