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Abstract. A right-lateral shear zone trending 
northerly along more than 2000 km is recognized 
from central Japan to northern Sakhalin. It was active 
mainly during the Neogene and has accommodated 
several hundreds of kilometers of displacement. The 
whole structure of Sakhalin is built on this shear 
zone. En 6chelon sigmoidal folds and thrusts, en 
6chelon narrow Miocene basins, and a major 
discontinuity which is observed along more than 600 
km, the Tym-Poronaisk fault, characterize the 
deformation there. In Hokkaido, en {5chelon folds 
and thrusts and a ductile shear zone with high- 
temperature metamorphism constitute the southern 
extension of this transpressional shear zone. It 
continues to the south as a zone of transtensional 
deformation along the eastern margin of Japan Sea, 
as en 6chelon basins and dextral transfer faults 
observed as far south as Noto peninsula and Yatsuo 
basin. The style of the shear zone thus evolves from 
transpressional in the north far from the subduction 
zone, to transtensional in the south in the back-arc 
region. Strike-slip motion along this shear zone was 
primarily responsible for the dextral pull-apart 
opening of Japan Sea during the early and middle 
Miocene. Dextral motion is still active in the north 
along the Tym-Poronaisk fault in Sakhalin as well as 
on the continental margin of Japan Sea (Korea and 
Asia mainland). Active E-W compression replaced 
the dextral motion along the eastern margin of Japan 
Sea in late Miocene time, and incipient subduction 
began in the early Quaternary. 

INTRODUC•ON 

A diffuse zone of active deformation with crustal 
seis. micity runs along Sakhalin, between the Amur 
region and Okhostk Sea (Figure 1). It has led to 
various interpretations, they are discussed by Jolivet 
et al. [1990]. Chapman and Solomon [1976], on the 
basis of a study of several large earthquakes focal 
mechanisms, concluded that a zone of active 
compression was perpendicular to the trend of 
Sakhalin. They assigned this deformation to the 
motion of North America (NAM hereafter) relative to 
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Eurasia (EUR hereafter). The rotation pole is located 
in eastern Siberia; north of it, extension prevails 
along the Cherskyi ranges, and oceanic spreading is 
active along the Gakkel-Nansen ridge, which is the 
northernmost extension of the Mid-Atlantic ridge. 
Savostin et al. [ 1983] instead proposed dextral 
motion between the Okhotsk and Amurian blocks 
and a kinematic interpretation taking into account the 
major structures of northeast Asia such as the 
Stanovoy ranges (see also Savostin and Karasik 
[1981], and Cook et al. [1986]). 

This active zone extends southward in Hokkaido 
and along the eastern margin of Japan Sea. Large 
shallow earthquakes occur frequently there (Figures 
2 and 3); they are all of reverse fault type with E-W 
direction of compression [Fukao and Furumoto, 
1975]. Nakamura [1983] proposed that it 
corresponds to the southward extension of the NAM- 
EUR plate boundary following Chapman and 
Solomon [ 1976]. 

This active zone also corresponds to a domain 
which has suffered deformation since Oligocene 
time. Kimura et al. [ 1983] proposed that dextral 
oblique collision along the Okhotsk-Amur plate 
boundary was responsible for the Tertiary structures, 
such as en Echelon folds in Hokkaido and Sakhalin. 
Jolivet and Miyashita [ 1985], Jolivet and Huchon 
[1989], and Jolivet et al. [1990] showed that dextral 
shear can be recognized along the central belt of 
Hokkaido (Hidaka Shear Zone) as well as the eastern 
margin of Japan Sea for lower to middle Miocene 
time. Lallemand and Jolivet [1985], Kimura and 
Tamaki [1986], and Jolivet [1986] proposed that this 
shear zone has been responsible for the dextral pull- 
apart opening of Japan Sea in Miocene time (Figure 
1). Large dextral motions along N-S trending shear 
zones are usually not taken into account when 
describing the deformation of Asia except by Kimura 
and Tamaki [1986], Jolivet [1986], Chen and 
Nabelek [1988], or Jolivet et al. [ 1990]. 

In this paper, we present a synthesis of our 
studies based upon field surveys along this active 
zone from central Japan to Sakhalin, Landsat 
imagery, and focal mechanism of earthquakes. 
Detailed work will be published separately. A new 
tectonic map of the entire fault zone is described. We 
show that in Miocene time, structures located along 
this 2000-kin-long shear zone are compatible with a 
localized dextral shear zone which evolves from 
transpressional in the noah to transtensional in the 
south in the back-arc region. We discuss its relation 
to the opening of the Japan Sea back-arc basin. We 
also briefly discuss the significance of the dextral 
motions in the overall deformation of eastern Asia. 

GENERAL TECTONIC CONTEXT 

In the back-arc region of the Pacific subduction 
zone, behind the Kuril trench, Sakhalin is a long 
island extending along some 1000 km between the 
Okhotsk Sea and the Tartar strait (Figures 1-3). It 
does not exceed 200 km in width and is as narrow as 
30 km at 48øN. It is the northern extension of the 
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Fig. 1. (a) Present-day geodynamic context of Sakhalin and Japan Sea region. Shaded 
area represent the oceanic crusts of the Japan Sea and Kuril Basin. Dotted area is the zone 
of active compression of the eastern Japan Sea. (b) Same region 20 m.y. ago. 
Reconstruction parameters are after Jolivet et al. [1991] and Jolivet and Tamaki [1992]. 
Abbreviations are TPF, Tym-Poronaisk fault; HSZ, Hidaka Shear Zone; MTL, Median 
Tectonic Line; YBK, Yamato Bank; YB, Yamato basin; YF, Yangsan Fault; TB, 
Tsushima basin; TF, Tsushima fault; PAC, Pacific plate; and PHS, Philippine Sea plate. 
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central range of Hokkaido in northern Japan. It is 
separated from the Asian mainland by the shallow 
water Tartar Strait, which is the northernmost part of 
the Japan Sea. To the east, the Okhostk Sea has a 
continental basement cut by numerous faults making 
submarine ridges and troughs [Margulis et al., 1979; 
Gnibidenko, 1985]. In the southern part of the 
Okhotsk Sea is the Kuril basin, which is floored with 
thick Cenozoic sediments and oceanic crust possibly 
of Miocene age [Kimura and Tamaki, 1985]. To the 
west the Tartar strait is floored with thinned 
continental crust cut by N-S trending faults and 
blanketed by a thick sedimentary cover up to 8 km 
[Antipov et al., 1980; H. S. Gnibidenko et al., 
manuscript in preparation, 1992]. Further south, the 
Japan Sea is divided into three major basins floored 
with oceanic crust (Japan basin, deeper than 3 km) or 
highly intruded thinned continental crust (Yamato 

