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Abstract 16 

Olivine mineral replacement by serpentine is one major alteration reaction of oceanic 17 

hydrothermalism. In the present experimental study, olivine grains were replaced by 18 

chrysotile and brucite under high alkaline conditions. In our study, olivine replacement 19 

implied a spatial and temporal coupling of dissolution and precipitation reactions at the 20 

interface between olivine and chrysotile-brucite minerals. Coupled dissolution-precipitation 21 

led to the alteration of starting olivine grains (so-called primary or parent mineral) to a porous 22 

mineral assemblage of chrysotile and brucite with preservation of the initial olivine 23 

morphology. This mineral replacement reaction of olivine (serpentinization) has been 24 

characterized using XRD, FESEM and FTIR measurements. Moreover, a simple and novel 25 

method is here proposed to quantify the mineral replacement rate (or serpentinization rate) of 26 

olivine by using thermogravimetric (TG) and differential TG (DTG) analyses. 27 

Serpentinization extent depends on the grain size: it is complete after 30 days of reaction for 28 

the smallest olivine grains (<30µm), after 90 days of reaction for the intermediate olivine 29 

grains (30 µm-56 µm) and reaches 55% of olivine replacement after 90 days for the largest 30 

fraction (56-150 µm).  Based on the fitting of the serpentinization extent (t) versus time (t) 31 

by using a kinetic pseudo-second-order model, the serpentinization rates vary from 3.6x10-6 s-32 

1 to 1.4x10-7 s-1 depending on the olivine grain size. An additional correlation between FTIR 33 

spectra analysis and TG measurements is proposed. The mineral replacement reactions 34 

frequently observed in natural alteration processes could be a powerful synthesis route to 35 

design new porous and/or nanostructured materials. 36 

 Keywords: A1. Serpentinization; A1. Mineral replacement rate; B1. Alkaline medium; B2. 37 

Chrysotile nanotubes; A1. TG analyses 38 
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1 Introduction 40 

Serpentine minerals (chrysotile, lizardite and antigorite) are widespread in Earth 41 

oceanic lithosphere and are frequently found in chondrites and other extraterrestrial objects. 42 

Serpentine mineralization is of great interest in several fields of research. Serpentinized rocks 43 

present a great enrichment in trace elements compared to primary mantle rocks [1–6]. 44 

Serpentine appears as a vector for trace elements between crustal and mantle reservoirs 45 

[2,5,7,8]. Experimental studies have tested the influence of major (e.g. Fe, Ni) and/or trace 46 

elements (e.g. Li) on the growth of serpentine [9–14]. This kind of synthesis experiments 47 

presents a great interest in medical research due to the asbestos toxicity that can be induced by 48 

inhalation of magnesium silicates fibers including chrysotile [15–18].  Serpentine minerals are 49 

also crucial for sequestration of CO2 due to its availability and sequestration capacity [19–21]. 50 

Indeed a lot of studies are looking for technologies that could possibly contribute to reduce 51 

carbon dioxide emissions. Geological sequestration and ex-situ mineralization of CO2 using 52 

serpentine could be one of the most efficient methods considering the enormous quantity of 53 

serpentine on Earth [22]. 54 

In meteorites, serpentine minerals are directly linked to aqueous alteration processes and 55 

reaction conditions (e.g. [23] and references therein). In the oceanic lithosphere, serpentines 56 

result from interaction between mantle rocks (peridotite composed by olivine and pyroxenes) 57 

and hydrothermal fluids, generally with high fracturation dynamic [24,25]. Olivine alters 58 

along grain boundaries and fractures to produce a mesh texture that preserves the original 59 

olivine morphology at the grain scale [26,27]. This olivine replacement by serpentine is best 60 

explained by coupled dissolution-precipitation processes [28–30]. This reequilibration process 61 

leads to the replacement of one pristine mineral by a secondary mineral (or assemblage) with 62 

a lower solubility in the fluid. Replacement occurs at the fluid/solid interface maintaining the 63 

original external grain shape (pseudomorphism). During alteration, a secondary porosity is 64 
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commonly produced due to volume difference between pristine and secondary minerals, 65 

material loss during dissolution and grain fracturation [24,25]. Secondary porosity enables the 66 

