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[1] Mixing in heterogeneous media results from the competition between velocity
fluctuations and local scale diffusion. Velocity fluctuations create a potential for mixing by
generating disorder and large interfacial areas between resident and invading waters. Local
scale diffusion smoothes out the disorder while transforming this potential into effective
mixing. The effective mixing state is quantified by the integral of concentration squared
over the spatial domain. Because it emerges from dispersion, the potential mixing is defined
as the mixing state of a Gaussian plume that has the same longitudinal dispersion as the real
plume. The difference � between effective and potential mixing normalized by the latter
traduces the lag of diffusion to homogenize the concentration structure generated by the
dispersion processes. This new decomposition of effective mixing into potential mixing and
departure rate � makes a full use of dispersion for quantifying mixing and restricts the
analysis of mixing to �. For cases where the mean concentration can be assumed Gaussian,
we use the concentration variance equation of Kapoor and Gelhar (1994) to show that �
depends solely on the macrodispersion coefficient (spreading rate) and the recently
developed mixing scale defined as the smallest scale over which concentration can be
considered uniform, and which quantifies the internal plume disorder. We use numerical
simulations to show that � turns out to follow a simple scaling form that depends on neither
the heterogeneity level or the Peclet number. A very similar scaling form is recovered for
Taylor dispersion. Both derivations of � reinforce its relevance to characterize mixing. This
generic characterization of mixing can offer new ways to set up transport equations that
honor not only advection and spreading but also mixing.

Citation: de Dreuzy, J.-R., J. Carrera, M. Dentz, and T. Le Borgne (2012), Time evolution of mixing in heterogeneous porous media,
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1. Introduction
[2] Solute transport has been traditionally described in

terms of advection and dispersion. Advection represents the
mean displacement of the solute and is expressed in terms
of the mean fluid velocity. Dispersion quantifies the rate of
spreading of the solute plume and is expressed in terms of
the dispersion coefficient. This description is sufficient for
many purposes (e.g., risk analysis), but insufficient when
mixing-driven chemical reactions come into play. The rate
of reaction is often controlled by the rate at which reactants
mix. Hence, it is not surprising that mixing has been thor-
oughly studied in porous media [Cirpka and Kitanidis,
2000; de Simoni et al., 2005; Kitanidis, 1994] as well as in
complex flows [Pope, 2000; Tennekes and Lumley, 1972].

[3] Assuming that transport is locally Fickian, de Simoni
et al. [2005] found that the rate of fast reactions is given by

r ¼ fQ � fm, where fQ is a chemical factor, dependent on
reaction parameters, and fm is a mixing factor given by
rcd0rc with d0 the diffusion coefficient and c the local
concentration. This expression points out that mixing results
from the effect of diffusion. As such, it tends to homogenize
concentration distributions. However diffusion alone yields
limited mixing. It can however be strongly enhanced by
flow heterogeneity that generates complex concentration
patterns and increases rc [Chiogna et al., 2011; Le Borgne
et al., 2010; Rolle et al., 2009; Tartakovsky et al., 2008].

[4] The key question is how to characterize and evaluate
mixing. Using the mixing factor fm, a natural choice for the
overall mixing rate is :

�ðtÞ ¼
Z
�

ddxd0rcðx; tÞ � rcðx; tÞ; (1)

where � is the overall domain. This magnitude is called
scalar dissipation rate because it quantifies the rate of decay
of the second moment of concentration M(t) [Pope, 2000].
Indeed assuming that concentration obeys the advection
diffusion equation and that solute flux through the bounda-
ries is zero, then

�ðtÞ ¼ � 1

2

dMðtÞ
dt

; (2)
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where

MðtÞ ¼
Z
�

ddxc2: (3)

[5] Therefore, M(t) characterizes a mixing state in the
sense that the better mixed, the smaller M(t). It is clear that a
proper description of transport should honor not only advec-
tion and spreading (dispersion), but also mixing. This work
is motivated by the need to find a quantitative evaluation of
mixing (i.e., M(t)) to test candidate transport equations.

[6] The problem lies in the intricate link between spread-
ing and mixing. In fact, late time mixing rate can be
explained in terms of spreading rate [Le Borgne et al., 2010].
This together with the view of local mixing as controlled by
diffusion shows that the mixing stat M(t) results from both
the local diffusion processes and the more global dispersion
processes. Therefore, it is natural to distinguish these two
origins of mixing by expressing concentration as the sum of
the average concentration c and the deviation about it c0 :

c ¼ cþ c0: (4)

[7] Schematically c and c0 are expected to rate the contri-
butions to mixing of spreading (i.e., dispersion) and diffu-
sion, respectively. More precisely, using equations (3) and
(4) and the fact that c0 ¼ 0, the mixing state M(t) can then
be decomposed in

MðtÞ ¼ M1ðtÞ þM2ðtÞ: (5)

with

M1ðtÞ ¼
Z
�

ddxc2
(6)

M2ðtÞ ¼
Z
�

ddxc02: (7)

[8] That is, the overall actual mixing state M(t) is the
sum of what we call the dispersive mixing state M1(t) and
the local mixing state M2(t). For stratified flows, Bolster
et al. [2011] show that the actual mixing M(t) departs from
dispersive mixing, which represents the effect of spreading,
at times lower than the diffusion time. At this stage, M2(t)
is significantly larger than 0 showing that concentration
perturbations triggered by advective heterogeneities are not
yet wiped out by diffusion. Asymptotically however, mix-
ing becomes dominated by spreading and M(t) becomes
equal to M1(t).

