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[1] During the late Quaternary, both external and internal
forcings have driven major climatic shifts from glacial to
interglacial conditions. Nonlinear climatic steps character-
ized the transitions leading to these extrema, with interme-
diate excursions particularly well expressed in the dynamics
of the Northern Hemisphere cryosphere. Here we document
the impact of these dynamics on the north-eastern North
Atlantic Ocean, focussing on the 35–10 ka interval. Sea-
surface salinities have been reconstructed quantitatively
based on two independent methods from core MD95-2002,
recovered from the northern Bay of Biscay adjacent to the
axis of the Manche paleoriver outlet and thus in connection
with proximal European ice sheets and glaciers. Quantita-
tive reconstructions deriving from dinocyst and planktonic
foraminiferal analyses have been combined within a robust
chronology to assess the amplitude and timing of hydro-
logical changes in this region. Our study evidences strong
pulsed freshwater discharges which may have impacted
the North Atlantic Meridional Overturning Circulation.
Citation: Eynaud, F., et al. (2012), New constraints on European
glacial freshwater releases to the North Atlantic Ocean, Geophys.
Res. Lett., 39, L15601, doi:10.1029/2012GL052100.

1. Introduction

[2] Quantification of past sea-surface conditions is a chal-
lenge in paleoceanography [e.g., MARGO Project Members,
2009]. Several methods, based on a large array of proxies,
now exist, though many provide contradictory results
[e.g.,Marchal et al., 2002; Kucera et al., 2005]. Historically,
palaeoceanographical investigations have focussed on the
reconstruction of sea-surface temperatures (SST), with much
less attention paid to sea-surface salinities (SSS) despite their
critical role in controlling the thermohaline oceanic budget
[e.g., Seidov and Haupt, 2003; Curry et al., 2003; de
Verdière and Te Raa, 2010]. One of the first successful
attempt to reconstruct SSS was undertaken using d18O data

from planktonic foraminifera [e.g., Shackleton and Opdyke,
1973; Thunell and Williams, 1989; Duplessy et al., 1992;
Maslin et al., 1995] but this approach remains controversial
[Rohling and Bigg, 1998; Schmidt, 1999; Rohling, 2000;
LeGrande and Schmidt, 2011]. Alternatively, SSS can be
estimated from transfer functions sensu lato applied to
microfossil assemblages. Until now only a few microfossil
groups provide such evidence: among these are organic-
walled dinoflagellate cysts (dinocysts [e.g., de Vernal et al.,
2005]).
[3] This paper reports on SSS estimations obtained on

the reference core MD95-2002 [e.g., Grousset et al., 2000;
Ménot et al., 2006] retrieved from the Celtic margin, a
site which, during the Last Glacial Maximum (LGM), was
located close to the outlet of the Manche paleoriver whose
drainage network connected to the North-West (NW)
European ice-sheets and rivers [e.g., Lericolais et al., 2003,
Figure 1]. Modelling exercises demonstrate that this site is
ideally located to monitor the thermohaline evolution of the
north-eastern Atlantic [e.g., Roche et al., 2010; Bigg et al.,
2010]. Our focus is on the past 35 to 10 ka, a period known
for its high amplitude climatic variability directly linked to
the late Quaternary history of the northern hemisphere
cryosphere. For the first time, two independent quantitative
methods provide a robust reconstruction of the range of
salinity changes which have affected the European temperate
oceanic domain through time.

