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We present here new experimental data on H 2 O-CO 2 solubility in mafic melts with variable chemical compositions (alkali basalt, lamproite and kamafugite) that extend the existing database. We show that potassium and calcium-rich melts can dissolve ~ 1 wt% CO 2 at 3500 bar (350 MPa) and 1200°C, whereas conventional models predict solubilities of 0.2-0.5 wt%, under similar P-T conditions. These new data, together with those in the literature, stress the fundamental control of melt chemical composition on CO 2 solubility. We present a semiempirical H 2 O-CO 2 solubility model for mafic melts, which employs simplified concepts of gas-melt thermodynamics coupled with a parameterization of both chemical composition and structure of the silicate melt. The model is calibrated on a selected database consisting of 289 experiments with 44 different mafic compositions. Statistical analyses of the experimental data indicate that, in mafic melts, the chemical composition and therefore the structure of the melt plays a fundamental role in CO 2 solubility. CO 2 solubility strongly depends on the amount of non-bridging oxygen per oxygen (NBO/O) in the melt, but the nature of the cation bonded to NBO is also critical. Alkalis (Na+K) bonded to NBO result in a strong enhancement of CO 2 solubility, whereas Ca has a more moderate effect. Mg and Fe bonded to NBO have the weakest effect on CO 2 solubility. Finally, we modelled the effect of water and concluded that H 2 O dissolution in the melt enhances CO 2 solubility most likely by triggering NBO formation. In contrast with CO 2 but in agreement with earlier findings, H 2 O solubility in mafic melts is negligibly affected by melt composition and structure: it only shows a weak correlation with NBO/O.

Introduction

The dynamics of volcanic systems strongly depend on magmatic volatiles because of the ability of the latter to segregate as a low density fluid phase if their amounts exceed the relevant solubility limits in the silicate melt [START_REF] Phillips | Suppression of large-scale magma mixing by meltvolatile separation[END_REF][START_REF] Menand | Gas segregation in dykes and sills[END_REF]. Solubility laws of volatiles generally describe increasing amounts of dissolved components in volatile saturated melts as pressure and, therefore, depth increases [START_REF] Behrens | Geochemical aspects of melts: Volatiles and redox behavior[END_REF]. Accurate volatile solubility laws are inescapably needed to robustly model volatile degassing upon magma ascent [START_REF] Moretti | On the oxidation state and volatile behavior in multicomponent gas-melt equilibria[END_REF][START_REF] Burgisser | Chemical patterns of erupting silicic magmas and their influence on the amount of degassing during ascent[END_REF][START_REF] Gaillard | The sulfur content of volcanic gases on Mars[END_REF] and to interpret volatile contents of melt inclusions and constrain their entrapment depths (Moore, 2008;Metrich and Wallace, 2008). The most abundant volatile component in magmatic systems is H 2 O generally followed by CO 2 (Metrich and Wallace, 2008), although, some volcanic systems can intermittently degas more CO 2 than H 2 O [START_REF] Edmonds | Vapor segregation and loss in basaltic melts[END_REF][START_REF] Liotta | Hydrothermal processes governing the geochemistry of the crater fumaroles at Mount Etna volcano (Italy)[END_REF]). On the basis of general solubility trends, elevated CO 2 /H 2 O ratios in volcanic plumes are generally interpreted to indicate deep degassing [START_REF] Aiuppa | Rates of carbon dioxide plume degassing from Mount Etna volcano[END_REF][START_REF] Edmonds | Vapor segregation and loss in basaltic melts[END_REF][START_REF] Shinohara | Variation of H 2 O/CO 2 and CO 2 /SO 2 ratios of volcanic gases discharged by continuous degassing of Mount Etna volcano, Italy[END_REF]. However, other mechanisms can be conducive to high CO 2 contents in volcanic gases: open system degassing [START_REF] Edmonds | Vapor segregation and loss in basaltic melts[END_REF], large gas content in magma chambers at depth prior to eruption [START_REF] Wallace | From mantle to atmosphere: Magma degassing, explosive eruptions, and volcanic volatile budgets. Melt inclusions in volcanic systems: methods, applications and problems[END_REF][START_REF] Scaillet | Experimental constraints on volatile abundances in arc magmas and their implications for degassing processes. Volcanic Degassing[END_REF], or interactions with sedimentary carbonates [START_REF] Iacono-Marziano | Role of non-mantle CO2 in the dynamics of volcano degassing: The Mount Vesuvius example[END_REF]. Accurate solubility laws are essential to decipher which of the above mentioned processes controls volcanic degassing. Due to the strong influence of melt composition on CO 2 solubility [START_REF] Dixon | Degassing of alkalic basalts[END_REF]Brooker et al., 2001a and b and new data in this study), the high-temperature high-pressure experimental approach is critical but solubility models are nevertheless needed to extrapolate or interpolate experimental data and predict H 2 O and CO 2 solubility for variable chemical compositions under different conditions.

We present here new experimental data on specific melt compositions that clarify the chemical control on CO 2 solubility and show the limitation of existing models in predicting such chemical effects. We focus on mafic systems ranging from andesitic to picritic compositions and we propose an empirical model for H 2 O-CO 2 solubility built on thermodynamics and considerations of melt structure calibrated on a comprehensive database.

Our approach is to develop a pragmatic model for H 2 O-CO 2 solubility in mafic melts, which avoids excessively complex thermodynamic formulations, but can nevertheless reproduce experimental data. We show that the use of structural parameters in addition to chemical components may be used to retrieve the existing database with a relatively simple and flexible thermodynamic framework.

Existing models for H 2 O-CO 2 solubility in silicate melts

H 2 O solubility models in silicate melts have been pioneered by [START_REF] Burnham | Role of H 2 O in silicate melts.1. P-V-T relations in system NaAlSi 3 O 8 -H 2 O to 10 kilobars and 1000 Degrees °C[END_REF] who propose that, at low water contents, water solubility in silicate melts depends on the square root of water pressure or fugacity. By carrying out a systematic infrared absorption study of water dissolved in silicate melts, [START_REF] Stolper | The speciation of water in silicate melts[END_REF] proposed a thermodynamic model for water dissolution involving both molecular H 2 O and OH species, which applies at higher water contents. Empirical and simpler formulations have been more recently developed [START_REF] Moore | An empirical model for the solubility of H 2 O in magmas to 3 kilobars[END_REF] and reveal a minor control of melt chemical compositions on water solubility.

Most CO 2 and H 2 O-CO 2 solubility models are calibrated on databases that do not integrate the recent and high quality literature published since 2006. [START_REF] Dixon | Degassing of alkalic basalts[END_REF] proposes a semiempirical chemical model for CO 2 solubility at 1 kbar based on thermodynamic formulations previously described by [START_REF] Spera | Carbon-dioxide in igneous petrogenesis.1. Aspects of the dissolution of CO 2 in silicate liquids[END_REF]. The introduction of the empirical factor Π accounts for the enhancement of CO 2 solubility in melts as Ca, K, Na, Mg and Fe (listed in the order of the magnitude of their effect) are added to the system. The Π parameter also predicts that increasing Si and Al melt contents would decrease CO 2 solubility. The main limitation of this model is that it is restricted to low pressure conditions (<1000 bar) corresponding to low dissolved H 2 O and CO 2 contents. Lesne et al. (2011a) propose a readjustment of the Π factor of [START_REF] Dixon | Degassing of alkalic basalts[END_REF] in order to reproduce more recent experimental data and suggested that it could be reasonably extrapolated to 2000 bar, however no rigorous tests of its validity have been done so far over a comprehensive database.

VolatileCalc [START_REF] Newman | VOLATILECALC: a silicate melt-H 2 O-CO 2 solution model written in Visual Basic for excel[END_REF] is probably the most used H 2 O-CO 2 solubility model and has the great advantages of being easy to use and founded on thermodynamic basis, previously developed by [START_REF] Stolper | The speciation of water in silicate melts[END_REF] for water. The main drawback of VolatileCalc is that it poorly takes into account how changes in melt composition affect H 2 O and CO 2 solubility, the SiO 2 content of the melt being the only chemical parameter considered. In this paper, we present experimental data showing that melt SiO 2 content is not sufficient to accurately predict CO 2 solubility. [START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF] published the most sophisticated solubility model for H 2 O-CO 2 gas mixture in multi-component molten silicate, accounting for the chemical control operated by 8 melt components (oxides, e.g. SiO 2 , Al 2 O 3 ) on H 2 O and CO 2 solubility. The model has initially been developed for one-component solubility, i.e. H 2 O-silicate melt and CO 2 -silicate melt [START_REF] Papale | Modeling of the solubility of a one-component H 2 O or CO 2 fluid in silicate liquids[END_REF], and it has evolved to a two component model, i.e. H 2 O-CO 2 mixturesilicate melt [START_REF] Papale | Modeling of the solubility of a two-component H 2 O + CO 2 fluid in silicate liquid[END_REF][START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF]. In all cases, the effect of a given melt component on H 2 O and CO 2 solubilities is calibrated by fitting experimental data within a thermodynamic framework. In [START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF] 26 regression parameters account for the dependence of both H 2 O and CO 2 solubilities on melt composition and additional fitted parameters for standard thermodynamic properties (enthalpy, entropy, heat capacity, volume terms). The mixing formalism used in [START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF] is a regular symmetric one (as in [START_REF] Ghiorso | Chemical mass-transfer in magmatic processes. 4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated-temperatures and pressures[END_REF]: the interaction parameters (Margules parameters) are adjusted between each pair of components assuming that a binary mixture would show similar interactions if diluted in multicomponent systems. In all, these three models [START_REF] Dixon | Degassing of alkalic basalts[END_REF][START_REF] Newman | VOLATILECALC: a silicate melt-H 2 O-CO 2 solution model written in Visual Basic for excel[END_REF][START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF] are essentially chemical models, which account, with variable degree of complexity, for the effects of melt composition on H 2 O-CO 2 solubility.