fluid to move interstitially towards the reaction front until the complete mineral replacement 67 

reaction. In oceanic lithosphere, peridotite replacement, and consequent element redistribution 68 

associated with this alteration, is primarily controlled by the physic-chemical conditions of the 69 

hydrothermal fluid (Temperature, Pressure, fluid speciation, pH).  Fluids escaping from deep 70 

sea hydrothermal vents show a large variety of composition and pH, reflecting a large range 71 

of possible physic-chemical conditions. Amongst them, alkaline fluids with high pH were 72 

collected in some hydrothermal fields (e.g., [31,32]). 73 

Numerous experimental studies were conduct to reproduce serpentinization in 74 

hydrothermal context [33–40] and explain serpentine growth [41]. Kinetic appears faster 75 

under alkaline conditions [40,42] but few recent studies have addressed the role of pH on 76 

serpentinization kinetic, particularly in alkaline conditions. 77 

In the present experimental study, we have investigated the process and kinetics of 78 

olivine serpentinization in alkaline hydrothermal conditions (pH = 13.5, measured at 25°C). 79 

Experimental products were characterized using XRD, FESEM and FTIR. The 80 

serpentinization rate was determined using a simple and novel method based on 81 

thermogravimetric analyses (TGA/DTGA). This demonstrates that serpentinization is much 82 

faster under alkaline conditions refering to previous study at comparable conditions 83 

[35,36,43] and can lead to total replacement of <30µm olivine in less than 30 days and 90 84 

days for 30<particle size<56 µm.  85 

2 Materials and Methods 86 

Millimetric grains of olivine San Carlos (Fo90) were crushed by using a Fritsh 87 

Pulverisette 7 micro-crusher. Three classes of grain/particle size (particle size<30µm, 88 

30<particle size<56µm and 56<particle size<150µm) were isolated by sieving. The samples 89 
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were washed three times using high-pure water in order to remove the ultrafine particles that 90 

possibly stuck at grain surfaces during crushing step. Optical and electron microscopy was 91 

performed to control the initial state/appearance of olivine surfaces.  92 

2.1 Alteration experiments 93 

1.5ml of high alkaline solution (1M of NaOH, pH≈13.5 at 25°C) and 100mg of San 94 

Carlos olivine at a given class of particle size were placed in a Teflon cell reaction (cap-cell 95 

also in Teflon). Cell reaction and cap-cell were previously washed by an acidic treatment 96 

followed by washing with high-pure water. This cell reaction was immediately assembled into 97 

a steel autoclave without agitation, referred as “static batch reactor” and the closed autoclave 98 

was placed in a multi-oven (ten independent-temperature compartments) and heated to 150°C 99 

or 200°C (Psat~0.5Mpa and Psat~1.6Mpa). Various olivine-alkaline solution reaction times 100 

from 3h to 90 days were considered in order to determine the mineral replacement rate (or 101 

serpentinization rate) of olivine at the investigated hydrothermal conditions. Particularly, the 102 

effect of initial particle size (three different classes: particle size<30µm, 30<particle 103 

size<56µm and 56<particle size<150µm) on the serpentinization rate of olivine was tested. 104 

All experimental conditions are summarized in table 1. 105 

At the end of the experiment, the autoclave was quenched in cold water. This 106 

manipulation avoids precipitation during cooling with no perturbation of the reaction 107 

products. Then, the autoclave was disassembled and the fluid was collected for pH and major 108 

elements concentration (Mg, Fe and Si) measurements (not shown in this study). After all 109 

experiments, pH of the experimental fluid is still around 13.5 (measured at 25°C). The solid 110 

product was dried directly in the Teflon cell at 80°C for 24h. The dry solid product was 111 

recovered for further solid characterizations described below. 112 
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2.2 X-Ray diffraction measurements 113 

X-Ray diffraction (XRD) analyses were performed in the ISTerre laboratory. All 114 

samples were crushed manually. The powders were carefully placed and manually compacted 115 

in borosilicated capillaries of 500µm of diameter, this corresponds to about 5 mg of sample. 116 

XRD patterns were recorded with a Bruker D8 powder diffractometer equipped with a SolX 117 

