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Abstract 

  

This work postulates that highly polydisperse materials have an effective size 

distribution that controls permeability. Existence of such effective distribution implies 

that not all clasts participate to the permeable network resisting to gas flow and that 

clasts smaller than the minimal effective size are elutriated. When this concept is 

coupled to a generalized Blake-Kozeny equation, the resulting semi-empirical law 

links permeability to material properties only (bed void fraction, clast sizes and 

densities). After calibration of an experimental constant, it is able to replicate within 

±0.6 log unit experimentally measured permeabilities of both loosely packed and 

expanded beds made of highly polydisperse (from 1 m to 4 mm) pyroclastic deposits 

that were resampled so as to ensure homogeneous fluidization. The presence of an 

experimentally calibrated constant and the necessary absence of segregation during 

fluidization limit the extrapolation of the proposed law to any pyroclastic bed. 

Satisfactory fitting of the experimental values, however, confirms that the 

permeability of homogeneously fluidized beds is controlled by a balance between 

settling and elutriation. This balance suggests a first-order link between permeability 

and bed expansion, which has implications on the kinetics of dense pyroclastic flows. 

 

Keywords: pyroclastic, permeability, polydisperse, fluidization. 
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Introduction 

Pyroclastic material is commonly highly polydisperse, with clasts ranging from a 

few meters down to a few microns or less. When traveling down the slopes of a 

volcano as dense pyroclastic density currents, such mixtures of clasts have a complex 

behavior that is partly inherited from the interactions with the hot interstitial volcanic 

gas and the entrained gas and partly due to their polydisperse nature. One approach of 

these complexities concentrates on the link between the microscopic, discrete nature 

of the clasts and the mesoscopic properties that arise when a subset of clasts within 

the main flow presents a coherent and representative dynamic behavior. Bed 

permeability, which characterizes the resistance encountered by the gas when it flows 

through a subset of clasts, is such a mesoscopic property. Permeability is a fertile 

concept because its quantification brought the idea that, like water-supported debris 

flows, pyroclastic flows may retain gas within the mixture, thus building excess gas 

pore pressure (Iverson and Vallance, 2001). Permeability enables one to calculate 

pore pressure diffusion, which in turn can quantify how long a bed remains in a 

fluidized state if no external gas is supplied (e.g., Roche et al., 2008; Roche, 2012). 

Under high pore pressure, pyroclasts are in a fluidized state because gas-grain 

interactions dominate over grain-grain interactions (e.g., Iverson, 1997; Iverson and 

Denlinger, 2001; Druitt et al., 2007). Importantly, the resulting low friction is a 

potential explanation of the long runout distance of pyroclastic flows (Iverson and 

Vallance, 2001; Girolami et al., 2008, Roche et al., 2008).  

An accurate method to measure permeability of pyroclastic material is fluidization 

and bed settling (or collapse) experiments (see Wilson, 1984 and Druitt, 1995 for a 

full description of fluidization and settling behaviors). Fluidization and settling 

experiments are most often conducted by placing the sample material in rigs, which 



Burgisser, Pyroclastic bed permeability 4 

are generally hollow cylinders open at the top and capped at the base by a permeable 

plate through which gas is fed in order to maintain fluidization. Bed settling starts 

when the gas source is cut. Depending on the capacity of the bed to retain gas (i.e., 

bed permeability), complete settling can occur before all excess gas pore pressure 

vanishes. Such experiments clearly indicate that the degree of polydispersity 

influences permeability (Wilson, 1980; Wilson, 1984; Druitt, 1995; Gravina et al., 

2004; Druitt et al., 2007). An additional complexity is that natural pyroclastic material 

efficiently segregates clasts, whether by size or density (Wilson, 1984). Mesoscopic 

properties such as porosity, clast size distribution, and permeability cease to be 

uniformly distributed within the fluidized bed as segregation proceeds (Di Felice, 

1995). Fortunately, segregation can be avoided in experiments if samples are naturally 

well-sorted enough (Wilson, 1984) or pre-fluidized (Druitt et al. 2004; 2007; Girolami 

et al., 2008). The latter method involves a first fluidization of the natural bulk 

samples, which generates two segregated layers. Resampling of the homogeneous 

upper layer yields a pyroclastic material that can be fluidized without particle 

segregation. Such pre-fluidization allows samples to be homogeneously fluidized 

without bubbling or channelization from the loosely packed state up to 40 vol.% 

expansion (Druitt et al., 2007). 

Another research avenue is the establishment of semi-empirical physical laws that 

link the dynamically measured permeability to other bed properties that can be 

measured independently. An important aspect of semi-empirical laws is that they shed 

partial light on the physics behind fluidization. The widely used Blake-Kozeny law of 

permeability (e.g., Bird et al., 2002) is such a relationship, albeit limited to 

monodisperse particle beds. It shows that the bed permeability to gas, kc, is a function 
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of particle size, Dc, and of the hydrodynamic porosity of the bed,  (i.e. the bed 

porosity without particle inner porosity): 

2
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The semi-empirical nature of Eq. (1) stems from the fact that the constant A is 

experimentally determined and thus lumps together the combined effects of the 

tortuosity, interconnectedness, and irregular cross-sections of the gas pathways 

(MacDonald et al., 1991). The works of Carman (1937) and Wyllie and Rose (1950) 

have shown that A is partly a function of the gas pathways tortuosity, which could 

then be introduced in Eq. (1) as an independent parameter. This is a good example on 

how further research on such laws leads to the identification and quantification of key 

physical characteristics of the permeable bed.  