[9] The decomposition of mixing given by equation (5)
is not only natural, it is also appealing because the local
mixing state M2(t) turns out to be precisely the spatially
integrated concentration variance k�2

ck, a quantity that has
been extensively studied for uncertainty quantification, sol-
ute plume characterization and risk analysis to cite only
few applications [Andricevic, 1998; Caroni and Fiorotto,
2005; Fiori and Dagan, 2000; Fiori, 2001; Fiorotto and
Caroni, 2002; Kapoor and Gelhar, 1994a, 1994b; Kapoor

and Kitanidis, 1998; Pannone and Kitanidis, 1999;
Tennekes and Lumley, 1972; Tonina and Bellin, 2008;
Vanderborght, 2001]. Unfortunately, although appealing,
this decomposition cannot generally be used for relating
mixing to spreading because most results on concentration
variance are based on the approximation that the mean con-
centration c is Gaussian [Fiori and Dagan, 2000; Kapoor
and Gelhar, 1994a; Kapoor and Kitanidis, 1998]. Under
this closure assumption, c can effectively be derived from
spreading. The assumption of Gaussianity is however valid
only at late times (i.e., much larger than the advection
time) or for low levels of heterogeneity, i.e., in the condi-
tions that have been classically investigated [Kapoor and
Kitanidis, 1998; Tonina and Bellin, 2008; Vanderborght,
2001]. Actually, the mean concentration c becomes signifi-
cantly non Gaussian at early times and high heterogeneity
(Figure 1). Since most mixing occurs then, it is clear that
the deviation of actual from dispersive mixing may play an
important role and needs to be studied. The objective of
our work is precisely to analyze such deviation so as to pro-
pose a quantitative evaluation of the evolution of mixing.

2. Model, Numerical Methods and Computation
of Mixing States

[10] As mentioned in the introduction, the decomposition
of the actual mixing state M(t) into dispersive and local
mixing states, M1ðtÞ and M2ðtÞ is not convenient because
computation of M1ðtÞ is not immediate. Instead, we pro-
pose decomposition into a potential macrodispersive mix-
ing MD state and a deviation rate �, defined as:

�ðtÞ ¼ MðtÞ �MDðtÞ
MDðtÞ

; (8)

where MD(t) is the mixing state corresponding to a Gaus-
sian plume that has the same longitudinal dispersion �L as
the real plume:

MDðtÞ ¼
m2

0

2L2
ffiffiffi
�
p

�L
: (9)

with m0 the mass of solute initially injected transversally to
the main flow direction over a line of length L2 [Le Borgne
et al., 2010]. MD(t) quantifies the mixing state that corre-
sponds to the maximum entropy that can be achieved for
the longitudinal spreading �L. Notice that the Gaussian dis-
tribution maximizes the concentration entropy for a given
mean and dispersion �L [Kitanidis, 1994]. That is, MD(t)
quantifies the best (i.e., most thoroughly) mixed state that
can be achieved for the longitudinal spreading �L. The
action of local diffusion is indispensable to translate this
mixing potential into effective mixing.

[11] � measures the relative deviation of actual mixing
from the potential macrodispersive (Gaussian) mixing state.
When it is zero, the whole zone occupied by the plume as
measured by the macrodispersion coefficient is well mixed.
When it is much larger than zero, the plume is not well
mixed within the zone that it occupies. It happens for exam-
ple at high Peclet number when concentrations are organ-
ized around a long folded filament packed in a restricted
zone. The full description of the overall mixing state then
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reduces to the characterization of the relative deviation
from the potential macrodispersive mixing state, �(t),
so that

MðtÞ ¼ MDðtÞ
�

1þ �ðtÞ
�
: (10)

[12] As opposed to the decomposition (5) of M(t) into dis-
persive and local mixing, this alternative decomposition of
M(t) is advantageous for two reasons. First, it makes use of
the large body of knowledge available on dispersion for
evaluating MD(t) [Dagan, 1989; de Dreuzy et al., 2007;
Dentz et al., 2000; Gelhar and Axness, 1983; Gelhar, 1993;
Neuman and Zhang, 1990]. Second, it does not require the
mean concentration to be Gaussian, as � contains not only
the resistance to mixing of the local concentration contrasts
but also the deviation of the mean concentration from the
Gaussian distribution. The rest of the section is devoted to
describe the computation of � and the mixing states.

2.1. Model and Numerical Methods

[13] The model and numerical methods to simulate flow
and transport are classical. Our implementation is essentially
that of Beaudoin et al. [2007] and de Dreuzy et al. [2007].
We summarize it below for the sake of completeness.