Si (Li) solid state detector from Baltic Scientific Instruments using CuKα1-Kα2 radiation and 118 

a Göbel mirror. Intensities were recorded for an 2 interval from 5 to 80° with an 8 s counting 119 

time per 0.024° 2 step for bulk mineralogy determination. 120 

2.3 FESEM observations 121 

Grain size and morphology of the experimental products were characterized using 122 

secondary or backscattering electrons. Micro-imaging was obtained using Zeiss Ultra 55 Field 123 

emission gun scanning electron microscopy (FESEM). This enables a spatial resolution of 124 

approximately 1nm at 15 kV. Samples were dispersed by ultrasonic treatment in absolute 125 

ethanol for at least 5mn in order to disaggregate the particles. One or two drops of dispersion 126 

were placed onto an aluminium support and coated with a thin film of platinium for SEM 127 

observation. 128 

2.4 Thermogravimetric analyses (TGA) 129 

TGA for experimental solid products were performed with a TGA/SDTA 851e Mettler Toledo 130 

instrument under the following conditions: sample mass of about 10 mg, platine crucible of 131 

150 µl with a pinhole, heating rate of 10 °C min-1, and inert N2 atmosphere of 50 ml min-1. 132 

Sample mass loss and associated thermal effects were obtained by TGA/DTGA in a 133 

temperature range from 30°C to 1200°C. In order to identify the different mass loss steps, the 134 

TGA first derivative (rate of mass loss) was used. TGA apparatus was calibrated in terms of 135 

mass and temperature. Calcium oxalate was used for the sample mass calibration. The melting 136 

points of three compounds (indium, aluminium and copper) obtained from the DTGA signals 137 
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were used for the sample temperature calibration. The temperature accuracy of the 138 

TGA/SDTA system is about ± 0.25°C. The weighting accuracy is around 0.1µg, which 139 

correspond to 0.01% for a 10mg sample. 140 

 141 

2.5 FTIR measurements 142 

FTIR measurements (in transmission mode) were performed using an IR microscope 143 

Bruker Hyperion 3000. The IR beam was focused through a 15x lens and the typical size of 144 

infrared aperture is 50*50 µm². The light source is a Globar(TM) and the beam splitter is in 145 

KBr. The spectra were measured from 700 to 4000 cm-1 (4cm-1resolution) with a MCT 146 

monodetector cooled by liquid nitrogen.  147 

Samples must be thin (less than 100 µm) and flat to avoid absorption band saturation or 148 

scattering effects. Sample preparation has involved a careful crushing of samples in mortar 149 

and manual compaction of fine crushed particles between two K-Br windows. Five spectra 150 

per samples were realized; they were fitted using OPUS software. 151 

3 Results and discussion 152 

3.1 Serpentinization reaction under alkaline conditions 153 

Secondary minerals were identified by XRD and FESEM (Figs. 1 and 2) and they 154 

were quantified by TGA (Fig. 3).  Under alkaline conditions, olivine is replaced by chrysotile 155 

and brucite, independently on the starting grain size of olivine. No other minerals were 156 

detected and/or observed during this alteration reaction.  157 

FESEM micro-imaging has revealed a clear evolution of particle size and morphology 158 

of crystal faces during serpentinization advancement (Fig. 2). Serpentine nucleation at 159 

olivine-alkaline solution interfaces is observable by FESEM after only few hours of reaction 160 

when the starting grain size is <30µm (Fig. 2a). These occur as nanosized nodules forming 161 

irregular sub-micrometric rods. They  are still observed onto olivine surfaces after few days of 162 
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reaction and a more advanced serpentinization reaction (Fig. 2c). The irregular sub-163 

micrometric rods were identified as chrysotile and brucite “nucleates” from TGA/DTGA in 164 

the solid product (Fig. 3). While brucite is detected by XRD in the first stages of replacement 165 

(e.g. 3 hours of reaction for <30µm grains), chrysotile was not detected by XRD , possibly 166 

due to its poor crystallinity and/or nanometric size. Chrysotile was detected by XRD after 16h 167 

of reaction for the smallest starting grains (<30µm), however, several days of olivine-fluid 168 

interactions are required when the starting grain size is >30µm (Fig. 1a, b). At advanced 169 

alteration stages, serpentinized samples consist of tubular, conical and cylinder-in-cylinder 170 

chrysotile with nanometric diameter and microsized hexagonal brucite were clearly observed 171 