2. The Celtic Margin

[4] Core MD95-2002 (47.45�N, 8.53�W, �2174 m,
Figure 1) was recovered on the Meriadzek Terrace, a topo-
graphic high presently dominated by hemipelagic sedimen-
tation [van Weering et al., 1998]. During the last glacial, the
paleogeographical configuration of NW Europe (ice-sheets,
sea-level low stand) enhanced the delivery of freshwater to
the Celtic margin. In the area, this influence is typified by the
occurrence of glacigenic materials contemporaneous with, or
immediately pre-dating [e.g., Grousset et al., 2000; Scourse
et al., 2000], Heinrich stadials (HSs) [e.g., Heinrich, 1988;
Sanchez-Goñi and Harrison, 2010] and by laminated sedi-
mentological fabrics interpreted to be the result of Termi-
nations [e.g., Zaragosi et al., 2001; Mojtahid et al., 2005;
Peck et al., 2006; Eynaud et al., 2007; Penaud et al., 2009;
Toucanne et al., 2009, 2010].

3. Methods

3.1. Stratigraphy

[5] An updated age model of core MD95-2002, deriving
from a polynomial regression (d�5) based on 19 14C AMS
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dates over the first 30 ka (see section S1 of Text S1 in the
auxiliary material), was published inMénot et al. [2006] and
Eynaud et al. [2007].1 It was initially constructed using a
0.4 ka constant Marine Radiocarbon Reservoir Age Effect
(MRE) [i.e., Austin and Hibbert, 2012]. Recent estimations
of MRE in the area, derived from the tuning of relative
abundances of the polar taxon Neogloboquadrina pachy-
derma left -Npl.-coiled to the d18O ice-core record (either
GISP2 or GRIP), have produced values up to 2 ka during
major episodes of freshwater release [see Peck et al., 2006;
Scourse et al., 2009; Haapaniemi et al., 2010]. To test the
coherency of our age model considering local MRE effects,
we thus conducted a similar approach, tuning Npl abun-
dances (Figure 2) to the NGRIP- d18O (GICC05-1950 age
scale [Svensson et al., 2008]) considered as the regional
stratotype for the North Atlantic (NA) region [i.e., Austin and
Hibbert, 2012; Austin et al., 2012]. This allowed us to gen-
erate eight new tie-points but does not change the initial age
model regression equation sufficiently to justify a revision
(see our arguments in Figure S1 in Text S1). Taking advan-
tages of the recent discussion cautioning “marine event-
based chronostratigraphies” [Austin and Hibbert, 2012],
especially regarding phasing issues, we thus prefer to
avoid any artificial tuning to the Greenland ice-cores. This
approach thus generated a fully independent chronology.
However, MRE potential effects on our stratigraphy are
indicated in figures by the plot of the age difference through

time obtained by the comparison of the tuned and non tuned
age scales. It is important to note that the 14–10 ka period,
not discussed in detail in the present paper, displays large
MRE values. For this part of the record the age-model should
probably be revised.

3.2. Paleo-salinity Reconstructions

[6] Two independent methods were used for SSS recon-
structions from core MD95-2002 (see sections S2–S4 of
Text S1 for detailed explanations). The first combines stable
isotope measurements (d18O) on planktonic foraminifera
shells and transfer function derived SST from foraminifera
assemblages (thus based on calcareous/zooplanktonic >150 mm
microfossils). For this work, original d18O measurements
(from monospecific subsamples of Globigerina bulloides
and Np1. [see Auffret et al., 2002]) were reconsidered and
combined with new high resolution SST reconstructions
between 35 and 10 ka (section S2 of Text S1). We also
reviewed the methodology to estimate SSS by considering
new calibrations of the salinity-water isotope relationship
[e.g., LeGrande and Schmidt, 2011].
[7] The second method is based on the Modern Analogue

Techniques (MAT) applied to dinocyst assemblages (organic/
phytoplanktonic <150 mm microfossils) to directly estimate
SSS [e.g., Guiot and de Vernal, 2007, see Appendix S3.2].
These two independent approaches allowed us to reconstruct
SSS with error bars of �1.3 psu for d18O / foraminifera
derived results, and of �0.63 psu for dinocyst derived ones
(in the >30 psu salinity domain). In addition to these recon-
structions, sedimentological, biogeochemical and micro-
paleontological qualitative indicators of freshwater input
have been compiled (section S4 of Text S1).