Melt structure and CO 2 solubility

A different approach has been also deployed to evaluate the control of melt structure and chemical composition on CO 2 solubility. Structural studies [START_REF] Brooker | Solubility, speciation and dissolution mechanisms for CO 2 in melts on the NaAlO 2 -SiO 2 join[END_REF](Brooker et al. , 2001a) ) and recent molecular dynamic simulations [START_REF] Guillot | Carbon dioxide in silicate melts: A molecular dynamics simulation study[END_REF] clearly reveal the melt structural controls on CO 2 solubility in mafic melts.

In mafic compositions, CO 2 is observed to dissolve in the melt uniquely as CO 3 2-. The amount of available oxygens and the type of cation bonded to these oxygens are therefore key factors in controlling CO 2 solubility (Brooker et al. 2001a, b). In this paragraph, we present a synthetic overview of the current knowledge of silicate melt structure that has to be taken into account for modelling the effect of the chemical composition on CO 2 solubility. Spectroscopic methods (FTIR, Raman, NMR and X-ray analyses) describe the silicate melt as a complex assembly of individual tetrahedral unit called Q n species (e.g. [START_REF] Farnan | The nature of the glass transition in a silica-rich oxide melt[END_REF][START_REF] Frantz | Raman spectra and structure of BaO-SiO 2 , SrO-SiO 2 and CaO-SiO 2 melts to 1600[END_REF][START_REF] Mysen | Physics and chemistry of silicate glasses and melts[END_REF], with n standing for the number of Bridging Oxygen (BO) between 0 and 4 within the tetrahedron, the number of non-bridging oxygens being therefore NBO = 4 -BO. The chemical composition of the melt controls the abundances of the different Q n species and therefore both the abundance and the nature of the NBO. [START_REF] Lee | The effect of network-modifying cations on the structure and disorder in peralkaline Ca-Na aluminosilicate glasses: O-17 3QMAS NMR study[END_REF] show that several types of NBOs are present within the melt structure depending on the surrounding cation. Increasing the concentration of the alkalis or alkaline-earth elements increases the number of depolymerised Q n units within the melt (e.g. [START_REF] Grimmer | High resolution solid state 29 Si NMR spectroscopic studies of binary alkali silicate glasses[END_REF][START_REF] Maekawa | The structural groups of alkali silicate glasses determined from 29 Si MAS NMR[END_REF][START_REF] Schneider | Qn distribution in stoichiometric silicate glasses: thermodynamic calculations and 29 Si high resolution NMR measurements[END_REF][START_REF] Halter | Melt speciation in the system Na 2 O-SiO 2[END_REF][START_REF] Neuville | Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27 Al MQ-MAS NMR and Raman spectroscopy[END_REF][START_REF] Malfait | Structural control on bulk melt properties: Single and double quantum 29 Si NMR spectroscopy on alkalisilicate glasses[END_REF]. Alkalis and alkaline-earths can be either charge balancing cations or network modifying cations [START_REF] Maekawa | Coordination of sodium ions in NaAlO 2 -SiO 2 melts: a high temperature 23 Na NMR study[END_REF][START_REF] Lee | The effect of network-modifying cations on the structure and disorder in peralkaline Ca-Na aluminosilicate glasses: O-17 3QMAS NMR study[END_REF][START_REF] Lee | Effects of the degree of polymerization on the structure of sodium silicate and aluminosilicate glasses and melts: An 17 O NMR study[END_REF]. The change in the coordination number of the alkalis and alkalineearth elements within the melt is regarded as an effect of the cation field strength [START_REF] Shimoda | Local structure of Magnesium in silicate glasses: A 25 Mg 3QMAS NMR study[END_REF]. Si and Al are generally considered as network formers [START_REF] Rossano | Environment of ferrous iron in CaFeSi 2 O 6 glass; contributions of EXAFS and molecular dynamics[END_REF][START_REF] Guillot | A computer simulation study of natural silicate melts. Part I: Low pressure properties[END_REF], although very high pressures favour V and VI coordinated network forming cations [START_REF] Mcmillan | High pressure effects on liquid viscosity and glass transition behaviour, polyamorphic phase transitions and structural properties of glasses and liquids[END_REF]. The presence of highly coordinated Al (V and VI) is also correlated to the concentration of charge balancing cations. Recent work [START_REF] Toplis | Fivefold-coordinated aluminum in tectosilicate glasses observed by triple quantum MAS NMR[END_REF][START_REF] Neuville | The structure of crystals, glasses, and melts along the CaO-Al 2 O 3 join: results from Raman, Al L-and K-edge Xray absorption, and Al-27 NMR spectroscopy[END_REF] suggests that V coordinated Al concentration increases in Ca-MgO-Al 2 O 3 -SiO 2 and Ca-Al 2 O 3 glasses with decreasing Mg or Ca content.

The major implication of this result is that Al adopts a network modifying rather than a network forming character. However, the concentration of V coordinated Al remains relatively low (<9% of the total Al) in such glasses. In peraluminous melts, the possible presence of 3-coordinated oxygen atoms has also been invoked by [START_REF] Toplis | Peraluminous viscosity maxima in Na 2 O-Al 2 O 3 -SiO 2 liquids: The role of triclusters in tectosilicate melts[END_REF] forming Al, Si triclusters. This assumption based on viscosity measurements is corroborated by the fact that low alkali concentrations are not sufficient to balance the charge deficiency in AlO 4 tetrahedra.

The structural behaviour of Mg in silicate melt is currently less constrained than Ca or Na.

Stebbins and co-workers [START_REF] Fiske | The structural role of Mg in silicate liquids: A hightemperature 25 Mg, 23 Na, and 29 Si NMR study[END_REF][START_REF] Georges | Structure and dynamics of magnesium in silicate melts: A high-temperature 25 Mg NMR study[END_REF][START_REF] Kroeker | Magnesium coordination environments in glasses and minerals: New insight from high-field magnesium-25 MAS NMR[END_REF][START_REF] Mcmillan | High pressure effects on liquid viscosity and glass transition behaviour, polyamorphic phase transitions and structural properties of glasses and liquids[END_REF] suggested that Mg exhibited several coordination numbers (changing mainly between 5 and 6) as a function of the chemical composition. Mg atoms, like Ca and Na, also give rise to several NBO within the melt [START_REF] Kelsey | Ca-Mg mixing in aluminosilicate glasses: An investigation using 17 O MAS and 3QMAS and 27 Al MAS NMR[END_REF] and are seen to influence the coordination sphere of network forming atoms such as Al [START_REF] Guignard | Environments of Mg and Al in MgO-Al 2 O 3 -SiO 2 glasses: A study coupling neutron and X-ray diffraction and Reverse Monte Carlo modelling[END_REF].

The configuration of carbonate units has been extensively discussed in previous works [START_REF] Kohn | 13 C MAS NMR: A method for studying CO 2 speciation in glasses[END_REF][START_REF] Brooker | Solubility, speciation and dissolution mechanisms for CO 2 in melts on the NaAlO 2 -SiO 2 join[END_REF]2001b). Fourier transform infrared (FTIR) studies show that CO 2 dissolves in mafic melts as carbonate groups with two configurations: 1) network carbonates, i.e. T-CO 3 -T (where T is a tetrahedron, principally Si 4+ , Al 3+ ), 2) carbonate groups connected to a non-bridging oxygen, i.e. NBO-CO 3 M n+ (where M n+ is a charge balancing or network modifying cation such as Na + , K + or Ca 2+ ). Brooker et al. (2001a) propose that CO 2 solubility is a function of the degree of polymerization of the melt, on the basis of a strong increase in CO 2 solubility with increasing NBO/T. In basaltic and more mafic compositions, such as those studied here, the NBO-CO 3 association constitutes the principal mechanism of CO 2 dissolution in the glass [START_REF] Morizet | C-O-H fluid solubility in haplobasalt under reducing conditions: An experimental study[END_REF]. This spectroscopic observation is entirely consistent with theoretical simulations conducted using molecular dynamics simulations [START_REF] Guillot | Carbon dioxide in silicate melts: A molecular dynamics simulation study[END_REF].

New data on H 2 O-CO 2 solubility

Experimental and analytical methods

Fluid saturated experiments in the system H 2 O-CO 2 were conducted in internally heated pressure vessels (ISTO, Orléans), at 1200°C and 485-4185 bar. Au 80 -Pd 20 capsules (internal diameter 2.5 mm), were used in order to minimize iron loss from the melt to the capsule during the run. All experiments were ended by drop quench. By using pure argon as a pressure medium without hydrogen addition, oxidized conditions were achieved, i.e. fO 2 > FMQ+1 [START_REF] Gaillard | Experimental determination of activities of FeO and Fe 2 O 3 components in hydrous silicic melts under oxidizing conditions[END_REF]; no effort was made to control oxygen fugacity. Two starting glasses, an alkali-basalt from Mt. Etna, Italy (see Lesne et al., 2011a) and a lamproite from Torre Alfina, Italy, (see [START_REF] Peccerillo | Petrogenesis of orenditic and kamafugitic rocks from Cnetral Italy[END_REF] were used (compositions in Table 1), corresponding to two different types of experiments. In the first case, 100 to 150 mg of alkalibasaltic starting glass were loaded together with variable amounts of water and/or dehydrated oxalic acid, or silver carbonate and the experiments were performed at 1200°C and variable pressures (between 485 and 4185 bar) (Table 2). Experiments lasted 18-76 hours; the difference in the experimental duration does not significantly affect iron loss from the melt (the compositions of the experimental samples are within the standard deviation of the Etna starting glass composition in Table 1). The aim of these experiments was to characterize H 2 O-CO 2 solubility in alkali-basaltic melts as a function of pressure at typical magmatic conditions. Recovered glasses were checked by both optical and scanning electron microscopy to be crystal-and bubble-free.

In the second type of experiments, 60-100 mg of pre-hydrated (3.2 wt% water) lamproitic glass were loaded with variable amounts of dolomite and calcite (Table 3) and equilibrated at 1200°C and 3150 bar. Dolomite and calcite introduce calcium and magnesium to the system, in addition to CO 2 , and therefore modifies the composition of the melt (Table 3). Experiments lasted 3 hours, sufficient to ensure complete carbonate dissolution in the melt (confirmed by the homogeneous Ca, Mg and CO 2 contents of the melts in Table 3). Sample #2TA3 contains 5% of olivine crystals whereas the other samples are crystal free. The aim of these experiments was to reveal the strong effect of melt composition on CO 2 solubility.