(Fig. 2e, g, h). Diameter of secondary products depends of the starting material grain size. It 172 

increases from ~50 nm for the <30 µm, to 200-300 nmfor 30-56 µm and 56-150 µm fractions. 173 

Lizardite was not observed. Previous study suggested that lizardite crystallized at lower levels 174 

of supersaturation than chrysotile [44]. Here, we confirm that high alkaline pH favors 175 

chrysotile precipitation [40,42].  176 

In natural samples, olivine replacement in mesh texture is commonly described as an 177 

assemblage of serpentine±brucite±magnetite. Typically, the magnetite amount depends on the 178 

Mg# (Mg# = Mg / (Mg +Fe)) in primary olivine. Neither iron oxides (ex. magnetite or 179 

hematite) nor oxyhydroxides (ex. goethite) were observed in our experiments. Semi-180 

quantitative EDS analyses have revealed that the initial iron contained in olivine was 181 

preferentially incorporated as Fe2+ into brucite (Mg#brucite=0.84), and slightly sequestered 182 

into/onto chrysotile (Mg#chrysotile=0.95) compared to starting San-Carlos olivine. In our 183 

conditions a part of Fe3+ (not determined) might substitute to Si into the chrysotile. In our 184 

experiments, one general reaction of San Carlos olivine alteration  can be written as: follows: 185 

2Mg1,8Fe0,2 SiO4 + 3H2O = (Mg1-ZFeZ)(OH)2 +(Mg1-XFeX)3FeYSi2-Y(OH)4   (1) 186 

with X+Y ~0.05 and Z~0.16   187 
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This isochemical reaction implies a volume increase of ~25% (see discussion below). 188 

On the XRD patterns (Fig. 1), characteristic peaks of chrysotile appear in the first hours 189 

or days of reaction, depending on the initial particle size of olivine (Fig. 1a, b). Secondary 190 

product growth rate is related to the variation of the crystal size with time. On the XRD 191 

patterns the full width at half maximum (FWHM) parameter for specific peaks, corresponding 192 

to a crystalline compound, can be directly associated to its coherent domain size when 193 

instrumental resolution function (IRF) and strain contribution are known. In our case, the 194 

FWHM for the plane (002) of chrysotile was used to obtain an estimation of the chrysotile 195 

size variation during the serpentinization process. Here, a decrease of FWHM implies an 196 

increase of coherent domain size as specified in the Scherrer equation. The FWHM variation 197 

with the reaction time reported in figure 1c shows a fast crystal growth step followed by a 198 

slow crystal growth step for chrysotile from 3h to 30 days when starting grain size is <30µm. 199 

Conversely, chrysotile coherent domain varies only moderately from 20 to 90 days for  200 

starting grain size > 30 µm (Fig. 1c). In this latter case, two explanations are possible: firstly, 201 

a preferential growth of other(s) crystal plane(s) than plane (002) is involved, secondly, a 202 

dominant nucleation events promoting an increase of particle number concentration with time 203 

during mineral replacement of olivine can occur. FESEM observations support the first 204 

assumption because they have revealed a higher radial growth of tubular chrysotile for larger 205 

starting grain size (30-56µm and 56-150 µm) at similar reaction time (Fig. 2f, h).  206 

3.2 Determination of serpentinization rate 207 

The time for complete olivine-to-serpentine transformation or complete 208 

serpentinization process depends on the starting grain size. For example, 30 days were 209 

required when starting grain size was <30µm while about 90 days were required for the 30- 210 

56µm fraction (Fig. 1a, b). For 56-150µm starting grain size, around 55% of mineral 211 

replacement was reached after 90 days of experiments.   212 
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Serpentinization rate of olivine was determined by using a simple and novel method 213 

combining TGA and DTGA. TGA/DTGA were performed to quantify the molecular water 214 

(adsorbed or confined in pores) and hydroxyl groups (-OH) (incorporated in brucite and 215 

chrysotile) as illustrated in figure 3. In general, molecular water (H2O) adsorbed or confined 216 

in pores onto mineral assemblage, was released at moderate temperature (<200°C). 217 