[14] The permeability field is modeled by a 2-D lognor-
mal field with an isotropic gaussian correlation function:

hY 0 ðxÞY 0 ðx0Þi ¼ �2
Y exp � jx� x0j

�

� �2
 !

; (11)

where Y 0ðxÞ ¼ Y ðxÞ � hY i and Y ðxÞ ¼ ln ðKðxÞÞ, h i
stands for spatial (ensemble) average, �2

Y is the lognormal
permeability variance and � is the correlation length. The
computational domain is a rectangle of dimensions L1 and
L2 in the two spatial dimensions x1 and x2 counted in terms
of correlation length (L1/�, L2/�).

Figure 1. Concentration profiles cðx1Þ for Pe ¼ 500 and �2
Y ¼ 9 at times equal (a) to the advection

time scale (t ¼ 1) and (b) to 10 times larger than the advection time scale (t ¼ 10). Solute is injected on
a long line transversally to the mean flow direction. Injection is either uniform (dashed line) or flux
weighted (solid line).
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[15] Periodic boundary conditions are imposed both on the
permeability field and on the flow equation at the horizontal
domain boundaries to ensure that the velocity statistics are
not biased by the boundaries, in contrast to the no-flow
boundary conditions case [Englert et al., 2006; Salandin and
Fiorotto, 1998]. Typical examples of permeability fields are
displayed on the top line of Figure 2. Even if the correlation
pattern remains the same from right (�2

Y ¼ 1) to left (�2
Y ¼ 9),

the amplitude of variation increases steeply from 3 to 8 orders
of magnitude. The second line of Figure 2 also shows the
enhancement of flow channeling with higher flow contrasts
and more continuous flow channels [Le Goc et al., 2009].

[16] Solute is transported by advection and diffusion. the
ratio of advection to diffusion is described by the peclet
number:

Pe ¼ ð� � uÞ=d0; (12)

where u is the mean velocity. Injection is instantaneous on
the full width of the domain L2 orthogonally to the main
flow direction along x1. Injection is shifted downstream
from the domain inlet by a distance of 10 � from the do-
main inlet to avoid boundary effects. Injected concentra-
tions are either proportional to flow or uniform.

[17] The flow equation is solved numerically using finite
differences with square grid cells (dx1 ¼ dx2 ¼ lm). Solute
transport is simulated using a classical random walk
method. The aspect ratio of the system L1/L2 ranges from 1
to 4. As we are interested both in the preasymptotic and in
the asymptotic regimes, we have used a large range of sys-
tem sizes L1/�, L2/� between 200 and 800. The injection
window has a width of at least 100 �. The number of grid
cells per correlation length �/lm is not smaller than 10
[Ababou et al., 1989]. An initial convergence analysis shows
that 5000 particles per simulation corresponding to around
10 particles per correlation length and 100 Monte-Carlo sim-
ulations are sufficient to get accurate estimates of the mixing
states. Finally, we consider wide ranges both for heterogene-
ity (0:25 � �2

Y � 9) and Peclet numbers (50 � Pe � 103).
[18] In the following, time t is rescaled by the advection

time scale �u ¼ �=u, which defines the dimensionless time
t0 ¼ t=�u. For simplicity of notation in the following, we
drop the prime.

2.2. Computation of Mixing States

[19] As defined by equation (3), the overall mixing state
M(t) is equal to the spatial integral of the concentration
squared. Concentrations can be approximated by the aver-
age number of particles over a fixed grid cell scale. How-
ever, the average distance between particles increases and
concentrations become increasingly noisy as time proceeds.
Le Borgne et al. [2011] found that a much more accurate
method to compute M(t) is based on the cumulative distribu-
tion of particle pair separation distance, P(r, t) [Fiori and
Dagan, 2000; Tonina and Bellin, 2008]. Using this distribu-
tion, the concentration second moment becomes [Grassberger
and Procaccia, 1983]:

lim
r!0

Pðr; tÞ
�r2

¼
Z
�

cð�; tÞ2d� ¼ MðtÞ: (13)

[20] In practice, r should be chosen smaller than the mix-
ing scale "(t), defined as the smallest scale over which c

can be considered uniform, but still larger than the smallest
distance between particles. In fact, the normalized pair par-
ticle separation distance (13) is independent on the scale r,
for r < "(t).

[21] The dispersive mixing state M1(t) is the integral
over the domain of the average concentration c squared as
stated by equation (6). We define c as the average of the
concentration over transects orthogonal to the mean flow
direction:

cðx1; tÞ ¼

ZL2

0

cðx1; x2; tÞ dx2

L2
:

(14)

[22] M1(t) could be computed by first determining c and
then integrating its square over the domain extension. How-
ever, for the sake of consistency and accuracy, we adopt
the same methodology as for M(t) but in the x1 direction.
M1(t) is computed from the cumulative distribution of the
pair particle separation distance along the x1 coordinate
P1(x1, t). For small enough distances, the x1 distribution of
particles is homogeneous and P1(x1, t) is related to the sec-
ond moment of average concentrations by:

lim
l1!0

P1ðl1; tÞ
2l1

¼
ZL1

0

c2ðx1; tÞdx1 ¼ M1ðtÞ: (15)

[23] As for M(t), M1(t) is equal to the pair particle den-
sity when the distance l1 is smaller than some characteristic
scale of the order of the mixing scale.