and Tsushima basins, deeper than 2 km) [Tamaki, 
1985, 1988; Tamaki et al., 1990]. 

The Kuril trench continues to the south as the 
Japan trench until its junction with the Bonin trench 
south of the trench-trench-trench triple junction 
between the Philippine Sea (PHS hereafter), Pacific 
(PAC hereafter), and EUR plates [Huchon and 
Labaume, 1989]. The Pacific plate subducts 
westward at a velocity of about 10 cm/year [Seno, 
1985]. The Philippine Sea plate subducts below 
southwest Japan at slower rate (4 crn/year) [Ranken 
et al., 1984; Huchon, 1986]. 

Active deformation is recorded along the eastern 
margin of Japan Sea, Hokkaido and S akhalin as a 
diffuse seismic zone [Fukao and Furumoto, 1975; 
Tamaki, 1988]. Deformation is also recorded in the 
Tsushima strait [Jun, 1990], between Kyushu and 
Korea, as well as on the continental side of Japan 
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Sea in the Bohai gulf region along major strike-slip 
dexu'al faults [Chen and Nabelek, 1988]. 

The Japan Sea opened during the early and middle 
Miocene as was recently shown by the results of 
Ocean Drilling Program legs 127 and 128, which 
encountered oceanic crust about 20 m.y. old 
[Tamaki, 1990; Suyehiro et al., 1990]. Figures 2 and 
3 show the position of sites 794, 795 and 797 where 
oceanic basaltic sills were recovered and dated, with 
the corresponding ages after Kaneoka et al. [ 1992]. 

In the region of the u'ench-trench-trench triple 
junction, the Bonin arc collides with cemxal Japan 
north of the Izu peninsula, and active intraoceanic 
thrusting occurs south of the Nankai trench along the 
Zenisu ridge [Le Pichon et al., 1987; Chamot-Rooke 
and Le Pichon, 1989; Lallemant et al., 1989; Taira et 
al., 1989]. Between the collision zone and the triple 
junction, fight-lateral motion is active along the 
Sagami trough. The relative motion of PHS relative 
to Japan has changed drastically since 2 Ma 
[Huchon, 1985; Jolivet et al., 1989]. The direction 
of the PHS-EUR motion vector was more northerly 
during Neogene and then turned to NW. 

We now describe the structures observed along 
the entire deformed domain from south to north. We 
distinguish two zones of deformation. One is the 
eastern margin of Japan Sea sensu stricto (northeast 
Honshu, west Hokkaido, and offshore until 
Moneron island west of Sakhalin); the other one is 
the Central belt of Hokkaido and Sakhalin. 

EAST JAPAN SEA 

Late Miocene to Present 

E-W compression is active along the eastern 
margin of Japan Sea. The most spectacular evidence 
is given by frequent large earthquakes and active 
faults recorded offshore Honshu, Hokkaido, and 
Sakhalin [Fukao and Furumoto, 1975; Tamaki, 
1988]. Figures 2 and 3 show that this zone extends 
from the Japan Sea coast of central Japan to the west 
of Sakhalin. Fault plane solutions indicate E-W 
compression and pure reverse fault mechanisms. 
These earthquakes are associated with N-S trending 
active reverse faults. These are associated with the 
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Fig. 2. Tectonic map of the entire shear zone: 1, 
oceanic crust; 2, en 6chelon extensional basins of 
Miocene age; 3, direction of Miocene maximum 
compression deduced from fault set analysis; 4, 
sameas for 3 but intermediate compression; 6, strike- 
slip faults; 7, thrust faults; and 8, normal faults. 
Abbreviations are esm, East Sakhalin Moutains; OP, 
Oshima peninsula; O, Oga peninsula; N, Noto 
peninsula; IZU, Izu peninsula, TPF, Tym-Poronaisk 
Fault; MTL, Median Tectonic Line; TI•, Tanakura 
Tectonic Line; ISTL, Itoigawa-Shizuoka Tectonic 
Line; HSZ, Hidaka Shear Zone, and TIT: u'ench- 
u'ench-trench triple junction of Central Japan. 
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Fig. 3. Compilation of crustal earthquakes focal mechanisms (compressional quadrant in 
black). After $avostin et al. [1981], Dziewonski et al. [1983], L. S. Oscorbin 
[unpublished data, 1977], Chen and Nabelek [1988], Jun [1990]. Shaded area represents 
the zone of E-W compression in the eastern Japan Sea. 

reactivation of Neogene en 6chelon basins [Jolivet et 
al., 1991]. Active thrust faults uplift narrow ridges 
of oceanic crest such as the Okushiri ridge [Tamaki, 
1988]. Deep drilling on the ridge during ODP leg 
127 revealed that the coarse-grained detrital supply 
stops on the ridge at 1.8 Ma because the ridge was 
uplifted above the bottom of the basin at this time 
[Tamaki et al., 1990]. This age is interpreted as the 
inception of subduction of Japan Sea lithosphere. 