4. Results and Discussion

4.1. The Significance of Salinity Anomalies Along
the Celtic Margin

[8] SSS estimates derived from d18O / foraminifera and
dinocyst assemblages yield coherent results with similar
changes in both amplitude (see Table S1 in Text S1) and
timing (Figure 2). In the northern Bay of Biscay, significant
salinity decreases are synchronous with HSs, with SSS neg-
ative anomalies approaching 3 to 4 psu in surface waters.
Such anomalies are 1 to 2 units greater (considering errors)
than those estimated from central NA cores (BOFS-5K,
50�41′N, 21�52′W [i.e.,Maslin et al., 1995]; SU9003, 40�03′
N, 32�00′W [i.e., Chapman and Maslin, 1999]). The data
therefore illustrate the proximal meltwater signal from the
outlet of the Manche paleoriver and dilution of this signal
towards the central NA. SSS variations are associated with
evidence for the delivery of fluvial and glacial material and
feature a multi-step scenario for each HSs (Figure 2). The
largest SSS offsets (>2 psu) within HS2 and HS1 coincide
with the highest flux of Laurentide-sourced ice-rafted detritus
(i.e., at �24 ka and �16.5 ka, respectively [after Grousset
et al., 2000; Auffret et al., 2002]). This conversely suggests
late and local melting of icebergs from distal Northeast
American sources during these specific intervals.
[9] Though the two approaches show a high coherency

in SSS events through time, it should be noted that absolute
SSS values derived from the dinocyst data are lower than
those derived from the foraminiferal data (saline excursions
exceeding modern values by 2 units are reconstructed on the

Figure 1. Location of core MD95-2002 and of cores cited
in the paper. Modern North Atlantic major surface currents
in yellow [after Fogelqvist et al., 2003]; full glacial exten-
sion of the NH ice-sheets in red from Grosswald and Hughes
[2002] and Ehlers and Gibbard [2004]; BIIS limits after
modelling and compilation from Boulton and Hagdorn
[2006] in green (dotted-line). Palaeo-coastline at 21 Ka BP
in purple [after Bourillet et al., 2003]; drainage system of the
Manche paleoriver in cyan and pink [after Lericolais et al.,
2003].

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GL052100.
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basis of planktonic foraminifera). Several factors could
explain the discrepancies: among them, are artefacts linked to
the methods themselves (i.e., the coherency of modern
databases, the time and space dependent d18OSW-SSS rela-
tionship, d18O biases in calcified foraminifera shells [e.g.,
Hodell and Curtis, 2008] (see section S3 of Text S1)) and
differences in ecological strategies between the respective
populations of planktonic foraminifera and dinoflagellates.
Concerning the latter, the question of the depth habitat is
probably the most significant since the two communities do
not inhabit the same water depths. Dinoflagellates preferen-
tially occupy the topmost fifty meters whereas foraminifera
thrive at different water depths. The polar species Npl., is
known to live at or below the pycnocline, notably at sites
where low salinities characterize the surface layer [e.g.,
Simstich et al., 2003; Jonkers et al., 2010]. Therefore, SSS
estimates from the isotopic composition of Npl. are likely
related to mesopelagic conditions rather than carrying a sur-
face signal. Larger differences in estimates between dino-
cysts and planktonic foraminifera may thus reflect a strong
stratification of the water column. However, in polar-
subpolar environments where sea-ice cover formation is
associated with the rejection of brine, the low sea-surface
salinity signal is transferred deeper into the subsurface layer

[e.g., Hillaire-Marcel and de Vernal, 2008]. Thus, con-
versely, convergent low SSS values, as especially observed
during HSs, could indicate freezing conditions. This is sup-
ported by the sea-ice cover duration reconstructed from
dinocysts in addition to high iceberg density indices at that
time. During HSs, alternative (or additional) processes could
also explain the convergence of SSS reconstructions,
including those promoting a mixing of the upper water layer:
i.e., turbulent mixing in response to strong winds (modern
winters in the Bay of Biscay generate a mixing of the upper
400–600m of the water column [e.g., Somavilla et al., 2009])
or/and iceberg drift [e.g., Sancetta, 1992; Helly et al., 2011].