Major element compositions of the glasses was analysed with a Cameca SX-50 electron microprobe (EMP), using the following operating conditions: 15 kV accelerating voltage, 7 nA beam current, 10 s counting time for all elements on each spot, and 10 µm spot size. Sodium was analysed first to limit any loss.

H 2 O and CO 2 concentrations in the quenched glasses were determined by transmission FTIR spectroscopy on doubly polished glass chips, using a Nicolet 760 Magna spectrometer equipped with an IR microscope and a MCT detector. Absorption spectra were acquired for each sample in the range 1000-6000 cm -1 with 128 scans and a resolution of 4 cm -1 . A Globar light source and a KBr beamsplitter was used for the mid-infrared (MIR), while a tungsten white light source and a CaF 2 beam-splitter for the near-infrared (NIR). For each sample 6 to 15 spots were analyzed to verify the homogeneity of the H 2 O and CO 2 contents in the glass (standard deviations in Table 2 and3). In samples with water contents higher than 1.2 wt%, total water was determined as the sum of structurally bonded hydroxyl groups and molecular water concentrations, and therefore calculated using the Lambert-Beer law from the absorbances of the 4470 cm -1 and 5210 cm -1 bands, respectively. In water-poor samples (<1.2 wt%), total water was calculated from the absorbance of the fundamental OH-stretching vibration at about 3530 cm -1 . For the three peaks (4470, 5210 and 3530 cm -1 ), the heights were determined using linear background corrections (as in Lesne et al., 2011a). We used the linear extinction coefficient in [START_REF] Fine | Dissolved Carbon-dioxide in basaltic glasses-concentrations and speciation[END_REF], for the 3530 cm -1 band and those in Lesne et al. (2011a) for the 4470 cm -1 and 5210 cm -1 bands, which were calibrated for our alkali-basaltic composition.

CO 2 is dissolved in mafic melts as carbonate groups (CO 3 2-), which have two asymmetric stretching vibrations with different frequency that give the characteristic "carbonate doublet" (Blank and Brooker, 1994 and references therein). The difference in frequency (Δν 3 ) is proportional to the distortion of the carbonate structure (i.e. the difference in environment among the carbonate oxygens, [START_REF] Brooker | Solubility, speciation and dissolution mechanisms for CO 2 in melts on the NaAlO 2 -SiO 2 join[END_REF]Brooker et al. , 2001;;[START_REF] Morizet | C-O-H fluid solubility in haplobasalt under reducing conditions: An experimental study[END_REF]. For our compositions, the peaks of the carbonate doublet are at about 1515 and 1430 cm -1 . The major source of error in CO 2 calculation is represented by the background correction to constrain peak heights of the CO 3 2-doublet. For high CO 2 contents, the carbonate peaks overlap, while for high water contents, the water peak at 1630 cm -1 (due to the  2 bending of H 2 O molecules, [START_REF] Ihinger | Analytical methods for volatiles in glasses[END_REF]) interferes with the higher wave number carbonate peak (Fig. 1). Possible background corrections consist in the deconvolution of the three peaks (e.g. [START_REF] Jakobsson | Solubility of water and carbon dioxide in an icelandite at 1400 degrees C and 10 kilobars[END_REF][START_REF] Morizet | C-O-H fluid solubility in haplobasalt under reducing conditions: An experimental study[END_REF], the use of French lines (e.g. [START_REF] King | CO 2 solubility and speciation in intermediate (andesitic) melts: The role of H 2 O and composition[END_REF], or the subtraction of a volatile-free spectrum, which is the most employed technique (e.g. [START_REF] Fine | Dissolved Carbon-dioxide in basaltic glasses-concentrations and speciation[END_REF][START_REF] Thibault | Solubility of CO 2 in a Ca-rich leucitite-effects of pressure, temperature, and oxygen fugacity[END_REF][START_REF] Dixon | Determination of the molar absorptivity of dissolved carbonate in basanitic glass[END_REF][START_REF] Jendrzejewski | Carbon solubility in Mid-Ocean Ridge basaltic melt at low pressures (250-1950 bar)[END_REF][START_REF] Behrens | Solubility of H 2 O and CO 2 in ultrapotassic melts at 1200 and 1250 degrees C and pressure from 50 to 500 MPa[END_REF]. However, for H 2 O-bearing samples the inaccuracy in the estimation of the 1515 cm -1 peak height is higher if the height of the peak at 1630 cm -1 is different between the sample and the subtracted spectrum (Fig. 1). Extinction coefficients for the carbonate doublet were determined by several authors for various mafic compositions, i.e. basalt, Ca-rich leucitite, basanite, icelandite, andesite, phono-tephrite, shoshonite, generally in almost anhydrous samples [START_REF] Fine | Dissolved Carbon-dioxide in basaltic glasses-concentrations and speciation[END_REF][START_REF] Thibault | Solubility of CO 2 in a Ca-rich leucitite-effects of pressure, temperature, and oxygen fugacity[END_REF][START_REF] Dixon | Determination of the molar absorptivity of dissolved carbonate in basanitic glass[END_REF][START_REF] Jendrzejewski | Carbon solubility in Mid-Ocean Ridge basaltic melt at low pressures (250-1950 bar)[END_REF][START_REF] Jakobsson | Solubility of water and carbon dioxide in an icelandite at 1400 degrees C and 10 kilobars[END_REF][START_REF] King | CO 2 solubility and speciation in intermediate (andesitic) melts: The role of H 2 O and composition[END_REF][START_REF] Behrens | Solubility of H 2 O and CO 2 in ultrapotassic melts at 1200 and 1250 degrees C and pressure from 50 to 500 MPa[END_REF][START_REF] Vetere | Solubility of H 2 O and CO 2 in shoshonitic melts at 1250°C and pressure from 50 to 400 MPa: Implications for Campi Flegrei magmatic systems[END_REF]. We performed the background correction in the 1000-2000 cm -1 region by manually subtracting a CO 2 -free spectrum, with similar concentration of molecular H 2 O scaled to the same thickness of the sample (as in Fig. 1), in order to minimize the error in the height estimation of the peak at 1515 cm -1 . We tested the influence of the extinction coefficient in the estimation of CO 2 concentration, by using extinction coefficients available in the literature for both carbonate bands and different mafic compositions. CO 2 contents in lamproitic to kamafugitic samples were calculated using extinction coefficients calibrated in basaltic, Ca-rich leucititic, and phonotephritic compositions: 375 cm -1 [START_REF] Fine | Dissolved Carbon-dioxide in basaltic glasses-concentrations and speciation[END_REF], 355 cm -1 [START_REF] Thibault | Solubility of CO 2 in a Ca-rich leucitite-effects of pressure, temperature, and oxygen fugacity[END_REF], 302 cm -1 [START_REF] Behrens | Solubility of H 2 O and CO 2 in ultrapotassic melts at 1200 and 1250 degrees C and pressure from 50 to 500 MPa[END_REF]. The three different values are shown and compared in Table 3; the average value was used for data treatment. CO 2 contents in alkali-basalt samples were calculated using extinction coefficients calibrated in basaltic, basanitic and shoshonitic compositions: 375 cm -1 [START_REF] Fine | Dissolved Carbon-dioxide in basaltic glasses-concentrations and speciation[END_REF], 398 cm -1 [START_REF] Jendrzejewski | Carbon solubility in Mid-Ocean Ridge basaltic melt at low pressures (250-1950 bar)[END_REF], 281 and 284 cm -1 [START_REF] Dixon | Determination of the molar absorptivity of dissolved carbonate in basanitic glass[END_REF] and 355 cm -1 [START_REF] Vetere | Solubility of H 2 O and CO 2 in shoshonitic melts at 1250°C and pressure from 50 to 400 MPa: Implications for Campi Flegrei magmatic systems[END_REF]. Table 2 shows the average value and the standard deviation.

Both for lamproitic-kamafugitic and alkali-basaltic compositions, observed variations are always within 20%.

An equation linking the density of the glass to its total water content was used in the computation of the amount of dissolved water. For the Etna composition the equation was experimentally calibrated by [START_REF] Lesne | Etude expérimentale de la solubilité des volatils C-H-O-S dans les basaltes alcalins italiens[END_REF]: density (g/cm 3 ) = -0.0185 × wt% H 2 O + 2.708.

For the lamproitic to kamafugitic compositions we adopted the same equation as it reasonably agrees with density measurements on K-rich melts [START_REF] Behrens | Solubility of H 2 O and CO 2 in ultrapotassic melts at 1200 and 1250 degrees C and pressure from 50 to 500 MPa[END_REF]. The thickness of the doubly polished glass sections was measured with a Mitutoyo digital micrometer (accuracy ±1 µm) and crosschecked with the microscope gear for every single measurement.

Partial pressures of H 2 O and CO 2 were calculated from total pressures and dissolved water contents: H 2 O pressure was initially calculated from the amount of H 2 O dissolved in the melt, using the solubility law determined for pure water (Lesne et al., 2011a); then CO 2 pressure was obtained by subtracting H 2 O pressure from total pressure. We estimate the error associated with this calculation to be less than 15%, the main contribution being the fit of the H 2 O solubility data. The mole fraction of CO 2 in the fluid phase (in Table 2) was calculated as the ratio of total pressure and partial pressure of CO 2 . We tested that the use of this method, in place of mass balance calculations or the weight-loss method [START_REF] Shishkina | Solubility of H2O-and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa[END_REF]) strongly reduces the scatter in the experimental data.

Results and comparison with existing data

Experimental results are listed in Table 2 for alkali-basaltic glasses and in Table 3 for lamproitic ones. All experimental glasses present homogeneous H 2 O and CO 2 contents (Tables 2 and3).