Conversely, the brucite and chrysotile minerals were dehydroxylated at higher temperatures. 218 

Here, a dehydroxylation peak closed to 370°C was associated to brucite. This peak was 219 

shifted towards lower temperature, compared to the dehydroxylation of pure brucite peaking 220 

at 430°C. This change of thermal stability was related to a significant incorporated amount of 221 

iron (Fe2+) into brucite structure as recently claimed by Okamoto et al. [45]. Additionally we 222 

observed that weight loss ratio between serpentine and brucite is not constant following 223 

reaction advancement. Regarding the chrysotile, it was observed that it starts to be 224 

dehydroxylated at about 400°C and it was completely dehydroxylated at approximately 700°C 225 

for most of the experiments. In several cases, two typical dehydroxylation episodes were 226 

measured at 515 and 600 °C, respectively. We note that the starting dehydroxylation step for 227 

chrysotile can be overlapped with residual –OH from dehydroxylation of brucite, possibly 228 

producing a slight over-estimation of incorporated –OH into the chrysotile phase. This direct 229 

measurement was used to calculate the serpentinization extent (%) at a given reaction time as 230 

follows: 231 

ξt =((-OH)measured/(-OH)theoretical)*100        (2) 232 

where (-OH)theoretical is the theoretical weigh (in %) of hydroxyl groups incorporated in 233 

chrysotile (400°C to 700°C) with a chemical formula simplified to Mg3Si2O5(OH)4 for the (-234 

OH)theoretical considered. Then, the serpetinization extent was correlated with reaction time (ξt 235 

vs. t). These experimental-calculated data is displayed in figure 3. As previously stated, a 236 

complete serpentinization extent was determined after 30 days for smaller olivine grains 237 
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(<30µm) and after 90 days for intermediate olivine grains (30<grain size<56). These results 238 

clearly show that the serpentinization rate strongly depends on the starting grain size of 239 

olivine. This explains why for larger olivine grains (56<grain size<150µm), about 55% of 240 

serpertinization extent was only reached after 90 days of olivine-fluid interactions.  241 

Experimental data reported in figure 4 were fitted by using a kinetic pseudo-second-242 

order model. This simple kinetic model describes a fast serpentinization step followed by a 243 

slow serpentinization step until an asymptotic maximum with time. Its integrated form can be 244 

expressed as follows:  245 

           (3) 246 

where t,	 is	 the	 serpentinization	extent	 for	 a	 given	 reaction	 time	 t,	max , the maximum 247 

serpentinization extent (close to 100% for a complete serpentinization) and t1/2 the half 248 

serpentinization time. The fast serpentinization step can be associated to the fast dissolution of 249 

smaller olivine grains initially far from equilibrium, but the dissolution process was spatially 250 

and temporally coupled to a fast precipitation of chrysotile and brucite. For this reason, the 251 

external shape of starting olivine grains (primary or parent mineral) was preserved, leading to 252 

a porous granular material composed of chrysotile and brucite minerals when complete 253 

mineral replacement of olivine was reached. Finally, the mineral replacement initial-rate v0 254 

(or serpentinization initial-rate) was defined as the slope of the tangent line when time t tends 255 

toward zero on the r vs t curve. Analytically, v0=(ξmax/t1/2) and it varies from 3.6x10-6 s-1 to 256 

1.4x10-7 s-1 respectively for <30µm grain size and 56-150µm grain size. Full serpentinization 257 

was not obtain experimentally on 56<particle size<150 µm but the theoretical model 258 

presented predict a close to complete serpentinization (>90%) around 2 years. 259 
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 Indeed, the fluid/olivine interface depending of the initial olivine grain size is the main factor 260 

controlling the initial rate. These kinetic parameters concerning the three different size classes 261 

of olivine and respective correlation factors are summarized in table 2. 262 

The uncertainties of the TG-method result from the calculation method. The main 263 

approximation is the systematic consideration of the same temperature range (400-700°C). 264 

Refering to all the experiments, a variation of the temperature range of ± 50°C will only 265 

induce a difference of 1- 5% for the final serpentinization advancement calculated. Based on 266 

this calculation we assure that the maximum uncertainty of the proposed methods is around 267 