Active deformation is observed also onland where 
Neogene deposits are folded with N-S trending fold 
axes and thrusts [Amano and Sato, 1989; Sato, 
1989]. Early studies of vertical movements of the 
northeast Honshu arc reveal a period of upheaval 

from 5 Ma to the present [Sugi et al., 19•3]. The 
paleostress field inferred from dike orientation 
changes to E-W compression at 7 Ma [Nakamura and 
Uyeda, 1980; Takeuchi, 1985]. Neogene subsidence 
curves on the margins of Japan Sea and at oceanic 
sites show uplift from 10 Ma to the present [Ingle, 
1992]. Observation of fault sets in the Neogene 
deposits of western Hokkaido and northeast Honshu 
indicates a change of maximum horizontal 
compression from NE-SW to E-W between the 
middle and late Miocene [Jolivet and Huchon, 1989; 
Yamagishi and Watanabe, 1986; Otsuki, 1989]. The 
age of beginning of E-W compression can thus be 
determined to have occurred around 9 Ma. 
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Early and Middle Miocene Deformation 

This active deformation reworks a zone of 
Miocene transtension. The en &helon geometry of 
Quaternary compressional basins is not compatible 
with the present stress field. Because a Miocene 
graben crops out on Sado island which is parallel to 
the en &helon basins, it is likely that they all 
correspond to Miocene extensional basins. Their en 
•chelon position is then compatible with a dextral 
oblique extension [Jolivet et al., 1991]. A similar 
geometry is observed onland in the Uetsu district, 
where fast rifting is observed to have occurred in the 
early Miocene [Yamaji, 1989; 1990]. In general the 
age of rifting on the eastern margin of Japan Sea is 
considered to be early to middle Miocene [Suzuki, 
1989; Amano and Sato, 1989]. The age of formation 
of the oceanic basin offshore NE Honshu has been 
recently revealed by ODP leg 127: at site 794 and 
797 early Miocene (20 Ma to 16 Ma) basalts were 
recovered as sills interbedded with deep water 
sediments. Intense basaltic intrusive and extmsive 
activity, around 15 Ma, is recognized in the Aosawa 
region onland NE Honshu [Tsuchiya, 1989, 1990]. 

Fault set analysis indicates that NW-SE extension 
prevailed with association of normal and strike-slip 
faults until the end of the middle Miocene in NE 
Honshu and Sado island [Jolivet et al., 1991]. 
Additional observations confirm this geometry in the 
Noto peninsula and Yatsuo basin further south 
(Figure 3). All fault set data from Sakhalin to Yatsuo 
basin will be published separately [Fournier et al., 
paper submitted to Journal of Geophysical Research, 
1992]. Right-lateral shear is not restricted to the 
Japan Sea coastal area, since Cretaceous left-lateral 
shear zones such as the Tanakura Tectonic Line were 
reactivated in Miocene time as dextral faults 

[Koshiya, 1986]. 
The direction of horizontal maximum 

compression of Miocene age remains constant from 
Yatsuo to Rebun island, but it corresponds to c2 
(intermediate principal stress) in the south and o• in 
the north. In Rebun island and Hokkaido, NE 
trending compression prevails with strike-slip and 
reverse faults [Jolivet and Huchon, 1989]. 

To summarize, the eastern margin of Japan Sea 
was the site of dextral oblique extension in early and 
middle Miocene time. Meanwhile, oceanic spreading 
was occurring in Yamato and Japan basins. By the 
end of the middle Miocene a sharp change in stress 
field occurred. E-W compression took place on the 
same zone. By the early Quaternary, subduction 
began, and thrust faults affected the oceanic back-arc 
region. 

HOKKAIDO CENTRAL BELT 

Late Miocene to Present Deformation 

far south as Honshu. Recent evolution is 
characterized by E-W compression and fast uplift of 
the metamorphic core of the belt, the Hidaka 
mountains [Kimura et al., 1983]. Steep N-S trending 
thrusts separate it from the foreland to the west, 
where active thrusting affects Pliocene and recent 
sediments of the Sapporo-Tomakomai depression 
[Mitani, 1978; Yamagishi and Watanabe, 1986]. 

Oligocene to Middle Miocene deformation 

An older stage of deformation prior to the E-W 
compression is recognized only in sediments older 
than late Miocene; reverse and strike-slip faults are 
associated with this stage [Jolivet and Huchon, 
1989]. The maximum horizontal compression trends 
NE consistently from south to north. This stage is 
characterized by the formation of NW trending en 
&helon folds and thrusts in the nonmetamorphic 
zones [Kimura et al., 1983] and a ductile shear zone 
(Hidaka Shear Zone) in the metamorphic zone. 
Jolivet and Miyashita [ 1985] interpreted this ductile 
deformation as the result of dextral shear in a deep 
crustal environment. Jolivet and Huchon [1989] 
related the en •chelon folds and thrusts and the 
ductile shear zone to a crustal-scale half flower 
structure built along a transpressional dextral strike- 
slip crustal fault of Oligocene to middle Miocene age. 
This interpretation is roughly consistent with that of 
Kimura et al. [ 1983] in terms of kinematics (dextral 
oblique collision). Recent paleomagnetic 
investigations in Hokkaido conf'mu this interpretation 
[Kodama et al., 1990]. The dextral transpression is 
observed till Rebun island on the Japan Sea margin 
offshore northernmost Hokkaido. East of the 
Hokkaido central belt, N-S trending dextral faults are 
related to the formation of small pull-apart basins in 
Miocene time [Watanabe and Iwata, 1985; Watanabe, 
1988]. 