Etna composition

The data obtained using the Etna composition show that CO 2 solubility generally increases with CO 2 partial pressure (Fig. 2a) consistent with previous investigations (e.g. [START_REF] Stolper | Experimental determination of the solubility of carbondioxide in molten basalt at low-pressure[END_REF][START_REF] Thibault | Solubility of CO 2 in a Ca-rich leucitite-effects of pressure, temperature, and oxygen fugacity[END_REF][START_REF] Jendrzejewski | Carbon solubility in Mid-Ocean Ridge basaltic melt at low pressures (250-1950 bar)[END_REF][START_REF] Morizet | CO 2 in haplo-phonolite Melt: Solubility, speciation and carbonate complexation[END_REF][START_REF] Botcharnikov | Solubility and speciation of C-O-H fluids in andesitic melt at T=1100-1300 degrees C and P=200 and 500MPa[END_REF]Lesne et al., 2011b). Figures 2a and 2b also show the recently published data (Lesne et al., 2011a, b) for the same alkali-basaltic composition, our data extending the experimental conditions to higher pressure. This melt composition, although alkali-rich, is not far from those used for the calibration of existing models [START_REF] Dixon | Degassing of alkalic basalts[END_REF][START_REF] Newman | VOLATILECALC: a silicate melt-H 2 O-CO 2 solution model written in Visual Basic for excel[END_REF][START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF]. When plotted in a P CO2 vs. dissolved CO 2 plot (Fig. 2a) both our data and those of Lesne et al. (2011b) show a linear trend with a nearly 1:1 slope. Solubilities predicted by VolatileCalc [START_REF] Newman | VOLATILECALC: a silicate melt-H 2 O-CO 2 solution model written in Visual Basic for excel[END_REF] and the model of [START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF] at 1200°C are also shown (Fig. 2a). In the first case, a solubility curve was calculated for 47.95 wt% SiO 2 at 1200°C. In the second case, calculations have been performed on the website http://ctserver.ofm-research.org using (i) the Etna composition with Fe 3+ /Fe tot = 0.15 (in order to broadly reproduce the redox conditions during the experiments), (ii) experimental pressures and temperature, and (iii) calculated CO 2 molar fractions in the fluid (Table 2). VolatileCalc underestimates CO 2 solubility by ~45%. Values calculated using [START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF] are in a good agreement with the experimental data, within the analytical error.

Fig. 2b shows our data for H 2 O in a P H2O vs. dissolved wt% H 2 O plot, compared to those of Lesne et al. (2011a) and calculations using the models of [START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF] and VolatileCalc at 1200°C. Although water was not loaded in some samples (those in which CO 2 was introduced as Ag 2 CO 3 ), it was measured in the resulting glasses (Table 2 and Fig. 2b), probably due to 1) the presence of H 2 O as an impurity in the gas pressure medium [START_REF] Behrens | Noble gas diffusion in silicate glasses and melts[END_REF], or 2) the presence of H 2 in the autoclaves, which reduces the ferric iron of the sample to ferrous iron and/or reduces ferrous iron to metal (iron loss in the capsule), thus generating H 2 O [START_REF] Gaillard | Experimental determination of activities of FeO and Fe 2 O 3 components in hydrous silicic melts under oxidizing conditions[END_REF]. Despite this addition, water distribution in these samples is homogeneous, testifying that equilibrium conditions were reached during the experiments.

Moreover, all our data are well aligned and consistent with CO 2 -free data of Lesne et al. (2011a). Calculated solubility using VolatileCalc computed for 47.9 wt% SiO 2 is in good agreement with experimental data, while the model of [START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF] (for Etna composition with Fe 2 O 3 = 15% of total FeO) slightly overestimates experimental data at pressures higher than 500 bar.

When transposing in terms of total pressure (i.e. P CO2 +P H2O ), VolatileCalc significantly overestimates total pressures for given amounts of dissolved CO 2 and H 2 O (Fig. 2c), e.g. when the experimental pressure is ~2000 bar, VolatileCalc calculates ~3000 bar for the same amount of H 2 O and CO 2 . The model of [START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF] also overestimates, but to a lesser extent, total pressures up to 4000 bar (Fig. 2c).

Torre Alfina composition

CO 2 solubility data obtained at a single total pressure (3510 bar) with moderate variations of CO 2 fraction in the gas (75 to 96 %) are shown in Figure 3. Given that changes in the melt composition are essentially due to CaO and MgO addition, due to the use of Ca-Mg carbonates as the source of CO 2 , we represent the data as dissolved CO 2 content vs. CaO or MgO in the melt (Fig. 3a andb, respectively). Experimental data for shoshonitic to Ca-rich shoshonitic compositions [START_REF] Iacono-Marziano | Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes[END_REF], obtained using a similar protocol (CO 2 added as Ca-carbonates), are also shown. Both trends suggest a strong control of the melt CaO content on CO 2 solubility (Fig. 3a) in potassic melts (this study), as in more sodic ones [START_REF] Iacono-Marziano | Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes[END_REF]. This effect has already been observed in calcic to calcalkaline basalt compositions (Moore, 2008), the experimental data being also shown in Figure relatively well predicted (within 20%), our data for potassic compositions are underestimated by more than 50%. Therefore, although the model of [START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF] predicts a strong effect of CaO content on CO 2 solubility (as also proposed by [START_REF] Dixon | Degassing of alkalic basalts[END_REF]Lesne et al., 2011b), our experimental data reveal that the magnitude of this effect needs to be recalibrated.

The effect of MgO contents of the melt is less clear (Fig. 3b), CO 2 solubility correlating positively with MgO in potassic melts (this study) and negatively in more sodic ones [START_REF] Iacono-Marziano | Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes[END_REF]. The control of the melt alkali content on CO 2 solubility is difficult to verify by using these data, because variations in Na 2 O and K 2 O are very limited when compared to the variations in the CaO content.

We finally show how CO 2 solubility correlates with two structural parameters: 1) the agpaitic index, i.e. Al 2 O 3 /(CaO+K 2 O+Na 2 O), which has a strong effect on melt physical and structural properties [START_REF] Mysen | Structural behavior of Al 3+ in peralkaline, metaluminous, and peraluminous silicate melts and glasses at ambient pressure[END_REF] and 2) the NBO/O (non-bridging oxygen per oxygen), calculated on an anhydrous basis (see the Appendix). Both the agpaitic index and the NBO/O seem to be strongly correlated to CO 2 solubility, the former showing an inverse, while the latter a positive correlation with the amounts of CO 2 in the glasses (Fig. 3c andd).

MODEL

Database and global chemical trends

The database of H 2 O-CO 2 solubility experiments is summarized in [START_REF] Pan | The pressure and temperature-dependence of carbon dioxide solubility in tholeiitic basalt melts[END_REF]Brooker et al., 2001a;[START_REF] Thibault | Solubility of CO 2 in a Ca-rich leucitite-effects of pressure, temperature, and oxygen fugacity[END_REF], iii) we consider that above 10000 bar the fluid phase might not be considered as a mixture of perfect gases.

We selected only multi-component compositions, because we believe that mixing effects that could affect CO 2 solubility in simple systems would not necessarily operate in more complex systems with the same magnitude. Furthermore, although changes in composition in the selected database are important, they remain small in comparison to chemical changes that would be introduced by simplified synthetic systems (e.g. Al-free, alkali-free) and that would excessively influence the regression process.

Figure 4a shows dissolved CO 2 contents vs. CO 2 pressure for each experimental work in 4c) and variable CO 2 activities [START_REF] Jakobsson | Solubility of water and carbon dioxide in an icelandite at 1400 degrees C and 10 kilobars[END_REF][START_REF] Botcharnikov | Solubility and speciation of C-O-H fluids in andesitic melt at T=1100-1300 degrees C and P=200 and 500MPa[END_REF][START_REF] Behrens | Solubility of H 2 O and CO 2 in ultrapotassic melts at 1200 and 1250 degrees C and pressure from 50 to 500 MPa[END_REF][START_REF] Shishkina | Solubility of H2O-and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa[END_REF]). This could reflect the effect of water on CO 2 solubility, as already proposed by [START_REF] Mysen | Solubility of Carbon Dioxide in melts of Andesite, Tholeiite, and Olivine Nephelinite Composition to 30 kbar Pressure[END_REF] and more recently by [START_REF] Behrens | Solubility of H 2 O and CO 2 in ultrapotassic melts at 1200 and 1250 degrees C and pressure from 50 to 500 MPa[END_REF]. When selecting the datasets with the largest ranges of dissolved water contents [START_REF] Jakobsson | Solubility of water and carbon dioxide in an icelandite at 1400 degrees C and 10 kilobars[END_REF][START_REF] Behrens | Solubility of H 2 O and CO 2 in ultrapotassic melts at 1200 and 1250 degrees C and pressure from 50 to 500 MPa[END_REF][START_REF] Shishkina | Solubility of H2O-and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa[END_REF], a plot of the ratio of dissolved CO 2 to CO 2 partial pressure as a function of the bulk water content of the melt is consistent with an increase in CO 2 solubility with increasing water content in the melt (Fig. 5). Although the H 2 O-CO 2 trends are shifted most likely due to the differences in melt composition (e.g.

the total alkali content strongly decreases from the foiditic melt to the basaltic one) the three datasets show that the dissolution of 7-9 wt% H 2 O enhances CO 2 solubility by a factor of 2-3.

These trends may be partly explained by an overestimation of CO 3 2-contents in FTIR analyses of water-rich samples, due to the effect of the 1630 cm -1 band on the heights of the carbonate peaks (the high frequency one in particular, see Fig. 1). However, the importance of this effect should be very limited for the three studies [START_REF] Jakobsson | Solubility of water and carbon dioxide in an icelandite at 1400 degrees C and 10 kilobars[END_REF][START_REF] Behrens | Solubility of H 2 O and CO 2 in ultrapotassic melts at 1200 and 1250 degrees C and pressure from 50 to 500 MPa[END_REF][START_REF] Shishkina | Solubility of H2O-and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa[END_REF], because the authors quantified CO 3 2-contents using the height of the low frequency peak of the doublet and calibrating its extinction coefficient. The trends in In order to appreciate the variation of CO 2 solubility with CO 2 partial pressure, independently of the effect of H 2 O, data with similar amounts of dissolved water and variable CO 2 contents have been selected. Figure 6a shows that for a given H 2 O content, CO 2 solubility in three substantially different compositions has a clear linear relationship with CO 2 partial pressure, up to 5000 bar total pressure. Over a similar pressure range, on the contrary, CO 2 fugacity (at 1200°C) is calculated to exponentially increase with pressure (Fig. 6a). The different trends of CO 2 solubility are most likely due to increasing total alkali content from the MORB composition to the foiditic one and to the different water contents of the three datasets.