5% as reported in figure 4. The uncertainty on the calculated initial rate is directly depending 268 

on the standard deviation obtained for t1/2 and ξmax (Table 2).  269 

In a complementary way, the transmission FTIR spectra were obtained. Characteristic 270 

stretching bands for hydroxyl group (-OH) in chrysotile-brucite and for Si-O group in olivine-271 

chrysotile were used. Particularly, the relative (-OH)/(Si-O) ratio using integrated bands 272 

intensities or maximum band intensities was correlated with the serpentinization extent 273 

deduced from TG/DTG analyses (Fig. 5). This gives two calibration curves that can be used to 274 

determine serpentinization rate using FTIR measurements. However, FTIR measurements 275 

should be taken with caution because of the overlapping of –OH (for brucite and serpentine) 276 

and Si-O groups (for serpentine and olivine). We could overcome this problem if 277 

serpentine/brucite produced molar ratio stayed constant following reaction time, but as 278 

described before it is not the case.  Here, we conclude that the TG/DTG analyses are a 279 

powerful tool to determine the mineral replacement rate of olivine by chrysotile-brucite 280 

mineral assemblage. For this specific case, the FTIR measurements provide a first information 281 

about the olivine serpentinization extent. 282 

This study confirms that the serpentinization rate is enhanced by high alkaline 283 

conditions. Serpentinisation rate has been studied for a large variety of experimental 284 
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conditions under neutral conditions [33–40,46]. For comparison, serpentinization extent of 285 

50-100 µm starting grain size at 200°C reached only ~20% after ~4 months under neutral 286 

conditions (Seyfried et al., 2007).  This corresponds to a kinetic 5 times slower to our results 287 

on the largest starting grain size (56-150 µm).  288 

3.3 Serpentinization steps and reaction mechanism 289 

Contemporaneously, the first steps of reaction in alkaline medium are characterized by 290 

a fast dissolution of olivine associated to the formation of preferential dissolution figures as 291 

notches and etch pits (Fig. 6a, b, c) [44–46].  Conjointly, precipitation of the first nucleates of 292 

brucite and chrysotile occur at the olivine surface. FESEM observations have revealed the 293 

preservation of olivine shape after complete serpentinization (Fig. 7). This suggests that 294 

olivine alteration invokes coupled dissolution-precipitation processes [28]. Despite ultrasonic 295 

treatment and dispersion on ethanol (up to 1h30), which can easily break up the new 296 

brucite/chrysotile mineral assemblage, the shape and size of olivine grains are always 297 

preserved regardless the completion of the reaction. The few scattered chrysotile grains 298 

observed are the result of tearing from olivine grain surfaces and are not the result of 299 

precipitation from saturated solution away from olivine grain. Based on these results, we 300 

assume a higher super-saturation of solution with respect to chrysotile tubes at the olivine-301 

solution interfaces. Supersaturation at olivine-alkaline solution interfaces allows rapid 302 

heterogeneous serpentine nucleation as small nodules of chrysotile and brucite (Fig. 2a). This 303 

nucleation phase is followed by a phase of epitaxial growth of chrysotile and brucite forming 304 

a porous medium (Fig. 6d, e, f). Chrysotile grows as elongated tubes with various morphology 305 

(conical, cylinder in cylinder) with a size depending on starting olivine grain size. Largest 306 

starting grain size induces smallest reacting surface and thus slower kinetic of alteration and 307 

formation of largest chrysotiles particles. Olivine grain size influenced initial dissolution rate 308 

v0, passivation state and general kinetic of alteration.  309 
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Serpentinization reaction is then favored by the formation of notches connected to a 310 

micro-fracturing network inside olivine (e.g. 32 days of reaction for >30 µm grains; Fig. 6b, 311 

c). This micro-fracturing network might start following ordered families of fine-scale 312 

fractures from olivine grains [44]. In the oceanic crust, the microfracturing may be attributed 313 

to the stress generated by the volume increase during olivine serpentinization [28]. In our free 314 

fluid system, there is no evident expansion during olivine replacement. Volume increase due 315 

to olivine serpentinization (25%) is likely accounted by material loss in solution, but it could 316 

also cause the microfracturing [28,50]. With the formation of smaller sub-grains, 317 

microfracturing allows an easier fluid percolation and increase the total reaction-surface (Fig. 318 