SAKHALIN 

The Hokkaido central belt extends northward 
through Sakhalin island. East Sakhalin Mountains is 
a tectonic map of Sakhalin derived from the existing 
geological map at 1/1000000 scale, Rozhdestvenskiy 
[1983, 1986], K. F. Sergeyev (unpublished data, 
1990) and our own field observations and Landsat 
images analysis. The most prominent structure is the 
Tym-Poronaisk fault, which runs N-S for more than 
600 km. Other N-S trending faults are recognized 
east of the Tym-Poronaisk fault, but they are 
probably less active. Following Rozhdestvenskiy 
[1982] and Kimura et al. [ 1983] we recognize in 
Sakhalin the same dextral strike-slip deformation 
already described in Honshu and Hokkaido, but the 
recent E-W compression does not show obviously in 
the structures. 

The N-S trending Hokkaido central belt was built 
through polyphase evolution from the Mesozoic to 
the present. A drastic change in the deformation 
regime occurred at the end of the middle Miocene as 

Neogene Deformation 

Figure 4 summarizes the Cenozoic structures of 
Sakhalin, and Figure 5 shows the features seen on 
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Fig. 4. Tectonic map of Sakhalin after the geological 
map of Sakhalin, Rozhdestvenskiy [1982], analysis 
of Landsat images (M. Fournier et al., paper 
submitted to Journal of Geophysical research, 1992) 
and K. F. Sergeyev (unpublished data, 1990). 
Dashed lines are Cenozoic folds axes seen in the 
Cretaceous to Miocene sediments; dotted lines are 
axes of postfoliation open folds seen in the Mesozoic 
metamorphic complex of the Eastern Sakhalin 
Mountains. 

the Landsat mosaic as well as focal mechanisms of 

shallow earthquakes. The Tym-Poronaisk fault 
divides Sakhalin in two parts: West Sakhalin 
Mountains and East Sakhalin Mountains. 

The Cenozoic sequence is roughly similar on both 
sides of the fault. It begins in the upper Oligocene 
with coarse conglomerate and fines upward into 
lower Miocene sandstone and middle Miocene 

siltstone and siliceous claystone [Melnikov, 1987]. 
The whole sequence is intruded by basic dykes and 
sills, and basaltic lavas and breccia constitute the end 
of the middle Miocene. The late Miocene and 
Pliocene are made of mffaceous siltstone and 
sandstone. 

The West Sakhalin Mountains represent the 
northern extension of the central belt of Hokkaido; in 
general facies are similar to those of the Central Belt 
though less deep in general [Melnikov, 1987]. The 
Cretaceous is represented by forearc deposits with 
abundant terrestrial and volcanic detritus. In the East 

Sakhalin Mountains, Cenozoic deposits are undedain 
by a complex system of thrusts slices composed of 
oceanic material of Late Jurassic to Cretaceous age, 
partly metamorphosed under high-pressure low- 
temperature conditions [Rozhdestvenskiy, 1986]. G. 
Kimura et al. (manuscript in preparation, 1992) 
describe this system as a Cretaceous accretionary 
complex. It is the northern extension of the 
Kamuikotan zone of Hokkaido. 

West of the fault and immediately east of it, 
Cretaceous and Cenozoic sediments are folded; the 
NW trending axes of the folds distributed with a 
dextral en 6chelon pattern [Rozhdestvenskiy, 1982; 
Melnikov, 1987]. The folds axes are curved close to 
the fault, thus giving a sigrnoidal shape compatible 
with dextral displacement. The fault is a very sharp 
feature clearly seen on Landsat images. The fault 
plane itself occurs between Cretaceous sediments or 
lavas and Miocene sandstones. It is usually a N-S 
trending vertical plane with horizontal striation and 
evidence of dextral motion. In the East Sakhalin 

Mountains, N-S trending steep faults (Central, 
Pribrezhnaya, and Liman faults) cut through the 
Mesozoic accretionary complex. They are associated 
with narrow Miocene sedimentary basins which are 
arranged en 6chelon. A small dextral pull-apart basin 
is seen on Landsat images along the North-Sakhalin 
fault. Rozhdestvenskiy [ 1982] shows that the contact 
between a metamorphic complex and 
nonmetamorphosed sediments is offset dextrally by 
25 km. Dextral offset along N-S trending faults is 
also observed in Schmidt peninsula in the very north 
of Sakhalin. 

We performed fault set analysis along and around 
the Tym-Poronaisk fault. All data are compatible 
with NE trending horizontal compression (Figures 2 
and 5). Fault set analysis [Fournier et al., paper 
submitted to Journal of Geophysical Research, and 
Figure 5] shows an E-W trending compression at 
several sites along the fault, it is however always 
associated with curved fold axes with the dextral en 

6chelon pattern. The direction of compression is 
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elsewhere NE-trending and always perpendicular to 
fold axes. E-W compression therefore corresponds 
to rotated sites and the original direction of 
compression (Figure 2) was thus NE. This is in 
good agreement with the trend of fold axes and 
strike-slip faults. 

Our observations of the deformation in the 
accretionary complex below the Cenozoic deposits of 
the East Sakhalin Mountains reveal a fu:st stage with 
layer-parallel shear of probable Mesozoic age 
[Kimura et al., in prep.] followed by a second stage 
of upright foling. These folds trend NW and are 
compatible with the same NE trending compression 
which gave the en 6chelon folds of West Sakhalin. 
We thus attribute these folds also to the Cenozoic 
stage and the strike-slip motion. 

A recent compilation of seismic data allowed H. 
S. Gnibidenko et al. (manuscript in preparation, 
1992] to draw a precise isopach map of Cenozoic 
sediments in the Tartar Strait. One prominent feature 
is a deep rhombohedral basin (Figure 2) bounded by 
NS-trending vertical compressional faults and NE 
trending normal faults and filled with more than 8 km 
of Cenozoic deposits. The overall shape of the basin 
and the nature of the faults lead us to the conclusion 
that it corresponds to a dextral pull-apart. This shows 
that a large part of the dextral motion was localized in 
the Tartar Strait. 