Moreover, Figure 6b illustrates how, for a given melt composition, i.e. MORB (data from 4b) show a more limited scatter than those for CO 2 (Fig. 4a). Calculated H 2 O solubilities (using VolatileCalc) also show more limited variations with the SiO 2 content of the melt than CO 2 ones. Therefore, it seems difficult to assess any chemical control on water solubility in mafic melts, as underlined by earlier works [START_REF] Moore | An empirical model for the solubility of H 2 O in magmas to 3 kilobars[END_REF]Lesne et al., 2011a).

Structural and thermodynamic background and operated simplifications

CO 2 solubility

In andesitic to ultramafic melt compositions, CO 2 is soluble as carbonate groups [START_REF] Fine | Dissolved Carbon-dioxide in basaltic glasses-concentrations and speciation[END_REF]) after the reaction with oxygen anions:

CO 2 (fluid) + O 2-(melt) => CO 3 2-(melt) (1) 
The Mass Action Law allows us to write the thermodynamic constant K c of eq. ( 1) as:
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where a is the component activity, f its fugacity, X its molar fraction and  its activity coefficient. The thermodynamic constant K c can be expressed as a function of pressure (P), and temperature (T) as:

                             T R V P R S T R H T R G LnK T P C ) , ( (3) 
G°, H°, S° and V° respectively refer to the Gibbs free energy, enthalpy, entropy and volume changes of equilibrium (1) calculated considering components in their standard states at P and T of interest. R is the gas constant. Combination of ( 2) and (3) yields:
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The formalism that we adopt is an empirical equation inspired by eq. ( 4), to which we apply several important simplifications. The fraction of carbonate  

 2 3 CO X is rescaled to its concentration in ppm   ppm CO  2 3
, which is a convenient unit to compare with solubility measurements (as frequently done for models of volatile solubility, i.e. sulphur solubility see [START_REF] O'neill | The sulphide capacity and the sulphur content at sulphide saturation of silicate melts at 1400ºC and 1 bar[END_REF]. Moreover, we assume that the activity coefficient for dissolved carbonate groups    2 3 CO  is a linear function of chemical-structural parameters and we introduce an empirical expression of the dependence of carbonate group activity coefficients to the melt chemical compositions as:

    2 3 CO Ln  =   i i i d x 1 (5)
where the d i terms express the chemical control of selected oxides or ratio of oxides (x i ) on CO 2 solubility. This sort of simplification has also been used for sulphur solubility in silicate melts [START_REF] Wallace | Sulfur in basaltic magmas[END_REF]. We stress that in conventional Margules mixing formalisms, the activity coefficient is also expressed as an exponential function of the component molar fractions.

We also assume that:

           O NBO b a Ln O 2 (6)
where NBO/O, non-bridging oxygen divided by oxygen, is considered here as a measure of the activity of oxygen anions: it expresses the availability of oxygen in the melt to form carbonate groups. In choosing this parameter we took into account that CO 2 solubility is recognised to be a strong function of NBO by spectroscopic and theoretical investigations (Brooker et al., 2001a,b;[START_REF] Guillot | Carbon dioxide in silicate melts: A molecular dynamics simulation study[END_REF]. Assessing the effect of H 2 O on the concentration of NBO in mafic magmas is rather difficult, as no systematic quantitative studies have been conducted on complex depolymerised melts. We therefore tested two opposite scenarios, by calculating NBO/O on both anhydrous (according to [START_REF] Marrocchi | Experimental determination of argon solubility in silicate melts: An assessment of the effects of liquid composition and temperature[END_REF] and hydrous basis (see the Appendix for the details of the calculation). In the latter case, we made the assumption that the formation of NBO is induced by the dissolution of OH groups into the melt [START_REF] Zotov | The influence of water on the structure of hydrous sodium tetrasilicate glasses[END_REF][START_REF] Xue | Dissolution mechanisms of water in depolymerized silicate melts: Constraints from 1 H and 29 Si NMR spectroscopy and ab initio calculations[END_REF]). [START_REF] Xue | Dissolution mechanisms of water in depolymerized silicate melts: Constraints from 1 H and 29 Si NMR spectroscopy and ab initio calculations[END_REF] suggest that only 60% of the OH dissolved in CaO-MgO-SiO 2 without Al contributes to NBO formation. However, in the absence of systematic studies of NBO creation due to water dissolution in different melt compositions, we preferred to test the most extreme case in which all the OH groups produce NBO.

Finally, by assuming that the enthalpy, entropy and volume terms of equilibrium (1) are not varying significantly with intensive P and T, we propose the following expression:
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where the terms a, b, A, B and C are adjusted parameters, together with the d i terms.

In the chemical contribution to the activity coefficient of CO 3 2-(eq.5), we have tested the effects of 8 major melt oxides, i.e. SiO 2 , Al 2 O 3 , FeO, MgO, CaO, Na 2 O, K 2 O, H 2 O, and of the agpaitic index that expresses CO 3 2-affinity for different cations and the charge balancing or network modifying effect of cations.

Adjusting the effect of water on CO 2 solubility is difficult because, from a statistical point of view, both parameters do not vary independently in the considered database (i.e. in most experiments considered, X CO2 is estimated using the relationship P CO2 +P H2O =P total ) and because mixing properties in the H 2 O-CO 2 fluid, which are ignored here, may well affect the solubility of H 2 O-CO 2 in melt without requiring any interaction between dissolved water and dissolved CO 2 . But we recall that fluid mixing properties as calculated using available equations cannot explain the effect of increasing water content on CO 2 solubility (Fig. 5). In equation ( 7), we therefore introduced a parameter (d H2O ) that accounts for the effect of water.

We used CO 2 partial pressure (P CO2 ) rather than fugacity (f CO2 ); this is a convenient simplification that i) is justified by experimental data showing linear correlation between CO 2 solubility and CO 2 partial pressure (Figs 2a and6) and ii) does not weaken the model results since we tested that the use of CO 2 fugacity instead of CO 2 partial pressure does not yield a better fit than CO 2 pressure. Furthermore, the value of the parameter a, which expresses the deviation of the CO 2 activity or fugacity in the gas with respect to P CO2 , is shown later (section 3.3) to justify this simplification.

The term b defines how CO 2 solubility depends on NBO/O. A, B, C represent respectively the enthalpy, entropy and volume changes of expressed in eq (4):
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. The signs of these three parameters are set positive, and after the fitting, they come out positive or negative depending on how the adjusted parameters correlate with CO 2 solubility.

H 2 O solubility

Regarding water solubility in mafic melts, the general solubilisation reactions are written as follows [START_REF] Stolper | The speciation of water in silicate melts[END_REF]:

H 2 O (fluid) => H 2 O (melt) (8) H 2 O (melt) + O 2-(melt) => 2 OH -(melt) (9)
The stochiometry of reaction (8) implies that water solubility is a square root function of water fugacity:
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By using the same empirical formalism as eq.s (5-7), we consider:
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Model calibration

The best fits for CO 2 and H 2 O using eq. ( 7) and ( 11), respectively, are obtained using the parameters listed in Tables 5 and6, which were adjusted using classical linear fitting procedures, which minimize residuals between measured and calculated solubilities using equation ( 7) and (11). All parameters of eq. ( 7) and ( 11) are simultaneously solved. The regression parameters were retained or removed, on the basis of the relative uncertainty ascribed by the fitting routine and their ability to significantly improve the fit (more than 10% on the residue). In our database NBO/O varies between 0.15 (the latite of Di [START_REF] Di Matteo | Water solubility and speciation in shoshonitic and latitic melt composition from Campi Flegrei Caldera (Italy)[END_REF] and 0.45 (sample TA3 in this study), on an anhydrous basis, and between 0.18 (the andesite of [START_REF] Moore | Solubility of water in magmas to 2 kbar[END_REF] and 0.64 (the foidite in [START_REF] Behrens | Solubility of H 2 O and CO 2 in ultrapotassic melts at 1200 and 1250 degrees C and pressure from 50 to 500 MPa[END_REF], on a hydrous basis. In both cases, NBO/O is the chief factor in controlling CO 2 solubility, the type of the modifier cation bonded to NBO also having a crucial role (see section 3.6). As explained in section 3.2, we tested two different versions of our model, the former employing NBO calculated on an anhydrous basis and the latter using NBO calculated on a hydrous basis: adjusted parameters were calibrated for both scenarios and are reported in Tables 5 and6.

Adjusted parameters to calculate CO 2 solubility differ only modestly between the two formalisms, the most critically affected being the coefficient expressing CO 2 solubility dependence on water content (Table 5). With NBO calculated on a dry basis, d H2O is positive indicating that water incorporation increases CO 2 solubility. When NBO is calculated on a hydrous basis, the negative d H2O does not imply that water decreases CO 2 solubility. In fact for this model, water incorporation increases NBO/O which then translates into an increase in CO 2 solubility. The impact of water on NBO/O dominates over the negative coefficient d H2O , similarly to Fe and Mg (see section 3.6). Later in this section we show how the version of the model that employs NBO calculated on a hydrous basis gives more relevant results for CO 2poor, H 2 O-rich melts.

We tested the relevance of d i terms for SiO 2 , Al 2 O 3 and CaO but none of these improve the fit and they were therefore removed. Indeed the effect of calcium and aluminium oxides is much better fitted when treated as agpaitic index (i.e. Al/(Ca+K+Na)) rather than using Al 2 O 3 and CaO as independent parameters. The effects of K 2 O and Na 2 O were found to be identical within their uncertainties: we therefore merged them into one parameter (d K2O+Na2O ).