6e, f). This process permits a continuous and total replacement of olivine by chrysotile and 319 

brucite as summarized in figure 8. This is in agreement with natural observation and 320 

development of mesh type texture described in natural rocks [26–28,50–52]. Fluid can 321 

percolate everywhere without formation of a passivation layer at grain surface. The formation 322 

of a protective layer would induce a non-continuous passivation process by blocking intra-323 

particles diffusion [53]. Mass transfer will play a major role for the preservation of volume 324 

and shape of starting olivine grain.   325 

 326 

4 Conclusion 327 

Olivine alteration was investigated under alkaline conditions for different starting 328 

grain sizes at 200 °C. In this study, we were able to follow complete olivine replacement by 329 

an assemblage of chrysotile and brucite.  330 

Thermogravimetric analyses were used to investigate the dehydroxylation of hydrated 331 

phases and thus the serpentinization extent as a function of time. Based on this innovative 332 

approach, we were able to estimate punctually the serpentinization advancement and a kinetic 333 
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pseudo-second-order model was used to describe experimental data. This could allow a 334 

prediction of reaction advancement for the largest starting grain size.  335 

We also established two calibration curves between the -OH/Si-O bands measured in 336 

FTIR and the degree of serpentinization. This enables to have an estimation of the kinetic 337 

rates of serpentinization directly from the FTIR spectra analysis. This must be considered 338 

with caution because of the overlapping of –OH bands between brucite and serpentine. 339 

Under our experimental conditions, olivine is replaced by chrysotile and brucite by 340 

coupled dissolution-precipitation processes. Fast dissolution of olivine, preferential 341 

dissolution features formation and process of grain subdivisions by fracturing are involved to 342 

explain a complete mineral replacement of olivine. This implies the preservation of external 343 

shape of olivine grains as typically observed in natural systems.  344 

 345 

346 
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Figure Captions: 504 

 505 

Table 1: Summary of the experimental conditions.  506 

 507 

Table 2: Summary of kinetic parameters obtained from the pseudo-second-order model. 508 

 509 

Figure 1: XRD patterns following reaction advancement, a) with starting grain size <30µm, b) 510 

with starting grain size 30-56 µm, c) example of plot for the peak corresponding to bragg 511 

angle (2θ) of 12.1° and miller indice (002) with a gaussian deconvolution and plot of FWHM 512 

following reaction time for this peak. O: olivine, B: Brucite and S: serpentine. 513 

Figure 2: Scanning electron microscope imaging of the experimental products. All shown 514 

experiments have been performed at pH=13.5 (at 25°C) and 200°C, for <30 µm (a, b, c and 515 

e), 30-56 µm (d, f, g) and 56-150µm (h) grains size. a) chrysotile and brucite nodules after 516 

3hours of reaction (run no.1), b) chrysotile tube after 30 days of reaction (run 8) and c)  517 

nodules aggregated in a tubular shape after 3 days of reaction (run no.5), d) chrysotiles 518 

“bunch” at olivine grain surface after 10 days of reaction (run no.13), e) characteristic 519 

brucite/chrysotile assemblage after 30 days of reaction (run no.6), f,g) characteristic 520 

brucite/chrysotile assemblage and thick cylinder-in cylinder chrysotile after 90 days of 521 

reaction (run no.18), and h) characteristic brucite/chrysotile assemblage after 32 days of 522 

reaction (run no.20). Bru: brucite, Ctl: chrysotile, Ol: olivine. 523 

 524 
Figure 3: a) Thermogravimetric analyses (TGA) for experiments of 3 hours to 30 days (run 525 

no. 1,3,5,6,7and 8) with fraction grains <30 µm, b) focus and decomposition of TGA and 526 

DTG corresponding spectra after 10 days of reaction. 527 

 528 

 529 
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Figure 4: Serpentinization degree versus time for the hydration reaction at different grain sizes 530 

for T=200°C, Psat=1.6Mpa and fluid/solid=15. Maximum error bars corresponding to 5% of 531 

the serpentinization extent calculated was also reported. Data were fitted by using a kinetic 532 

pseudo-second-order model. 533 

Figure 5: a) Transmission spectra (in absorbance) for starting grain size <30µm after 3 hour 534 