4.2. Paleo-salinity Millennial Scale Variability During
the LGM (Sensu Lato)

[10] Over the interval encompassing HS2 to HS1 (�26 to
15 ka), the SSS record derived from foraminifera offers a
high mean time resolution. It provides an excellent opportu-
nity to discuss sub-millennial SSS oscillations during the
LGM (Figure 3) and their connection with the Northern
Hemisphere (NH) climatic variability. Actually, the LGM
interval apart from HS1 and HS2 can be considered an
interval in which the radiocarbon marine reservoir effect is
reduced, due to the “relative” stability of the NH ice-sheets

Figure 2. Comparison of the (a) GISP2 and (b) NGRIP GICC05 d18O records to a compiled data set from core MD95-2002
over the past 35 to 10 ka, with: (c) SSS reconstructions derived from d18O/ planktonic foraminifera data and from dinocysts
(1 psu mean error bar) compared to modern local SSS (extracted with http://www.geo.uni-bremen.de/geomod/staff/csn/
woasample.html); (d) fluvial input proxies including: PreQd/Md, the ratio of Pre-Quaternary versus Modern dinocysts;
Nlaminae, the number of laminae per cm of sediment; the branched and isoprenoid tetraether (BIT)-index data; the freshwater
algae Pediastrum sp. concentration in the sediment (x102 nb. of colonies/ cm3 of dry sed.); (e) CLGc: coarse lithic grain con-
centrations (103 grain/g dry sed.); (f ) the dinocyst derived sea- ice-cover duration (g) relative abundances of Neogloboqua-
drina pachyderma left coiled (Npl.); (h) MRE, estimation of the marine reservoir age effect over the MD95-2002 site (see
methods). Purple bands: periods for which both dinocyst and foraminifera derived SSS converge to indicate a SSS anomaly
>2 psu (compare to modern values). Grey bars: HS mid-ages [Thouveny et al., 2000] and their associated values ofDSSS, i.e.,
mean SSS anomalies calculated as the difference between modern values and the mean SSS values during HSs (see Table S1
in Text S1). Red lines: Greenland interstadial (GI) warmings [after Wolff et al., 2010]. Black dots: radiocarbon ages.
E1, L, E2 = European (E) versus Laurentide (L) phases within HS2 in core MD95-2002 after Grousset et al. [2000];
NEA-GS3a,b,c = event stratigraphy of North East Atlantic Greenland Stadial 3 after Austin et al. [2012].
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(and especially the proximal BIIS), with no major events of
freshwater advection known before 20 ka [e.g., Clark et al.,
2004]. This stability is also supported by reconstructions
obtained at that time in the same area on the Manche
paleoriver sediment load [e.g., Toucanne et al., 2010] and
from our data MRE calculation (Figure 3). Furthermore, the
decision not to tune our age scale to Greenland records pre-
vents circular reasoning in this case.
[11] As a whole, the LGM interval registers high SSS,

comparable to modern values. Several short-lived low
salinity pulses punctuate the sequence, but none of these
reach the low SSS values characteristic of HSs. SSS oscilla-
tions detected at that time do resemble the variability detected
in Greenland records. High SSS values match well high d18O
peaks in the NGRIP record [Svensson et al., 2008], thus
suggesting (within dating uncertainties <500 years), a direct
link between interstadial conditions over Greenland and the
occurrence of “normal” SSS values in the northern Bay of
Biscay. Such high SSS could be interpreted as signalling
conditions favourable to convection (close to those of the
modern state), thus highlighting the coupling between the
AMOC and the prevalence of mild climate at NW European
latitudes. This provides supporting evidence that, in spite of
the maximum extension of polar ice-caps, the glacial NA