Similarly, MgO and FeO have comparable effects on CO 2 solubility, which is accounted for by a single parameter (d MgO+FeO ).

The parameter a was introduced to account for possible deviation from ideal behaviour of the CO 2 -H 2 O gas mixture that would impact on CO 2 solubility: its fitted value is 1.00±0.03 for both versions of the model (Table 5), clearly indicates that using P CO2 instead of f CO2 is a useful and justified simplification.

The parameter A in equation ( 7) was eliminated because the fitted value was close to zero and its associated error was larger than the parameter itself. This is probably due to the relatively small temperature range of the experimental database (1100-1400°C), and may also imply a limited temperature effect on CO 2 solubility in mafic melts as revealed by [START_REF] Pan | The pressure and temperature-dependence of carbon dioxide solubility in tholeiitic basalt melts[END_REF] and discussed by [START_REF] Guillot | Carbon dioxide in silicate melts: A molecular dynamics simulation study[END_REF] based on theoretical grounds. Our model still predicts a weak inverse temperature dependence of CO 2 solubility, due to the term C × P/T in equation ( 7).

The correlation among model parameters for CO 2 solubility is shown in Table 7. Several parameters are correlated, mainly because the mole fractions of oxide components used in the compositionally dependent activity coefficient terms (eq.5) are also employed to calculate NBO/O and the agpaitic index (AI). In particular, NBO/O and AI are highly correlated, we however selected both parameters because (i) their structural meaning is different, as specified above, and (ii) they both strongly improve fitting results.

For water solubility, it appears that the d i terms that were used for CO 2 are unjustified from a statistical point of view: H 2 O solubility seems poorly sensitive to the melt chemical compositions as found in earlier studies [START_REF] Moore | An empirical model for the solubility of H 2 O in magmas to 3 kilobars[END_REF]Lesne et al., 2011a). We therefore adopted the simplest formulation possible by ignoring any chemical control on water solubility. Like for CO 2 , fugacity does not improve the fitting with respect to pressure: a value of a  0.5 (Table 6) reflects the classical observation of a square root relationship between water solubility and water activity (see Burnham and Davies, 1971 or more recently [START_REF] Shishkina | Solubility of H2O-and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa[END_REF]. Similarly to CO 2 , the parameter A in equation ( 11) was eliminated because the fitted value was close to zero and its associated error was larger than the parameter itself. Only NBO/O has been considered in addition to a constant and a P/T term.

The parameters determined using NBO calculated on both a hydrous and an anhydrous basis are in Table 6. The differences between the two versions of the model are small both for CO 2 and H 2 O, however when NBO/O is calculated on a hydrous basis the fit of experimental data is slightly improved: R 2 of the regression is 0.98 for CO 2 and 0.91 for H 2 O and the average error is 13% for CO 2 and 17% for H 2 O (the version employing NBO/O calculated on an anhydrous basis has R 2 = 0.98 for CO 2 and 0.85 for H 2 O and average error =14% for CO 2 and 21% for H 2 O).

We tested the two versions (employing NBO calculated on a hydrous and on an anhydrous basis) of our model for CO 2 (equation 7) on H 2 O-CO 2 solubility in the Etna alkali-basaltic melt (Table1). Figure 7a shows the different shapes of H 2 O-CO 2 isobaric curves between 500 and 4000 bar calculated using the two sets of parameters in Table 5. Larger differences are observed for H 2 O contents higher than 4 wt%, due to the lack of experimental data. However, pure H 2 O data that were not used for the calibration of the CO 2 model strongly suggest that the use of NBO, when calculated on a hydrous basis, allows to better estimate CO 2 solubility at high H 2 O contents. We will therefore use this version of the model for the following discussions.

When compared with VolatileCalc and the model of [START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF] for the Etna composition at 1200°C (Fig. 7b), our model shows several significant differences. Substantial divergence exists between our model and VolatileCalc at pressures ≥ 2000 bar, for instance, for similar H 2 O-CO 2 contents (between 2 wt% H 2 O-3000 ppm CO 2 and 7 wt% H 2 O-0 ppm CO 2 ), our model predicts 3000 bar of total pressure while VolatileCalc 4000 bar. The divergences with the model of [START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF] are also important for water content in the range 0-6 wt% and for total pressure equivalent or higher than 3000 bar. These variations between models are crucial when interpreting H 2 O-CO 2 contents in melt inclusions in terms of entrapment depths. In case of Mt. Etna, for example, Spillaert et al. (2006) reported a group of primitive melt inclusions with H 2 O and CO 2 content of 3-3.5 wt% and 2000-3500 ppm, respectively. Such volatile contents define a field (grey box in Fig. 7b) where the discrepancies among models are the highest. The main source of discrepancy between our model and the others is the treatment of the effect of water on CO 2 solubility. The positive effect of H 2 O on CO 2 solubility that we consider results in the bell-shape relationship shown in Figure 7, whose curvature increases with pressure. However, experimental data are rare for high water contents at pressure exceeding 5000 bar and do not allow us to robustly calibrate this effect at high pressure.

Model results

The final model equations for CO 2 and H 2 O solubility resulting after operated simplifications are therefore:
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C CO2 are the adjusted parameters listed in Table 5. a H2O , b H2O , B H2O , C H2O are the parameter listed in Table 6. x H2O is the molar fraction of water in the melt, x AI is the agpaitic index calculated as the ratio of the molar fraction of Al 2 O 3 and the sum of the molar factions of CaO, K 2 O and Na 2 O in the melt, x FeO+MgO , x Na2O+K2O are the sum of the molar fractions of FeO and MgO and of Na 2 O and K 2 O in the melt, respectively. P is the total pressure in bar and T is the temperature in K. P CO2 and P H2O are the partial pressures in bar of CO 2 and H 2 O, respectively.

Figure 8 (a,b,c) shows CO 2 and H 2 O solubilities calculated using our model employing NBO calculated on a hydrous basis vs. measured solubilities from the database in Table 4. For CO 2 (Fig 8a,b), the regression coefficient is 0.98 and we calculate an average error of 13% (see the Appendix). The fitting for water solubility is of lower quality than that for CO 2 (Fig. 8c), i.e. the regression coefficient is 0.91 and we calculated an average error of 17% (see the Appendix).

A web application of the model is available at the following address: https://www.calcul.isto.cnrs-orleans.fr/apps/h2o-co2-systems/. An obvious "mathematical" limitation of the model is that it cannot calculate for P CO2 =0, P H2O =0, CO 2 =0 and H 2 O=0, due to the occurrence of the terms Ln[P CO2 ], Ln[P H2O ], Ln[CO 3 2-], and Ln[H 2 O] in equations ( 12) and ( 13). The web application therefore considers that CO 2 and H 2 O solubilities are zero for P CO2 and P H2O =0, respectively, and that P CO2 and P H2O =0, for [CO 3 2-] ppm and [H 2 O] wt% =0, respectively.

Model limitations

In this paragraph, we analyse the 5 weakest points of our modelling, which, in fact, derive from the limitations of the existing experimental database. 1) The effect of MgO and FeO on CO 2 solubility is still poorly experimentally constrained: most of the data present limited variations in these two oxides and in particular in MgO (mainly between 6 and 8 wt%); moreover, data for ultramafic compositions are missing. 2) The effect of K 2 O replacement by Na 2 O on CO 2 solubility is also poorly constrained: several systematic studies exist at variable pressure for K 2 O-rich melts [START_REF] Behrens | Solubility of H 2 O and CO 2 in ultrapotassic melts at 1200 and 1250 degrees C and pressure from 50 to 500 MPa[END_REF]Lesne et al, 2011b; this study), but not for Na-rich melts (only Jackobsson, 1997 at 1GPa). 3) The temperature effect on H 2 O-CO 2 solubility has not been evaluated, because the variations in experimental temperatures are very limited: most of the data have been produced between 1200 and 1300°C, the whole temperature range varying between 1100 and 1400°C. 4) The possible contrasting roles of molecular H 2 O and hydroxyl on melt structure (the number of NBO in particular), and the associated consequences for CO 2 solubility (i.e. how these hydrous species are distributed relatively to carbonate groups) needs to be further investigated by dedicated experimental studies. 5) We ignored in our treatment the possibility that ferrous and ferric iron may have different effects on CO 2 solubility; all iron is treated as ferrous iron and we obtained a regressed parameter for FeO that is similar to the one for MgO. In the mixing formalism used in [START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF], FeO and Fe 2 O 3 melt oxides have drastically differing effects on CO 2 solubility. Iron is recognised to exhibit different structural behaviour as a function of its oxidation state. Brooker et al. (2001b) showed that CO 3 2-environments have a changing configuration when Fe is switched between 3+ and 2+. Hence, we may expect CO 2 solubility changes accompanying the structural configuration changes. This interesting possibility requires specific experimental studies but we consider that at this stage, experimental and theoretical constraints are too weak to allow our model to ascribe different effects to differences in the valence state of iron.

The effect of melt structure on CO 2 solubility

In this last part, we clarify the crucial role of melt structure and chemistry on CO 2 solubility.

Figure 9 discriminates the effect on CO 2 solubility, as predicted by our model, of NBO species that are bonded to different types of cations: the calculated solubility of CO 2 at 2000 bar is shown for a MOR-basalt, to which different modifier cations (Na+K, Ca, Mg+Fe) are added in variable amounts. Adding modifier cations results in an increase in NBO/O (with NBO calculated on a hydrous basis) and therefore in an increase in CO 2 solubility, but the intensity of the effect depends on the type of cation that is added (Fig. 9). Addition of Mg+Fe has less effect on CO 2 solubility. Despite the negative d MgO+FeO in eq. ( 6) (Table 5), addition of these cations to basalt slightly increases CO 2 solubility, because their impact on NBO/O dominates over their negative coefficient (d MgO+FeO ). At the Mg+Fe enrichment level comparable to that of Komatiite compositions or primitive Martian basalts, CO 2 solubility is calculated to be three times higher than that of a MORB. Calcium addition increases more CO 2 solubility than Mg+Fe. Its effect in our eq. ( 12) is accounted for by the NBO/O terms and the agpaitic index, Al 2 O 3 / (CaO+Na 2 O+K 2 O). Alkalis have the strongest effect on CO 2 solubility: an increase in the alkali content similar to that occurring from a MORB to a foidite enhances CO 2 solubility by a factor of 7.