Active Deformation 

Fault plane solutions of earthquakes in Sakhalin 
(L. S. Oscorbin, unpublished data) show two kinds 
of mechanisms (Figures 3 and 5), both being 

Fig. 5. Map of Sakhalin showing the features seen 
on the Landsat mozaic after M. Foumier et al. (paper 
submitted to Journal of Geophysical Research, 
1992). Paleo-stress-field horizontal directions 
deduced from fault set analysis are plotted. Fault 
plane solutions of superficial earthquakes (depth 
lower than 30 km) determined by L. S. Oscorbin (T- 
quadrants in black), and Fukao and Fummoto [1975] 
(T-quadrants vertically ruled) and centroid moment 
tensors determined by Dziewonski et al. [ 1985, 
1987] (T-quadrants horizontally ruled) are shown. 
Radii of focal mechanisms are a function of the 
magnitude (surface waves) of earthquakes except for 
Dziewonski et al. [ 1985, 1987]. Concerning 
Oscorbin data, we kept the main event only when 
two focal mechanisms were determined for the same 
earthquake. The two centroid moment tensors 
determined by Dziewonski et al. [ 1985, 1987] 
correspond to two earthquakes which fault plane 
solutions have independantly been determined by 
Oscorbin (in order to simplify we indicate only 
Oscorbin's epicenter locations). P axes are almost 
similar in each case, and T axes of Diewonski et al.s 
focal mechanisms are steeper so that they indicate 
compressional motion when Oscorbin's indicate 
strike-slip motion. 
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compressional: strike-slip and reverse faults. Several 
mechanisms located close to the main fault trace are 

compatible with dextral motion along the fault. 
Rozhdestvenskiy [1986] describes a change in the 
stress pattern in Pliocene time from dextral wrench 
along the Tym-Poronaisk fault to E-W compression. 
As described above, the fault set analysis does not 
reveal E-W compression except perhaps in the south, 
and all structures observed at large scale are 
compatible with dextral motion. The existence of 
dextral fault plane solutions lead us to think that 
dextral wrench is still active in Sakhalin, as already 
stated by Savostin et al. [1983]. 

DISCUSSION 

From central Japan to the north of Sakhalin, along 
more than 2000 km, we recognize a narrow domain 
of strain localization with evidence of dextral motion 
in Miocene time. It is thus a major feature of the 
deformation of eastern Asia, and it is worth 
discussing its evolution with time. 

Present-Day Activity 

Although E-W compression is obvious in the 
south, in the back-arc region, with numerous large 
compressional earthquakes and other compressional 
features, it is not as clear in the north. Dextral 
motion is probably still active in Sakhalin, except in 
the very south (the Moneron earthquake is similar to 
those off Hokkaido and Honshu and corresponds to 
the northernmost extension of the East Japan Sea 
nascent subduction zone). 

Miocene Deformation 

In the north the strike-slip deformation is 
transpressional and localized along a very narrow 
zone, characterized by en 6chelon folds and thrusts 
and one major discontinuity, the Tym-Poronaisk 
fault. Further south it becomes more transpressional 
in the Hidaka mountains where the shear zone curves 
toward a more westerly trend. Ductile parts of the 
shear zone were there uplifted during the dextral 
shear. This transpressional zone continues in the 
southwest as a transtensional one along the eastern 
margin of Japan Sea. It is characterized by en 
6chelon graben and dextral transfer faults which were 
later reactivated as compressional structures. The 
dextral shear in Hokkaido and Japan Sea margin 
ended about 10 m.y. ago and is contemporaneous 
with the deposition of early to middle Miocene 
sediments. It is thus exactly contemporaneous with 
the opening of Japan Sea. Figure lb shows a 
reconstruction of the strike-slip shear zone in early 
Miocene t/me during an early stage of Japan Sea 
opening [after Jolivet et al., 1991; Jolivet and 
Tamaki, 1992]. It is contemporaneous with the 
rotation of SW Japan deduced from paleomagnetic 
data [Otofuji et al., 1985]. The dextral shear zone 
extends to the south as a dextral fault between SW 
Japan and Korea [Sillitoe, 1977]. 

Therefore, if the dextral motion is correlated with 
the Japan Sea opening, several hundred kilometers of 
dextral displacement are expected. Reconstructions 
of the pre-opening situation [Jolivet and Tamaki, 
1992] show a total offset since 25 Ma of about 400 
km. There is no direct evidence concerning the total 
dextral offset. Only Rozhdestvenskiy [1982] 
describes a 25-km offset along one fault in the East 
Sakhalin Mountains. As the deformation is 
distributed on several major faults the total 
displacement is most likely much larger. The Tym- 
Poronaisk, being the major onshore fault, probably 
accommodated the largest displacement but certainly 
not more than a few tens of kilometers. So, the 
largest part of the dextral motion must be taken up 
along the Tartar Strait where the crust is thinner. 

It is noticeable that the dextral shear zone is 

nowhere compatible with the PAC-EUR relative 
motion. Furthermore, it extends northward very far 
from the subduction zone and trends at a large angle 
to the trench system. It is thus unlikely that it 
represents a back-arc strike-slip fault such as the 
Philippine or Sumatra faults which accommodate the 
obliquity of the motion vector [Huchon and Le 
Pichon, 1984]. Such obliquity is observed in the 
Kuril trench at present and is accommodated by a 
ENE-WSW dextral fault parallel to the Kuril arc, 
which cuts through eastern Hokkaido [Kimura, 
1986]. It is almost perpendicular to the trend of the 
major dextral shear zone. 