(run no.1) and 30 days (run no.8) of reaction with corresponding base line and range 535 

employed for treatment. Blue area correspond to -OH band integration A1 with maximum 536 

intensity I1, green area correspond to Si-O band integration A2 with maximum intensity I2, b) 537 

corresponding -OH/Si-O ratio: A1/A2 and I1/I2 following serpentinization advancement 538 

determined by TG and DTG analysis, square, triangle and circles correspond respectively to 539 

experiments for <30µm, 30-56µm and 56-150 µm starting grain size fraction (empty for 540 

A1/A2 and black for I1/I2) with corresponding standard deviation corresponding, black line 541 

correspond to best linear regression with the exclusion of red point. 542 

Figure 6: Scanning electron microscope imaging of the experimental products for starting 543 

grain size <30 µm (a), 30-56 µm (c-f) and 56-150 µm (b).  a) etch pits at olivine grain surface 544 

after 3 days (run no.5), b) dissolution notches after 32 days of reaction (run no. 20), c) 545 

dissolution notches after 24 days of reaction (run no. 14), d) chrysotile micro-tubes at olivine 546 

grain surface after 3 days of reaction (run no.12), e) contact between two olivine grains and f) 547 

microfracturing in section after 10 days of reaction (run no.13). Red dotted lines represent 548 

initial border of the supposed crack. Ctl: chrysotile, Ol: olivine. 549 
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Figure 7: XRD pattern and corresponding scanning electron microphotography from pure 550 

starting San Carlos olivine to close to 100% of replacement by serpentine and brucite. Note 551 

the preservation of the olivine grains dimension and shape. S: serpentine, B: brucite, O: 552 

olivine.  553 

Figure 8: Schematic synthesis presenting the different steps of olivine replacement by 554 

chrysotile and brucite.  555 
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Table 1 556 

Run no.  T (°C)  Time 
grain size 
(µm) 

Olivine to Chrysotile 
conversion (%) 

products 
starting‐material 

1  200  3 h  <30 µm  10.3  O>C>B 

2  200  16 h  <30 µm  21.7  O>C>B 

3  200  24 h  <30 µm  24.6  O>C>B 

4  200  48 h  <30 µm  37.5  O>C>B 

5  200  72 h  <30 µm  51.7  O≈C>B 

6  200  10 day  <30 µm  73.8  C>O>B 

7  200  20 day  <30 µm  88.8  C>B>O 

8  200  30 day  <30 µm  98.0  C>B 

9  200  90 day  <30 µm  98.2  C>B  

10  150  30 day  <30 µm  49.5  O≈C>B 

11  150  66 day  <30 µm  not determined  C>O>B 

12  200  3day  30‐56 µm  19.6  O>C>B 

13  200  10 day  30‐56 µm  26.2  O>C>B 

14  200  24 day  30‐56 µm  46.2  O≈C>B 

15  200  41 day  30‐56 µm  77.1  C>O>B 

16  200  51 day  30‐56 µm  71.1  C>O>B 

17  200  72 day  30‐56 µm  88.9  C>B>O 

18  200  90 day  30‐56 µm  94.4  C>B>O 

19  200  13 day  56‐150 µm 10.7  O>C>B 

20  200  32 day  56‐150 µm 26.6  O>C>B 

21  200  60 day  56‐150 µm 44.2  O>C>B 

22  200  90 day  56‐150 µm 55.4  C>O>B 

All experiments have been performed at pH 13.5 (measured at 25°C). Saturated pressure is 557 

constant: 1.6MPa for 200°C and 0.5 MPa for 150°C reactions. Fluid/rock ratio is always ~15. 558 

O: olivine, C: chrysotile, B: brucite.  559 
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Table 2 560 

Initial  particule size 

of olivine 

Smax (%) 
t ½ (days) 

Initial rate  

(1/s) 
fitting r² 

Exp.  Calc. 

<30 µm  97.96  100±1.7 3.2±0.3 3.62‐06±0.35E‐06  0.989 

30‐56 µm  94.35  100±8.5 23.1±5.3 5.01E‐07±0.9E‐07  0.947 

56‐150 µm  55.4  100±16 79±21 1.46E‐07±0.2E‐07  0.981 

 561 
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