In a recent paper, [START_REF] Guillot | Carbon dioxide in silicate melts: A molecular dynamics simulation study[END_REF] investigated the structure and energetic properties of CO 2 incorporation in basalts at high pressure using molecular dynamics simulations. Their theoretical approach is broadly consistent with our conclusion based on empirical fitting in a melt structure framework. We nevertheless note that the order of preferential cation-NBO-CO 3 2-association slightly differs from ours, but [START_REF] Guillot | Carbon dioxide in silicate melts: A molecular dynamics simulation study[END_REF] did not systematically investigate the effect of variable chemical composition as we did here and their conclusions are based on simulations performed at high pressure (>>1.0 GPa), which makes thorough comparisons difficult.

Conclusions

In this paper, we report new H 2 O-CO 2 solubility in mafic melts data that essentially highlight the role of melt composition and structure on CO 2 solubility. These new experimental points show that K-rich and Ca-rich melts have high CO 2 solubility that existing models cannot quantitatively reproduce. In contrast, water solubility is reasonably well accounted for by existing models, whatever the melt composition. We propose a semi empirical model accounting for changes in melt chemical composition on CO 2 solubility by employing melt structural units. Solubility of CO 2 is strongly enhanced by increasing NBO species and this effect increases in efficiency when Fe+Mg-NBO, Ca-NBO, alkali-NBO pairs occur (in this respective order). Water also appears to enhance CO 2 solubility, especially at high water contents.

A web application of the presented model is available at the following address: https://www.calcul.isto.cnrs-orleans.fr/apps/h2o-co2-systems/.

Figure A1 shows the frequency distribution of the normalized error (difference between experimental and calculated value, normalized to calculated) for both CO 2 and H 2 O models.

Figure A2 shows how the values of the calibrated parameters for CO 2 vary if a portion of the database is considered for the model calibration, instead of the entire one (i.e. 182 experiments). The model is still stable (i.e. the variations in the calibrated parameters and in the total error are <15%) for half of the data (selected randomly). Most studies have been performed at 1200°C, the entire T range is however 1100-1400°C. H 2 O-CO 2 solubilities calculated for the Etna composition (in Table 1). a) Isobaric curves for total pressure between 500 and 4000 bar, calculated using the two versions of our model: thick lines show calculations employing NBO computed on a hydrous basis (and using the Absorbance Wave number (cm -1 ) 

  3a. Melt compositions from the present study are substantially richer in alkalis than those from[START_REF] Iacono-Marziano | Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes[END_REF], i.e. 7.6-9.1 wt% versus 4.0-4.6 wt% Na 2 O+K 2 O, most likely justifying the shift in CO 2 solubility shown in Figure3a. Major element compositions are not indicated inMoore (2008). Our samples show an increase in CO 2 content from 3000 to 9000 ppm, with CaO contents increasing from 8 to 16 wt% (accompanied by a moderate increase in P CO2 : 2630 to 3370 bar). Solubilities calculated using the model of[START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF] are also shown in Figure3a: while the data of[START_REF] Iacono-Marziano | Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes[END_REF] are
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	3	2-), as generally

. We selected only experiments with mafic compositions, in which H 2 O and CO 2 solubilities were simultaneously determined in order to model CO 2 solubility (182 experiments). In all experiments, except for those of

[START_REF] Morizet | C-O-H fluid solubility in haplobasalt under reducing conditions: An experimental study[END_REF]

, the mafic melts were equilibrated with H 2 O-CO 2 fluids, in the absence of reduced species (e.g. CO, CH 4 , H 2 ). In all selected experiments CO 2 is dissolved in the melt in the form of carbonates (CO

Table 4 .

 4 If not directly specified by the authors, CO 2 pressure was calculated from the total pressure and mole fraction of CO 2 in the fluid phase. In general, every given composition

shows a nearly linear trend, whose slope strongly varies with the chemical composition of the melt. For clarity, Figures 4b presents a selection of data that well illustrates how the trends vary for different melt compositions at low pressures (<2500 bar). In general, mid ocean ridge basalts (MORB) show the lowest CO 2 solubilities, while foiditic and tephritic melts display the highest ones. Calculated CO 2 solubilities at 1200°C using the VolatileCalc model are also shown in Figure

4 (a, b

) for melt SiO 2 contents of 45, 47 and 49 wt%: they show that variations in melt silica content only do not satisfactorily explain the differences shown by experimental data (Table

4

). For instance, the SiO 2 content of a MORB (~50-51 wt%) is only slightly higher than that of a foidite

(49.89 wt%, Berhens et al., 2009)

, the highest CO 2 solubility in foiditic melts being most likely accounted for by their elevated K, Na, Ca contents.

The clearest deviations from linear trends in Fig.

4a

(excluding the melts in Iacono-Marziano et al. 2008 that have variable compositions) are represented by experimental data obtained at high H 2 O contents (Fig.

Table 4 .

 4 [START_REF] Shishkina | Solubility of H2O-and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa[END_REF], CO 2 solubility increases with increasing H 2 O dissolved in the melt.Figure4cshows dissolved H 2 O contents vs. H 2 O pressure for each experimental work in As in Figure4a, H 2 O solubilities calculated at 1200°C for melt SiO 2 contents of 45, 47, 49 wt% using VolatileCalc are also shown. Experimental data for H 2 O (Fig.

Table 1 .

 1 Composition of the starting glasses

	Sample	Etna c	Torre
				Alfina
	a a TiO 2 SiO 2 Al 2 O 3 FeO* a a	47.95 (82) 55.65 (47) 1.67 (11) 1.34 (9) 17.32 (27) 13.03 (25) 10.24 (125) 5.82 (36)
	MgO	a	5.76 (28) 9.41 (29)
	CaO	a	10.93 (37) 5.44 (36)
	a a Na 2 O a K 2 O P 2 O 5 TOTAL	a	3.45 (16) 0.96 (10) 1.99 (10) 7.67 (23) 0.51 (12) 0.51 (7) 99.82 (93) 97.15 (88)
	H 2 O wt% b	0.010 (1) 3.21 (23)
	CO 2 ppm	bdl	bdl
	a analysed by EMP
	b analysed by FTIR spectroscopy
	c from Lesne et al. 2011b
	bdl: below detection limit

Table 2 .

 2 Experimental conditions and results of experiments with Mt.Etna basalt

	P tot (bar)	485 485	485	485	1015 1015 1015	1017 1017	1530 1530 1530 1530
	Duration (h)	70	70	70	70	50	50	50	26	26	56	56	56	56
	H 2 O added wt%	-2.32 3.77	3.63	-2.99 4.85	-2.87	-3.22	5.44	5.50
	CO 2 added wt%	1.82 2.45	-	-	1.04 3.59	-	2.1 2.92	1.75 2.93	-	-
	CO 2 source	Ag 2 CO 3 DOA	-	-Ag 2 CO 3 DOA	-Ag 2 CO 3 DOA Ag 2 CO 3 DOA	-	-
	X CO 2 gas	0.68 0.56	-	-	0.84 0.49	-	0.88 0.51	0.81 0.43	-	-
	P CO 2	330 271	-	-	851 501	-	898 516	1244 658	-	-
	st dev P CO 2	50	41	-	-	128	75	-	135	77	187	99	-	-
	wt% H 2 O glass	0.95 1.18 2.22	2.02	0.99 2.12 3.48	0.80 2.08	1.43 3.01	4.46	4.87
	st dev H 2 O	0.05 0.07 0.09	0.11	0.06 0.17 0.22	0.05 0.08	0.07 0.26	0.37	0.35
	ppm CO 2 glass	306 191	-	-	843 548	-	808 534	1278 1035	-	-
	st dev CO 2	43	27	-	-	118	82	-	121	75	179 145	-	-
	P tot (bar)	2047 2047	2055 2055 2135 2135	2754	3080 3080	4185	4185 4185 4185
	Duration (h)	44	44	22	22	66	66	71	76	76	18		18	18	18
	H 2 O added wt%	-3.73	-3.59 4.25 7.21	-	-3.86	-		-3.82 2.43
	CO 2 added wt%	1.00 3.89	1.03 3.74 3.86	-	3.08	1.86 2.08	0.67		0.92 6.22 1.74
	CO 2 source	Ag 2 CO 3 DOA Ag 2 CO 3 DOA DOA	-Ag 2 CO 3 Ag 2 CO 3 DOA Ag 2 CO 3 Ag 2 C 2 O 3 DOA DOA
	X CO 2 gas	0.90 0.61	0.93 0.48 0.65	-	0.87	0.94 0.64	0.94		0.93 0.76 0.87
	P CO 2	1843 1258	1920 984 1393	-	2403	2903 1970	3919	3888 3182 3656
	st dev P CO 2	276 189	288 148 209	-	360	435 296	588		583 477 548
	wt% H 2 O glass	1.04 2.82	0.87 3.45 2.70 5.09	1.64	1.09 3.54	1.36		1.47 3.31 2.16
	st dev H 2 O	0.14 0.09	0.08 0.07 0.19 0.42	0.08	0.09 0.30	0.07		0.10 0.21 0.18
	ppm CO 2 glass	1853 1489	1706 1408 1412	-	2515	2816 2416	3673	3965 4061 4230
	st dev CO 2	259 208	239 197 198	-	352	394 338	615		663 686 711
	DOA: dehydrated oxalic acid											
	All experiments were performed at 1200°C									

Table 3 .