The dextral shear zone was turned into a 

compressional zone in the back-arc region about 10 
m.y. ago. This date corresponds to the end of the 
Japan Sea opening and is slightly younger than the 
arrival of the triple junction in its present position 
[Jolivet et al., 1989]. The compression is restricted 
to the back-arc region north to the central Japan triple 
junction. Far off the triple junction, either in Sakhalin 
or in Korea, and also on the continental side of Japan 
Sea, the deformation is still dextral (Figure 3) [Chen 
and Nabelek, 1988; Jun, 1990]. South of the triple 
junction, extension is active in the Bonin arc. This 
suggests that compression is due to the local plate 
configuration in the triple junction region and/or the 
degree of plate coupling along the subduction zone 
and is not characteristic of the more general tectonic 
context of eastern Asia. Following Kimura and 
Tamaki [1986] and Jolivet et al. [1990], we suggest 
that the Sakhalin-East Japan Sea is one of the major 
dextral faults created in the Asian continent during 
the India-Asia collision. Figure 3 shows that other 
dextral faults which are still active, exist west of it. 
Chen and Nabelek [1988] showed that dextral 
motion has been active in the Bohai gulf region along 
NNE trending faults. Jun [1990] describes focal 
mechanisms along the Tsushima fault which are 
compatible with dextral shear. This shear zone 
reactivated in Miocene time the Mesozoic suture that 
runs along Hokkaido and Sakhalin. Far from the 
subduction zone it was, and still is, a transpressional 
wrench fault, and it turned to a transtensional one in 
the back-arc region because extensional tectonics was 
prevailing there. At that time all major back-arc 
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basins were opening (Japan Sea, Shikoku basin, 
South China Sea, and possibly Kuril basin), which 
indicates that extensional conditions were active all 
along the western Pacific margin behind the 
subruction zone. The formation of this strike-slip 
shear zone disturbed the back-arc extension, giving 
rise to the pull-apan geometry we now observe. 
Extension in the back-arc region was linked with the 
mechanics of stress coupling along the subruction 
zone, and strike-slip with internal deformation of 
Asia due to collision with India. 

Aknowledgements: Special thanks are due to 
Helios Gnibidenko, Rimma Kovalenko, and Oleg 
Melhnikov for their warm welcome in Yuzhno- 

Sakhalinsk, and for field guidance and useful 
comments. We also wish to express our thanks to 
Gaku Kimura and Koji Okumura, who were our 
panners during the field survey in Sakhalin. This 
study was funded by Centre National de la 
Recherche Scientifique-Institut National des Sciences 
de l'Univers (programme Dynamique et Bilan de la 
Terre, DBT). This paper is DBT contribution 417. 

REFERENCES 

Amano, K. and H. Sato, Neogene tectonics of the Tamaki, K., Suyehiro, K., Allan, J. et al., 1992, 
central part of northeast Honshu arc, Mem. Proc. ODP, Sci. Results, 127-128, in press, 
Geol. Soc. Jpn., 32, 81-96, 1989. 1992. 

Antipov, M.P., V.M. Kovylin, and V.P. Filat'yev, Jolivet, L., America-Eurasia plate boundary in 
Sedimentary cover of the deep water basins of eastern Asia and the opening of marginal 
Tatar strait and the northern part of the sea of basins. Earth Planet. Sci. Lett., 81,282-288, 
Japan, lnt. Geol. Rev., 22, 1327-1334, 1980. 1986. 

Chamot-Rooke, N., and X. Le Pichon, Zenisu Jolivet, L., and P. Huchon, Crustal scale strike- 
ridge: mechanical model of formation, slip shear zone in Hokkaido, Northeast Japan, 
Tectonophysics, 160, 175-194, 1989. J. Struct. Geol., 11,509-522, 1989. 

Chapman M. C., and S. C. Solomon, North Jolivet, L., and S. Miyashita, The Hidaka Shear 

Kodama, K., T. Takeuchi and T. Ozawa, 
Palcomagnetism of Early Cretaceous to Neogene 
deposits in Central Hokkaido, Japan: block 
rotation caused by strike-slip fault movement 
(abstract), Eos Trans. AGU, 71 (28), 865, 1990. 

Koshiya, S., Tanakura Shear Zone, the deformation 
process of fault rocks and its kinematics, J. 
Geol. Soc. Jpn., 92, 15-29, 1986. 

Lallemand, S., and L. Jolivet, Japan Sea, a pull 
apart basin, Earth Planet. Sci. Lett., 76, 375- 
389, 1985. 

American-Eurasian plate boundary in northeast 
Asia, J. Geophys. Res., 81,921-930, 1976. 

Chen, W. P. and J. Nabelek, Seismogenic strike- 
slip faulting and the development of the North 
China basin, Tectonics, 7, 975-989, 1988. 

Cook, D.B., K. Fujita, and C. A. Mac Mullen, 
Present day plate interactions in northeast 
Asia: North America, Eurasian and Okhotsk 
plates. J. Geodyn., 6, 33-51, 1986. 

Dziewonski, A.M., A. Friedman, D. Giardini, and 
J.H. Woodhouse, Global seismicity of 1982: 
centroid moment tensor solutions for 308 

earthquakes, Phys. Earth Planet. lnt., 45, 11- 
36, 1983. 

Dziewonski, A.M., J. E. Franzen, and J. H. 

Zone 0tokkaido, Japan), genesis during a right- Lallemant, S., N. Chamot-Rooke, X. Le Pichon, 
lateral strike slip movement, Tectonics, 4, 289- and C. Rangin, Zenisu ridge: a deep intraoceanic 
302, 1985. thrust related to subduction, off Southwest 

Jolivet, L., and K. Tamaki, Neogene kinematics in Japan, Tectonophysics, 160, 151-174, 1989. 
the Japan sea region and volcanic activity of the Le Pichon, X., J. T. Iiyama, J. Boul•gue, J. 
northeast -Japan aro, In Tamaki, K., Suyehiro, 
K., Allan, J. et al., 1992, Proc. ODP, Sci. 
Results, 127-128, in press, 1992. 