[24] As discussed in the introduction, the potential macro-
dispersive mixing state MD(t) is the mixing state correspond-
ing to a Gaussian plume that has the same longitudinal
dispersion �L as the real plume. It can be straightforwardly
obtained from equation (9).

[25] Finally, M2(t) and �(t) are not computed from the
concentration field but deduced from the above mixing
states by using equation (8) for � and the decomposition
given by equation (5) for M2:

M2ðtÞ ¼ MðtÞ �M1ðtÞ: (16)

2.3. Difference Between Spreading and Gaussian
Mixing States M1 and MD

[26] As stated in the introduction, if the average concen-
tration cðx1Þ was indeed Gaussian, then MD(t) would be
equal to M1(t) [Kapoor and Gelhar, 1994b; Kapoor and
Kitanidis, 1998]. While this is a good approximation for
weak heterogeneity or late times, it is in general not true
for strong heterogeneity and at early times. Numerical
results obtained for �2

Y ¼ 9 show that, around the advection
time (t ¼ 1), the distribution is highly skewed and biased to
the smaller values (Figure 1, black curves scaled on the left
axis). From the advection time (t ¼ 1) to ten times the advec-
tion time (t ¼ 10) (Figure 1), the skewness is divided by a
factor of 4 and asymptotically the mean concentration profile
becomes Gaussian even for highly heterogeneous media.

[27] The deviation of the mean concentration from a Gaus-
sian distribution is larger for uniform injection conditions
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Figure 2
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than for flux-weighted injection conditions (Figure 1, dashed
lines) because a large portion of the injected mass lags behind
at low K areas. In fact, the early time average concentration c
is determined by the velocity distribution rather than by diffu-
sion. For example, for a stratified medium with the same ve-
locity point-distribution p(u) as the heterogeneous flow field
under consideration and uniform or flux-weighted injection
conditions, the plume shape directly derives from the velocity
distribution and is pðuÞ and u � pðuÞ=u, respectively. For
mildly to highly heterogeneous permeability fields (�2

Y � 1),
the velocity distribution p(u) is close to a lognormal distribu-
tion [Salandin and Fiorotto, 1998], for which pðuÞ is more
skewed and biased to the smaller values than u � pðuÞ=u.

[28] In summary, M1 deviates from MD in the preasymp-
totic regime. We characterize this deviation by the ratio
(M1 � MD)/MD (Figure 3), which is positive. The ratio first
increases with time, reaching a maximum at a time around
the advection time in the uniform injection case and much
earlier in the flux-weighted injection case. Differences van-
ish only after some advection times. The deviation from the
Gaussian behavior is enhanced by heterogeneity and is al-
ready non-negligible at mild levels of heterogeneity (�2

Y ¼ 1)
(Figure 3, blue curves). M1 cannot thus be identified to MD

on a broad interval of times around the advection time scale
for mildly to highly heterogeneous media (�2

Y � 1). The rela-
tive difference between M1 and MD is enhanced both by the
heterogeneity and by the uniform injection conditions.

2.4. Overall Variations of the Deviation From the
Potential Macrodispersive Mixing c(t)

[29] We evaluate numerically the relative deviation � of
the actual mixing state from the potential macrodispersive

(Gaussian) mixing state. It depends on a number of factors
including the heterogeneity variance (�2

Y ), Peclet number
(Pe) and the solute injection conditions (uniform or flux
weighted).

[30] Figure 4 displays the typical variations of � for a
Peclet number of 500. � has a roughly symmetrical bell-
shaped behavior in logarithmic-linear coordinates express-
ing a sharp rise and a slow decrease for all simulation
conditions. Its maximum �max occurs around the advection

Figure 2. From top to bottom: log K field, logjv1j field and log(c/c0) at four evolving times on the left (t ¼ 1, 3.3, 9.3
and 24) for �2

Y ¼ 1 and at these three first times on the right for �2
Y ¼ 9. Initial concentrations are flux weighted, Peclet

number is 100 and system sizes are L1/� ¼ 2L2/� ¼ 51.2, i.e., one fourth to one tenth of the characteristic sizes used in
this study. Both fields have the same correlation structure but different permeability variability. If channels are located in
the same areas, they are more pronounced in the higher heterogeneity case on the right.

Figure 3. (M1 � MD)/MD for evolving levels of heteroge-
neity at Peclet number Pe ¼ 500 for flux-weighted and uni-
form injection conditions at evolving levels of heterogeneity.

Figure 4. � ¼ (M�MD)/MD for evolving levels of hetero-
geneity at Peclet number Pe ¼ 500 for flux-weighted (a) and
uniform (b) injection conditions. Insert of (a) shows the late
time behavior of � compared to the 1/t tendency (dashed
line).
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time scale. As the sharp rise occurs earlier than the advec-
tion time, it is likely that it comes from the heterogeneity
of the velocity field. Indeed, the ensemble dispersion coef-
ficient, whose behavior is dominated by advective hetero-
geneity, increases sharply in this time range [Dentz et al.,
2000]. The potential macrodispersive mixing state MD(t)
decreases accordingly, see equation (9).