Ocean was in phase with atmospheric temperatures over
Greenland. The link lies probably in the geographical loca-
tion or extension of the Greenland main moisture sources at
that time, as seen from ice-core records themselves [e.g.,
Masson-Delmotte et al., 2005; Jouzel et al., 2005]. These
rapid climatic oscillations, similarly recorded in ice and
marine LGM archives, thus reflect the expression of an ocean
dynamically coupled to both ice and atmospheric systems.
[12] A low salinity event accompanied by a large input of

fluvial-sourced materials is recorded between 20 and 19 ka
BP prior to the large SSS depletion of HS1 (Figures 2 and 3).
This event is contemporaneous of the Kilkeel meltwater
pulse (K-MWP), recorded along the Irish coast [Clark et al.,
2004], though this is not registered by an IRD spike along the
margin [Scourse et al., 2009]. This low salinity event is fol-
lowed by a short (within less than 500 years) resumption of
high SSS then interrupted by the massive HS1. AMOC
strength proxies document in parallel a major shift in its
abyssal flow vigour [McManus et al., 2004; Gherardi et al.,
2009], revealing a net decrease possibly accompanied by a
change in the contribution of the southern deep component
[Negre et al., 2010]. This suggests strong intra- and inter-
hemispheric teleconnections even in the case of a localised
freshwater event (as the K-MWP) and supports modelling

Figure 3. Comparison over the 25 to 16 ka interval of the: (a) NGRIP GICC05 d18O record with (b) foraminifera-derived
SSS in the Bay of Biscay and indicators of the (c, d) European ice-sheet dynamics and (e) AMOC strength derived from sed-
imentary 231Pa/230Th ratio in the Atlantic sediment cores: OCE326-GGC5 (in orange, 33�42′N, 57�35′W; 4550 mwater depth
[after McManus et al., 2004]), SU90-44 (in light blue, 50�01′N, 17�06′W, 4279 m water depth [Gherardi et al., 2009]) and
MD02-2594 (in dark blue, 34�42.64′S; 17�20′32E; 2440 m water depth [after Negre et al., 2010]). (f ) MRE, estimation of the
marine reservoir age effect over the MD95-2002 site (see methods). Black dots: radiocarbon ages. GI2 warming afterWolff et
al. [2010]. Stars locate terrestrial events of the BIIS history, with, BIIS-MAX: maximum BIIS extension [Scourse et al.,
2009]; BIIS–DEG: BIIS extensive deglaciation [Bowen et al., 2002]; K-MWP: Kilkeel meltwater pulse [Clark et al.,
2004]; KPS: Killard Point stadial [McCabe et al., 2005]. Note that the age model for OMEX2 is based on tuning of Npl.
frequencies on GISP2 [Haapaniemi et al., 2010].

EYNAUD ET AL.: EUROPEAN GLACIAL FRESHWATER RELEASES L15601L15601

4 of 6



simulations suggesting that the Celtic margin constitutes one
of the nodal points for NA ocean convection dynamics over
millennial time scale [Roche et al., 2010].

5. Conclusion

[13] We used two independent analytical methods for
reconstructing past SSS over the last 35 to 10 ka adjacent to
the Manche paleoriver outlet. The coherence of the recon-
structions in the amplitude and timing of paleosalinity
changes is high. Detected oscillations highlight the coupled
response of the surface ocean to the glacial/deglacial history
in the Northern Hemisphere. The largest SSS excursions are
recorded during HSs, with values as low as 30 in surface
waters, which demonstrate the importance of meltwater dis-
charges on the eastern side of the NA basin. Rapid increase of
SSS immediately followed the freshwater pulses, illustrating
the high sensitivity and low inertia of the ocean in glacial
mode, thus supporting results from modelling simulations.
This work clearly illustrates the relationships existing between
oceanic, atmospheric and cryospheric systems both at regional
and hemispherical scales.
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