Jolivet, L., P. Davy, and P. R. Cobbold, Right- 
lateral shear along the northwest Pacific margin 
and the India-Eurasia collision, Tectonics, 9, 
1409-1419, 1990. 

Jolivet, L., P. Huchon, and C. Rangin, Tectonic 
setting of western Pacific marginal basins, 
Tectonophysics, 160, 23-48, 1989. 

Charvet, M. Faure, K. Kano, S. Lallemant, H. 
Okada, C. Rangin, A. Taira, T. Urabe, and S. 
Uyeda, Nakai trough and Zenisu ridge: a deep sea 
submersible survey, Earth Planet. Sci. Lett., 83, 
285-299, 1987. 

Margulis, L.S., Mudretsov, V.B., Sapozhnikov, 
B.G., Fedotov, G.D. & Khvelauk, I.I., 1979, 
Geological structure of the northwestern part of 
the sea of Okhotsk. lnt. Geol. Rev., 22, 1094- 
1102, 1979. 

Woodhouse, Centroid-moment tensor solutions Jolivet, L., P. Huchon, J.P. Bran, N. Chamot- 
for October-December 1984, Phys. Earth Planet. 
Inter., 39, 147-156, 1985. 

Dziewonski, A.M., G. Ekstrom, J. E. Franzen, and 
J. H. Woodhouse, Global seismicity of 1979: 
centtold-moment tensor solutions for 524 

earthquakes, Phys. Earth Planet. Inter., 48, 18- 
46, 1987. 

Fukao, Y., and M. Fummoto, Mechanisms of large 
earthquakes along the eastem margin of the 

Rooke, X. Le Pichon and J.C. Thomas, Arc 
deformation and marginal basin opening; Japan 
Sea as a case study, J. Geophys. Res., 96, 4367- 
4384, 1991. 

Jun, M. S., Source parameters of shallow intraplate 
earthquakes in and around the Korean peninsula 
and their tectonic implication, Acta Univ. Ups., 
Comp. Sum. of Uppsala Diss. Fac. Sci., 285, 16 
pp., 1990. 

Japan sea, Tectonophysics, 25, 247-266, 1975. Kaneoka, I., Takigami, Y., Takaoka, N., 
Gnibidenko, H. S., The Sea of Okhotsk-Kuril 

islands ridge and Kuril-Kamchatka trench, in 
The Ocean Basins and Margins, vol. 7A, edited 
by A.E.N. Naim et al., pp. 377-418, Plenum, 
New York, 1985. 

Huchon, P., Grodynamique de la zone de collision 
d'Izu et du point triple du Japon Central, Th•se 
de Doctoral, Univ. Pierre et Marie Curie, Paris, 
414 pp.,1985. 

Huehon, P., Comment on "Kinematics of the 
Philippine sea plate" by B. Ranken, R. K. 
Cardwell and D. E. Karig. Tectonics, 5, 165- 
168, 1986. 

Huchon, P., and P. Labaurae, Central Japan triple 
junction: a three-dimensional compression 
model, Tectonophysics, 160, 117-133, 1989. 

Huchon, P. and X. Le Pichon, Sunda strait and 
Central Sumatra Fault, Geology, 12, 668-672, 
1984. 

Ingle, J. C., Subsidence of the Japan Sea: evidence 
from ODP sites and onshore sequences, In 

Yamashita, S. and Tamaki, K., 40Ar-39Ar 
analyses of volcanic rocks drilled from the 
Japan Sea floor by Legs 127/128, In Tamaki, 
K., Suyehiro, K., Allan, J. et al., 1992, Proc. 
ODP, Sci. Results, 127-128, in press, 1992. 

Kimura, G., Oblique subruction and collision; 
forearc tectonics of the Kuril arc, Geology, 14, 
404-407, 1986. 

Kimura, G., and K. Tamaki, Tectonic framework of 
the Kuril arc since its initiation, in: Formation 
of Active Ocean Margins, edited by N. Nasu et 
al., pp. 641-676, Terrapub, Tokyo, 641-676, 
1985. 

Kimura, G., and K. Tamaki, Collision, rotation and 
back arc spreading; the case of the Okhotsk and 
Japan seas, Tectonics, 5, 389-401, 1986. 

Kimura G., S. Miyashita, and S. Miyasaka, 
Collision tectonics in Hokkaido and Sakhalin, 
in Accretion Tectonics in the Circum-Pacific 
Regions, edited by M. Hashimoto and S. Uyeda, 
pp. 117-128, Terrapub, Tokyo, 1983. 

Melnikov, O.A., Structure and geodynamics in 
Hokkaido and Sakhalin, in Russian, Nauka, 95 
pp., 1987. 

Mitani, K., Changing of the Tertiary sedimentary 
basins in the western flank of the axial belt of 

Hokkaido- beating a significance of the 
Sunagawa lowland to Umaoi Hilly belt, Assoc. 
Geol. Collab. Jpn. Monogr. 21, 127-137, 
1978. 

Nakamura, K., Possible nascent trench along the 
eastern Japan sea as the convergent boundary 
between Eurasia and North American plates (in 
Japanese with English abstract), Bull. 
Earthquake Research Inst. Univ. Tokyo, 58, 
721-732. 1983. 

Nakamura, K. and S. Uyeda, Stress gradient in 
back arc regions and plate subduction, J. 
Geophys. Res., 85, 6419-6428, 1980. 