[31] The heterogeneity in the velocity field generates
long filaments enhancing plume spreading as displayed by
the early-time concentration fields of the third and fourth
lines from top of Figure 2. In the absence of diffusion, �
increases without limits. Diffusion limits the increase of �
by smoothing out the filament structure created by the het-
erogeneous velocity field (5th line from top of Figure 2).
Eventually at large times, � tends asymptotically to zero as
1/t (Figure 4, insert) and the plume becomes nearly well
mixed within the full spreading area (bottom line of Figure 2).

[32] In the preasymptotic regime, � increases with the het-
erogeneity variance �2

Y as heterogeneity enhances the velocity
field correlation (Figure 2, second line from top) [Le Borgne
et al., 2007]. It is traduced by the enhancement of the filaments
in the concentration fields from the left (�2

Y ¼ 1) to the right
(�2

Y ¼ 9) of Figure 2. For �2
Y � 1, � is also strongly influenced

by the injection conditions (Figure 4a versus Figure 4b). Ini-
tially, � is positive for flux-weighted injection conditions but
null for uniform injection conditions. This initial difference
propagates at least over the advection-dominated regime and
is progressively dampened by diffusion.

[33] Finally we compare �(t) ¼ (M(t) � MD(t))/MD(t) as
given by Figure 4 with the relative deviation (M1(t) � MD(t))/
MD(t) studied in section 2.3 and given by Figure 3. In the
uniform injection case, (M1(t) � MD(t))/MD(t) is of the
order of 10% to 20% of �(t), so that M1(t) cannot be identi-
fied to the potential macrodispersive mixing state MD(t). In
the flux-weighted injection case however, (M1(t) � MD(t))/
MD(t) is of the order of 1% to 2% of �(t). It does not mean
that the average concentration does no longer depart from a
Gaussian distribution as previously stated. It just means
that the initial concentration heterogeneity and the advec-
tive heterogeneities have a much stronger effect on the
overall mixing state than the non-Gaussianity of the mean
concentration. In the flux-weighted injection case, we will
approximate M1(t) by MD(t) in an attempt to derive �(t)
from macrodispersion.

3. Analytical Derivation of c(t) for Flux Weighted
Injection

[34] In this section, we approximate M1(t) by MD(t) and
consequently M2(t) by �(t) � MD(t). As the local mixing state
M2(t) is also the spatially integrated concentration variance
k�2

ck, we attempt to derive �(t) from the knowledge acquired
on concentration variance [Andricevic, 1998; Caroni and
Fiorotto, 2005; Fiori and Dagan, 2000; Fiorotto and
Caroni, 2002; Kapoor and Gelhar, 1994a, 1994b; Kapoor
and Kitanidis, 1998; Tonina and Bellin, 2008; Vanderborght,
2001]. It should be noted however that the problem handled
here still differs from previous ones by the magnitude of the
permeability variability considered. While all previous stud-
ies on concentration variance have dealt with low to mild het-
erogeneity permeability fields (�2

Y � 1), we focus here on
mild to high heterogeneity fields (�2

Y � 1). The difference is

not minor as both cases may lead to fundamentally different
behaviors. For example, spreading by permeability heteroge-
neity is strongly enhanced by heterogeneity when �2

Y � 1 [de
Dreuzy et al., 2007; Jankovic et al., 2003].

[35] Using the Eulerian approach, Kapoor and Gelhar
[1994a] derive the equation for the evolution of concentra-
tion variance:

d

dt
k�2

ck ¼
X2

i¼1

2Dii

���� @c

@xi

� �2����� 2d

���� @c0

@xi

� �2����; (17)

in which D denotes the diagonal macrodispersion tensor,
and k � k stand for integration over the flow domain, �. The
off-diagonal dispersion terms are supposed to be zero
because of the isotropic nature of the permeability field and
because the main flow direction is aligned with the x1 coor-
dinate. Equation (17) expresses that concentration variance
k�2

ck is generated by spreading (effective dispersion) and
destroyed by diffusion. Without mass flux through the do-
main boundaries and for pulse-like injection conditions, the
first term on the right side of equation (17) is directly
linked to M 01ðtÞ, where we use the shorthand notation
f 0ðtÞ ¼ df ðtÞ=dt for the time derivative (Appendix A of Le
Borgne et al. [2010]):

X2

i¼1

2Dii

���� @c

@xi

� �2���� ¼ � d

dt

Z
�

ddx c2

0
@

1
A ¼ �M 01ðtÞ: (18)

[36] The second term has been classically approximated
by the interaction by exchange with the mean closure
approximation (IEM closure) [Kapoor and Gelhar, 1994a;
Tennekes and Lumley, 1972; Villermaux and Devillon,
1972] ���� @c0

@xi

� �2���� ¼ k�2
ck

�2
; (19)

where � is the concentration microscale characterizing the
typical spatial scale of concentration perturbation c0 varia-
tions. Replacing k�2

ck by M2(t), using equations (18) and
(19) and approximating M1(t) by MD(t), equation (17) can
be written as

M 02ðtÞ þ
2d

�2
M2ðtÞ ¼ �M 0DðtÞ: (20)

[37] The only difficulty for solving equation (20) lies in
the evaluation of �.