 3 Experimental conditions and results of the experiments with Torre Alfina lamproite

	Sample		2TA1	2TA2	2TA3
	P total (bar)		3510	3510	3510
	P CO 2 (bar)		2633	3299	3370
	P H 2 O (bar)		878	211	140
	Temperature (°C)		1200	1200	1200
	Duration (h)		3	3	3
	Calcite added wt%		2.47	4.91	10.43
	Dolomite added wt%		4.17	8.01	15.65
	CO 2 added wt% Glass composition a		3.08 6 analyses 6 analyses 5.98	12.05 6 analyses
	SiO 2		54.48 (43) 51.71 (32)	47.36 (66)
	TiO 2		1.38 (9)	1.22 (9)	1.22 (13)
	Al 2 O 3		13.00 (30) 12.38 (26)	11.55 (29)
	FeO		5.31 (13)	5.38 (22)	5.04 (14)
	MgO		8.43 (25)	9.27 (24)	10.90 (35)
	CaO		8.07 (51) 11.41 (29)	15.92 (62)
	Na 2 O		0.86 (11)	0.82 (7)	0.83 (9)
	K 2 O		7.87 (11)	7.21 (12)	6.58 (26)
	P 2 O 5		0.60 (6)	0.60 (6)	0.60 (8)
	TOTAL		96.02 (94) 97.06 (87)	97.65 (93)
	b H 2 O wt% b (Fine & Stolper 1986) CO 2 wt% b (Thibault & Holloway 1994) c CO 2 wt% CO 2 wt% b (Behrens et al. 2009) e	d	2.83 (15) 0.30 (1) 0.31 (1) 0.34 (1)	2.52 (13) 0.49 (1) 0.52 (2) 0.59 (1)	2.49 (10) 0.90 (3) 0.95 (3) 1.08 (4)
	a analysed by EMP				
	b analysed by FTIR spectroscopy				
	c using  1430 in Fine and Stolper 1986 for basaltic melts d using  1515 in Thibault and Holloway 1994 for Ca-rich leucititic melts e using  1430 in Behrens et al. 2009 for phonotephritic melts

Table 5 .

 5 Adjusted parameters and their standard errors for CO 2 solubility in mafic melts.Adjusted parameters to calculate CO 2 solubility from equation (12) in the text. Two sets of parameters were calibrated from the experimental database in Table4, employing NBO calculated on both a hydrous and anhydrous basis. Species concentrations (x i ) are in mole fraction, P and T are in bar and Kelvin respectively. R 2 of the regression is 0.98, for both models and the average error is 13% for the model with NBO calculated on a hydrous basis, and 14% for the model with NBO calculated on an anhydrous basis.

		d H2O	d Al2O3/ (CaO +K2O+Na2O)	d FeO+MgO	d Na2O+ K2O	a CO2 b CO2 C CO2 B CO2
	Hydrous	-16.4	4.4	-17.1	22.8	1.00 17.3 0.12 -6.0
	St.error (2)	1.2	0.4	0.9	1.1	0.03	0.9 0.02 0.4
	Anhydrous	2.3	3.8	-16.3	20.1	1.00 15.8 0.14 -5.3
	St.error (2)	0.5	0.4	0.9	1.1	0.03	0.9 0.02 0.4

Table 6 .

 6 Adjusted parameters and their standard errors for H 2 O solubility in mafic melts.Adjusted parameters to calculate H 2 O solubility from equation (13) in the text. Two sets of parameters were calibrated from the experimental database in Table4, employing NBO calculated on both a hydrous and anhydrous basis. P and T are in bar and Kelvin respectively. R 2 of the regression =0.91, Average error = 17% for the model with NBO calculated on a hydrous basis, while R 2 =0.85, Average error = 21% for the model with NBO calculated on an anhydrous basis.

		a H2O b H2O B H2O C H2O
	Hydrous	0.53 2.35 -3.37 -0.02
	St.error (2) 0.02 0.28 0.13	0.02
	Anhydrous	0.54 1.24 -2.95 0.02
	St.error (2) 0.02 0.33 0.17	0.02

Table 7 .

 7 Correlation coefficients among model parameters used for CO 2 solubility.

P/

T Ln (P CO2 ) NBO/O anhydr. NBO/O hydr. Na 2 O+ K 2 O

  The positions of the H 2 O and carbonate bands are shown. In this study, we calculated peak heights for the carbonate doublet, by manually subtracting the spectrum of a CO 2 -free glass containing a similar amount of water to the sample spectrum (e.g. black spectrum-grey one). Note how background correction using a volatile-free glass could induce an overestimation of the height of the peak at 1515 cm -1 (black arrow), for high water contents. O in wt% vs. CO 2 in ppm for our data and the data ofLesne et al (2011b). The number next to each experimental point indicates the experimental pressure. Experimental solubilities are compared with the isobaric solubilities calculated for total pressures of 500, 1000, 2000, 3000, 4000 bar, as indicated on the graph. Error bars indicate the maximum analytical uncertainty of FTIR measurements: 10% for H 2 O and 20% for CO 2 .Experimentally determined solubility of CO 2 in the lamproite-kamafugite melts. Data are in Table3. a) Dissolved CO 2 vs. CaOwt% content in the melt for our data and those of[START_REF] Iacono-Marziano | Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes[END_REF] Data in calcic to calc-alkaline basalt composition containing 3-5 wt% H 2 O (major element composition not available) obtained at 4000 bar and 1200°C are also shown(Moore, 2008). For each experimental point of this study and Iacono-Marziano et al., 2008, solubilities calculated using[START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF] are also shown(for T=1200°C and 2TA1, 2TA2 and 2TA3 compositions in Table 1 with Fe 2 O 3 = 15% of total FeO

	FIGURE CAPTIONS:
	Figure 1:
	Representative infrared absorption spectra (scaled to the same thickness) of alkali-basaltic
	glasses (Mt. Etna composition) in the 1900-1300 cm -1 region. Black line shows a H 2 O-CO 2 -
	FeO+ MgO -0.55 0.12 AI -0.38 -0.06 0.54 -0.91 0.04 -0.71 -0.32 -0.30 1 -0.24 -0.24 1 -0.62 0.19 rich glass; grey line a H 2 O-rich, CO 2 -free glass; pointed line a H 2 O-CO 2 -free glass (starting H 2 O P/T 1 0.76 -0.26 0.25 0.27 0.66 Ln (P CO2 ) 0.76 1 -0.05 0.11 0.22 0.22 NBO/O anh 1 -0.04 -0.33 NBO/O hydr 0.25 0.11 -1 0.20 0.46 Na 2 O+ K 2 O 0.27 0.22 0.04 0.20 1 0.23 FeO+MgO -0.55 -0.38 0.54 0.04 -0.32 -0.62 AI 0.12 -0.06 -0.91 -0.71 -0.30 0.19 H 2 O 0.66 0.22 -0.33 0.46 0.23 1 AI: Al 2 O 3 /(CaO +K 2 O+Na 2 O) glass). Figure 2: Experimentally determined solubility of CO 2 and H 2 O in the Etna basalt (data in Table 2), compared to theoretical solubilities calculated using Newman and Lowenstern, 2002 (for T=1200°C and SiO 2 = 47.95 wt%) and Papale et al., 2006 (for T=1200°C and Etna composition in Table 1 with Fe 2 O 3 = 15% of total FeO). a) Dissolved CO 2 in ppm vs. partial pressure of CO 2 for our data and the data of Lesne et al (2011b). X error bars are 20% of the mean value, in agreement with the maximum variation obtained using different extinction coefficients in CO 2 calculation (see section 2.1). Y error bars show the maximum uncertainty that we estimate for PCO 2 calculation (15%). b) Dissolved H 2 O in wt% vs. partial pressure of H 2 O for our data and the data of Lesne et al (2011a). X error bars are 10% of the mean value, in agreement with the maximum standard deviation observed in FTIR measurements. Y error bars show the maximum uncertainty that we estimate for PH 2 O calculation (15%). c) Dissolved H 2 Figure 3:

  Table 4 (numbers refer to the different studies listed in the table). Error bars indicate maximum uncertainties on CO 2 and H 2 O measurements (20% and 10%, respectively). a) Dissolved CO 2 (in ppm) vs. partial pressure of CO 2 for the 182 literature data. The solubility curves are calculated using VolatileCalc for basalts with SiO 2 contents of 45, 47 and 49 wt%. b) Same plot as in a) but on a restricted database. c) Dissolved H 2 O (in wt%) vs. partial pressure of H 2 O for the 182 H 2 O-CO 2 plus the 107 H 2 O literature data. The solubility curves are calculated using VolatileCalc for basalts with SiO 2 contents of 45, 47 and 49 wt%.
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APPENDIX

Calculation of NBO

On an anhydrous basis (following [START_REF] Marrocchi | Experimental determination of argon solubility in silicate melts: An assessment of the effects of liquid composition and temperature[END_REF]: NBO = 2 × (X K2O + X Na2O + X CaO + X MgO + X FeO -X Al2O3 ) NBO/O = NBO / ( 2× X SiO2 + 2× X TiO2 + 3 × X Al2O3 + X MgO + X FeO + X CaO + X Na2O + X K2O ) On a hydrous basis: NBO = 2 × (X H2O +X K2O + X Na2O + X CaO + X MgO + X FeO -X Al2O3 ) NBO/O = NBO / ( 2× X SiO2 + 2× X TiO2 + 3 × X Al2O3 + X MgO + X FeO + X CaO + X Na2O + X K2O + X H2O )

Where X is the mol fraction of the different oxides. We considered that all iron is in ferrous form in absence of robust information from the literature database on oxygen fugacity and ferric-ferrous ratios for gas-melt equilibria of Table 4.

Model error:

The model error (13% for CO 2 and % 17% for H 2 O) is the average of the error of each data point calculated as: 100*measured solubility-calculated solubility /measured solubility parameters in the first line of Table 5); thin lines show calculations employing NBO computed on an anhydrous basis (and using the parameters in the third line of Table 5). The and the model of [START_REF] Papale | The compositional dependence of the saturation surface of H 2 O+CO 2 fluids in silicate melts[END_REF] and Etna composition in Table 1 with Fe 2 O 3 = 15% of total FeO). The grey box represents H 2 O-CO 2 contents of primitive melt inclusions from Etna [START_REF] Spilliaert | Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy)[END_REF] Figure 8: Test of our model (eq. 7 and eq. 11, with parameters in Tables 5 and6) on the entire database (numbers refer to the different studies listed in Table 4)