Otofuji, Y., T. Matsuda, and S. Nohda, 
Palcomagnetic evidences for the Miocene 
counter clockwise rotation of northeast Japan - 
rifting process of the Japan arc, Earth 
P!anet.Sci. Lettt., 75, 265-277, 1985. 

Otsuki, K., Reconstruction of Neogene tectonic 
stress field of Northeast Honshu arc from 

metalliferous veins. Mem. Geol. Soc. Jpn., 32, 
281-304, 1989. 

Ranken, B., R. K. Cardwell, and D. E. Karig, 
Kinematics of the Philippine sea plate. 
Tectonics, 3, 555-575, 1984. 

Rozhdestvenskiy, V. S., The role of wrench faults 
in the structure of Sakhalin, Geotectonics, 16, 
323-332, 1982. 



Jolivet et al.' Motion in the Okhotsk-Japan Sea region 977 

Roz.hdestvenskiy, V. S., Evolution of the Sakhalin Suzuki, K., On the Late Cenozoic history in the 
fold system, Tectonophysics, 127, 331-339, 
1986. 

Sato, H., Degree of deformation of Late Cenozoic 
strata in the Northeast Honshu are, Mere. Geol. 
Soc. Jpn., 32, 257-268, 1989. 

Savostin, L.A., and A.M. Karasik, Recent plate 
tectonics of the Arctic basin and of 

northeastern Asia, Tectonophysics, 74, 111- 
145, 1981. 

Savostin, L., L. Zonenshain, and B. Baranov, 
Geology and plate tectonics of the Sea of 
Okhotsk, in: Geodynamics of the Western 
Pacific and Indonesian Region, Geodyn. Ser., 
vol. 11, W.C.T. Hilde and S. Uyeda, pp. 343- 
354, AGU, Washington, D.C., 1983. 

Seno, T., Is Northern Honshu a microplate?, 
Tectonophysics, 115, 177-196, 1985. 

Sillitoe, R. H., Metallogeny of an Andean-type 
continental margin in South Korea, 
implications for opening of the Japan Sea, in 
Island Arcs, Deep Sea Trenches and Back Arc 
Basins, Maurice Ewing Set., vol. I, edited by 
M. Talwani and W.C. Pitman 11I, pp. 303-310, 
AGU, Washington, D.C., 1977. 

southern part of northeast Honshu in Japan, 
Mere. Geol. Soc. Jpn., 32, 97-112, 1989. 

Taira, A., H. Tokuyama, and W. Sob, Accretion 
tectonics and evolution of Japan, In The 
Evolution of the Pacific Ocean Margin, edited 
by Z. Ben-Avraharn, pp. 160-123, Oxford 
University Press, 100-123, New York, 1989. 

Takeuchi, A., On the episodic vicissitude of 
tectonic stress field of the Cenozoic northaest 

Honshu arc, Japan, in Formation of Active 
Ocean Margins, edited by N. Nasu et al., 
Terrapub, pp. 443-468, Tokyo, , 1985. 

Tamaki, K., Two modes of back arc spreading, 
Geology, 13, 475-478, 1985. 

Tamaki, K., Geological structure of the Japan sea 
and its tectonic implications, Bull. Geol. Surv. 
Jpn.,39, 269-365, 1988. 

Tamaki, K., Proc. Ocean Drilling Program Initial 
Rep., 127, 1990. 

Tsuchiya, N., Submarine basalt volcanism of 
Miocene Aozawa formation in the Akita- 

Yamagata oil field basin, back-arc region of 
Northeast Japan, Mere. Geol. Soc. Jpn., 32, 
399-408, 1989. 

Sugi, N., K. Chinzei, and S. Uyeda, Vertical crustal Tsuchiya, N., Middle Miocene back-arc rift 
movements of northeast Japan since Middle magmatism of basalt in the NE Japan arc, Bull. 
Miocene. in: Geodynamics of the Western Geol. Sum. Jpn., 41,473-505, 1990. 
Pacific and lndonesian Region, Geodyn. Ser., Watanabe, Y., Deformation structure of the 
vol. I 1, W.C.T. Hilde and S. Uyeda, pp. 317- Uenshiri horst in the Hidaka belt, Central 
329, AGU, Washington, D.C., 1983. Hokkaido, J. Geol. Soc. Jpn., 94, 527-533, 

Suyehiro, K., et al., Proc. Ocean Drilling Program 19 8 8. 
Initial Rep., 128, 1990. 

Watanabe, Y., and K. Iwata, The age of the 
Miocene Kamishiyubetsu formation in northern 
Hokkaido and the basins formed by tectonic 
movements, J. Geol. Soc. Jpn., 91,427-430, 
1985. 

Yamagishi, H., and Y. Watanabe, Change of 
stress field of Late Cenozoic Southwest 

Hokkaido, Japan, - investigation of geologic 
faults, dykes, ore veins and active faults, 
Monogr. Geol. Collab. Jpn., 31, 321-332, 
1986. 

Yamaji, A., Geology of the Atsumi area and Early 
Miocene rifting in the Uetsu District, Northeast 
Japan, Mere. Geol. Soc. Jpn., 32, 305-320, 
1989. 

Yamaji, A., Rapid intra-arc rifting in Miocene 
northeast Japan, Tectonics, 9, 365-378, 1990. 

M. Fournier, P. Huchon, and L. Jolivet, 
Drpartement de G6ologie, Ecole Normale 
Suprrieure, 24 Rue Lhomond, 75231 Paris cedex, 
France. 

L. S. Oscorbin, V. S. Rozdhdestvenskyi, and 
K.F. Sergeyev, Institute of Marine Geology and 
Geophysics, Far East Science Center, Yuzhno- 
Sakhalinsk, USSR. 

(Received January 23, 1991; 
revised December 18, 1991; 
accepted February 10, 1992.) 