[38] � has first been assumed to be constant [Kapoor
and Gelhar, 1994a]. It has been analytically expressed as
the result of the balance between compression induced by
advection and expansion due to diffusion [Tennekes and
Lumley, 1972]. Evaluated later numerically from the con-
centration perturbation c0 and its gradient, � has been
found to first increase before reaching an asymptotic value
at times larger than the diffusion time scale [Kapoor and
Kitanidis, 1998]. While this method gives valuable insight
into the evolution of the concentration microscale �, it
does not provide an independent way to obtain k�2

ck.
[39] Here we propose replacing the concentration micro-

scale � by the mixing scale " defined as the largest scale
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over which the concentration can be considered locally uni-
form [Le Borgne et al., 2011]. For a homogeneous media "
grows diffusively and it is equal to the diffusion scaleffiffiffiffiffiffiffiffi

2Dt
p

. For heterogeneous media it has been found to scale
subdiffusively with time due to the competition between
local shear and diffusion. Note that, unlike �, which is
defined by equation (19), " can be determined independ-
ently of the concentration variance. We thus determine
M2(t) by solving the following equation:

M 02ðtÞ þ
2d

ða "ðtÞÞ2
M2ðtÞ ¼ �M 0DðtÞ; (21)

which is equivalent to equation (20) where the concentra-
tion microscale � has been replaced by a "ðtÞ. The prefac-
tor a expresses the possible difference between � and " by
a constant multiplicative factor that does not alter the scal-
ing evolution of ". We have solved equation (21) numeri-
cally with MD(t) given by equation (9), �LðtÞ and "(t)
obtained from the numerical simulations. Without any
additional information, the prefactor a had to be optimized
to minimize the difference of the values of � derived from
equation (21) and obtained numerically. Figure 5 shows the
good agreement between the values of � obtained directly
from the simulations (solid lines) and obtained from the nu-
merical integration of (21) (dashed lines). Values of the
prefactor a remain close to 1 in the interval [0.72, 0.8].

[40] The derivation of M2 from equation (21) depends
both on the scaling of the mixing scale " and on the prefac-
tor a. To assess the sensitivity of the equation to the scaling
of the mixing scale ", we have analyzed the effect of a
small alteration of the scaling of " by multiplying " by t0.05

while keeping the same integration method for equation
(21) (Figure 5). Despite the optimization of the prefactor a,

the dashed-dotted lines significantly depart from the numer-
ical results (solid lines) demonstrating the high sensitivity
of � to the scaling of the mixing scale ".

[41] The fact that small deviations from the mixing scale
cause large deviations in � reinforces both the concentra-
tion variance equation (18) and the mixing scale concepts,
which were derived independently. That is, the approxima-
tions made by Kapoor and Gelhar [1994a] in deriving
equation (17) are appropriate and the concentration micro-
scale must be proportional to the mixing scale. This result
also supports the proposed mixing concept in that the mix-
ing state is solely determined by the extension of the plume
(spreading scale) and the support scale of the concentration
(mixing scale). However, given the current state of knowl-
edge, the previous analysis has some weak points. First, the
determination of the mixing scale requires the knowledge
of the concentration field. The information available on the
mixing scale is yet insufficient to lead to a general inde-
pendent characterization especially at early times. Second,
the derivation of the overall mixing state from the mixing
scale is highly sensitive to the time scaling of the mixing
scale. Estimate of the mixing scale must thus be highly
accurate. Third, the prefactor a has not yet been determined
independently and must be fitted. Finally, this approach is
not general and relies on the possibility to approximate
M1(t) by MD(t) which can be reasonably attempted in the
flux-weighted injection case but not in the uniform injec-
tion case. While one may hope that these limitations will
be overcome, we seek for a simple alternative characteriza-
tion of �(t) in section 4.

4. Toward a Generic Characterization of c

[42] Whatever the Peclet number, permeability heteroge-
neity and injection conditions, � always has a maximum.
The value of the maximum is noted �max and the time at
which it occurs tmax. � also always display a bell-shaped
curve with a sharp rise and a slow decrease (Figure 4). We
show in this section that �max and tmax are simple functions
of the model parameters and that the bell-shaped time evo-
lution of �(t) is highly generic.

4.1. Maximum of the Relative Deviation From the
Potential Macrodispersive Mixing State

[43] Figure 6 displays the evolution of �max =
ffiffiffiffiffiffi
Pe
p

as a
function of �2

Y for different Peclet numbers. It first shows
that �max scales with

ffiffiffiffiffiffi
Pe
p

. This tendency is at least qualita-
tively logical as less diffusion (higher values of Pe) induces
higher deviations to the potential macrodispersive mixing
state. The fact that the scaling factor is precisely

ffiffiffiffiffiffi
Pe
p

is
also natural, because the diffusion scale grows with

ffiffiffiffiffiffi
d0t
p

.
[44] As stated in 2.4, deviations from potential macrodis-

persive mixing are enhanced by both permeability heteroge-
neity and flux-weighted injection conditions. Consistently,
�max increases with �2

Y and flux-weighted injection conditions
enhance �max by a factor of 1.6 at �2

Y ¼ 2.25 and by a factor
of 2.5 at �2

Y ¼ 9. For flux-weighted injection conditions
and �2

Y > 1, �max scales approximately as �2
Y /4 (gray line on

Figure 6). For �2
Y < 1, the difference between flux-weighted

and uniform injection conditions vanishes (Figure 6, insert).
More precisely, the difference becomes indistinguishable for
�2

Y � 0:4. At smaller values of �2
Y , �max drops quickly to

Figure 5. Numerical results for the relative deviation from
the Potential macrodispersive mixing regime (full lines)
compared to the result of the integration of equation (21)
with the externally provided " and the fitted value of the pre-
factor a (dashed lines) at Peclet of 100. Dashed-dotted lines
come from the integration of equation (21) with an altered
scaling of " by t0.05.
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zero first linearly and then even quicker. In fact, � should
vanish at low heterogeneity where concentrations are solely
determined by diffusion.

[45] Similarly, the time tmax does not depend on the injec-
tion conditions for low level of heterogeneities (�2

Y < 0.1).
At higher levels of heterogeneity however, tmax stabilized
between 1.5 and 2.5 advection time scales for uniform injec-
tion while it decreases approximately as 1=�2

Y for flux-
weighted injection (Figure 7).

[46] At low levels of heterogeneity, the behaviors of
�max and tmax are qualitatively similar to those found for
the concentration variance by numerical and perturbation
methods [Tonina and Bellin, 2008]: ‘‘a larger formation
heterogeneity results in an earlier and higher peak of the
concentration variance’’. While this conclusion holds for

higher levels of heterogeneity and flux-weighted injection
conditions, it does not apply to uniform injection conditions
where tmax becomes independent of the heterogeneity while
�max still increases.

[47] The surprising result is that tmax is almost insensi-
tive to variations of the Peclet number Pe. One might
expect a marked dependence of tmax on diffusion. The
weak influence of variations of Pe indicates that the varia-
tions of � are controlled by advection rather than diffusion.
The proximity of tmax to the advection time scale corrobo-
rates this conclusion, which is qualitatively explained by
Figure 2. Internal disorder (i.e., incomplete mixing within
the plume) is initially controlled by the variability of veloc-
ity (see graphs for t ¼ 1 and 3.3 in Figure 2). A very signifi-
cant destruction of concentration variance occurs because of
the convergence of high velocity paths around low-velocity
islands. While the actual mixing caused by convergence is
sensitive to Pe (so that �max should be proportional toffiffiffiffiffiffi

Pe
p

), the topology of the flow paths (and, therefore, tmax) is
not. In summary, while the magnitude of the deviation from
dispersive mixing is highly dependent on local diffusion,
the time at which the deviation is maximum depends instead
on the topology of the velocity field.

4.2. Scaling Form For c

[48] Beyond the characteristic of its maximum (�max,
tmax ), we show that the time evolution of �ðtÞ displays a well
defined scaling behavior. Figure 8 illustrates �ðtÞ=�max as a
function of t=tmax for different initial conditions and hetero-
geneity variances. It has a bell-shaped form as discussed
above. Using this scaling, the displayed behavior is almost
independent from the injection mode and heterogeneity var-
iance suggesting the scaling form

�ðtÞ ¼ �max f
t

tmax

� �
(22)

Figure 6. Maximum of the relative deviation from the
potential macrodispersive mixing regime �max normalized
by

ffiffiffiffiffiffi
Pe
p

as a function of �2
Y for flux-weighted and uniform

injection conditions. Insert shows the small heterogeneity
behavior of �max/

ffiffiffiffiffiffi
Pe
p

.

Figure 7. Time tmax at which the maximum of the rela-
tive deviation from the potential macrodispersive mixing
regime occurs.

Figure 8. Relative deviation from the potential macrodis-
persive mixing regime � normalized by its maximum �max

as a function of the time t normalized by tmax for flux-
weighted and uniform injection conditions at evolving lev-
els of heterogeneity.
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for �ðtÞ. The largest deviations from this scaling occur at
small times for large heterogeneity variance and uniform
injection conditions. Apart from these cases, the variability
of �/�max around the scaling form (22) is less than 10%,
which is very small compared to the range of different het-
erogeneity, diffusion and injection conditions involved.

[49] A byproduct of this simple scaling is that, for flux-
weighted initial conditions, the dependence of � on the
model parameters can be simply expressed from the depend-
ences established for �max and tmax in the previous section,

�ðtÞ �
ffiffiffiffiffiffi
Pe
p

�2
Y

4
f ð�2

Y tÞ: (23)

[50] Asymptotically, �ðtÞ �
ffiffiffiffiffiffi
Pe
p

=ð4 tÞ . The dependence
on the model parameters is more complex for the uniform
injection case. This generic scaling behavior is surprising.
It means that �/�max does neither depend on the Peclet
number nor on the level of heterogeneity �2

Y . The inde-
pendence of this scaling behavior has several consequen-
ces. First, f(t) might be approximated analytically with
perturbative methods for low heterogeneity and then
extended to a broad range of different heterogeneity levels,
Peclet values and injection conditions. Second, we can
derive from the generic scaling form f some general conclu-
sions on mixing. As �(t) expresses the transition between
local mixing by diffusion at very early time to global mix-
ing by macrodispersion at late times, the transition between
these two extreme regimes always extend over the same
range of temporal scales. For example the time range over
which �/�max is larger than one fourth of its maximum
extends over 2.5 orders of magnitude. It is independent of
the rate of advection to diffusion, of the heterogeneity and
of the injection conditions. It can be taken as a rough esti-
mate of the time range of the transition between the local
mixing by diffusion regime and the global mixing by mac-
rodispersion regime.

[51] The same type of fast rise and slow decrease of �
can also be observed for transport in viscous flow through a
channel, which at large times can be fully described by
Taylor dispersion (Figure 9). � has been computed for uni-
form injection conditions from the analytical solutions for
M2 and MD derived in the work of Bolster et al. [2011]
using a volume-averaging approach. At sufficiently low
values of the Peclet number (Pe < 50), �max strongly
increases with the Peclet number while the time tmax , at
which the maximum is reached is constant. The depend-
ence of �/�max as a function of t/tmax is also independent of
the Peclet number and increases initially linearly with time
and at late times like the inverse of time. These results are
qualitatively similar to what has been obtained here for cor-
related heterogeneous porous media in the sense that tmax is
constant, that �max increases with the Peclet number and
that the generic scaling displays the same early and late
time evolutions. Quantitatively however, the rate of
increase of �max with Pe is much higher for stratified k
fields than for the correlated fields analyzed here, while the
values of �max are much smaller. The generic scaling of
equation (22) with a function f increasing first linearly with
time and decreasing eventually as the inverse of time might
thus be a characteristic generic to a broader range of flow
fields.

5. Conclusions
[52] Mixing results from the interplay between the local-

scale concentration variability (internal plume disorder)
and the global scale dispersion (rate of spreading of the
plume). Classical characterization of mixing has relied on
the decomposition of the concentration in a mean concen-
tration and a deviation about it. To be tractable analytically,
this decomposition generally requires the mean concentra-
tion to be Gaussian. This is indeed the case for low hetero-
geneity or late times (times larger than the characteristic
diffusion time). However, in all other cases, the mean con-
centration can be significantly non Gaussian.

[53] Mixing is quantified by the overall mixing state M(t)
defined as the integral of the concentration squared. Here,
we have decomposed this mixing state as the sum of a
potential macrodispersive mixing state MD(t) plus a depar-
ture term, �(t) � MD(t). We define the potential macrodis-
persive mixing state MD(t) as the integrated squared
concentration of the Gaussian plume that has the same lon-
gitudinal dispersion as the real plume (9). The deviation
function �(t) is the difference of the overall mixing state
M(t) and the potential macrodispersive mixing state, MD(t),
normalized by the latter. This definition facilitates taking
full advantage of prior knowledge on dispersion for charac-
terizing mixing, even when the mean solute concentration
field is highly non Gaussian.

[54] We determine the relative deviation to the potential
macrodispersive mixing state � numerically on classical
log normally Gaussian correlated permeability fields with
extended uniform injection and flux-weighted boundary
conditions. � increases sharply at first because of the veloc-
ity variability and decreases slowly to zero because of the
homogenization effect of diffusion. � reaches its maximum
�max at time tmax, which ranges from one 10th to ten advec-
tion times.

[55] An analytical derivation is possible in the flux-
weighted injection case, where mean concentration is indeed
Gaussian. We can adopt the equation for the evolution of
concentration variance (21) to show that � can be derived

Figure 9. Relative deviation from the potential macrodis-
persive mixing regime � for Taylor dispersion.
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from the spreading scale of the plume and the local mixing
scale, defined as the maximum scale over which solute con-
centrations remain uniform. Departure from Gaussianity of
the mean concentration precludes this approach for uniform
injection conditions.

[56] We thus propose an alternative characterization of �
based on �max, tmax and a generic function f (equation (22)).
Heterogeneity globally enhances the deviation from the dis-
persive mixing through the increase of �max with �2

Y but
reduces the time tmax to reach it. Diffusion reduces the devi-
ation from the dispersive mixing regime but surprisingly
does not alter the characteristic time tmax, which is sensitive
to the topology of the velocity field. While �max and tmax are
specific, the general evolution of � does not depend on dif-
fusion, heterogeneity, or injection conditions. � is thus sim-
ply characterized by its maximum characteristics �max and
tmax and a generic temporally evolving function f. The shape
of the generic function f might even not depend on the par-
ticularities of the flow fields as the same generic shape also
prevails for Taylor dispersion. This generic characterization
of mixing can offer new ways to set up transport equations
that honor not only advection and spreading (dispersion),
but also mixing.
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