Most semi-empirical permeability laws for polydisperse beds ignore segregation 

and focus on homogeneously fluidized beds (e.g., McDonald et al. 1991; Hamilton, 

1997; Gmachowski, 1998; Karacan and Halleck, 2003; Yu and Liu, 2004; Wu and 

Yu, 2007; Yin and Sundaresan, 2009; Cello et al., 2010). To date, however, these laws 

have not given satisfactory results when applied to natural pyroclastic material, 

mostly because of its highly polydisperse nature (Wilson, 1984; this work). Here, I 

build on the generalized Blake-Kozeny law of permeability proposed by McDonald et 

al. (1991) to propose a law suitable for highly polydisperse pyroclastic material. It is 

based on the hypothesis that the size distribution can be divided into one part that 

forms the permeable network and another that is being elutriated out of the bed by the 

gas flow.  After calibration of an experimental constant, this law is used to link bed 

properties (bed void fraction, clast sizes and densities) to permeability measurements 

on homogeneously fluidized pyroclastic beds. Satisfactory fitting of the experimental 
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values confirm the hypothesis that the permeable framework of highly polydisperse 

material is controlled by the balance between settling and elutriation. As a result, it is 

possible to propose a first-order equation linking bed permeability and bed expansion. 

Theoretical model of permeability 

The size distribution of pyroclastic material is commonly measured by sieving the 

material and weighing each class size, thus obtaining a size distribution per unit 

weight, w(Dj), where Dj is particle size and j is the class indices that runs from the 

smallest class, 0, to the coarsest class, m. Short forms w(D) and D will be used when 

all clasts sizes are concerned. Permeability is mostly sensitive to the surface area of 

each clasts size, which is best represented when distributions are expressed as number 

of clasts per unit weight, nw(D), or number of clasts per unit volume, n(D). 

Conversion between these various forms is carried out by assuming spherical clasts 

(e.g., Hamilton, 1997): 
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where B is the bed bulk density and p(D) is the density of clasts of size D. Bed bulk 

density can be related to the average particle density, avg, by avgB  )1(  , where 


j

jpjavg DDw )()(  . 

Bed collapse experiments start from a bed of particles contained in a fluidization 

rig and expanded by an upward flow of gas (Fig. 1A). The collapse is caused by the 

sudden stop of the gas source and the subsequent evacuation of gas from the expanded 

bed until all excess gas has left the bed. Owing to the setup geometry, bed motion can 

be considered as one-dimensional. If the bed is composed of a polydisperse material, 
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its permeability, k, can be expressed as a generalized Blake-Kozeny equation 

(MacDonald et al., 1991): 
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where Mi is the i-th moment of the particle size distribution as a function of particle 

number per unit volume (MacDonald et al., 1991): 





0

)( dDDnDM i

i  (4) 

Here, moments represent statistical characteristics of the size distribution by 

particle number: M1 is the median and M2 is the sorting of the distribution. Equation 

(3) has been shown to hold for ternary sand mixtures and permeabilities between 10
-7

 

and 10
-11

 m
2
 (MacDonald et al., 1991). Typical pyroclastic material, however, 

contains clasts with size from meters down to micron. There is thus a need to extend 

the validity of Eq. (3) to highly polydisperse material. 

Not all clasts participate to the network that hinders gas flow. It is easy to 

conceive that micron-sized clasts might be entrained by the upward gas flow through 

much larger particles, whereas large, isolated boulders act as outliers floating in a 

much finer matrix (Fig. 1A). Thus, there might be upper and lower bounds to the 

effective size distribution that controls how permeable the bed is. When pyroclastic 

size distributions are expressed as a function of particle numbers, the fines 

systematically dominate distributions (Fig. 1B-C, Kaminski and Jaupart, 1998), 

thereby strongly influencing the value of the moments. It thus would not be surprising 

if the permeabilities of pyroclastic material calculated using Eq. (3) are at least 

sensitive to the value of the lower bound of the effective distribution. Below I 
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quantify such bounds in order to constrain the effective size distribution upon which 

moments should be calculated. 

The upper bound of the effective size distribution 

During collapse experiments, beds are contained in a fluidization rig. Isolated 

large clasts affect bed permeability by adding friction because of their surface area 

and by increasing the gas volume flux per unit area because they take a large fraction 

of the volume. Focusing on the former process, the upper bound of the effective size 

distribution controlling permeability can be thought as when there are so few large 

particles that the friction they cause to the escaping gas is comparable to that of the rig 

wall. To examine the contribution of these few particles to the overall permeability, I 

consider the permeability of the bed as if it contained only those coarse clasts of size 

Dc at the concentration, n(Dc), of the overall polydisperse distribution.  In other 

words, the permeability, kc, is that of a bed from which all particles have been 

removed but the ones of size Dc. The permeability of the resulting monodisperse bed 

can be described by Eq. (1), which can be written as (Bird et al., 2002, pp. 188-192): 

A

R
k h

c

236
  (5) 

where Rh is the hydraulic radius (ratio of volume available for flow over the total 

wetted surface) given by (Bird et al., 2002): 

)1(6 




 c

h

D
R  (6) 

This relationship has been shown to work with porosities up to 0.9 (Knackstedt 

and Zhang, 1994). At higher porosities, however, permeability becomes infinite as  

becomes unity. This is because the hydraulic radius in Eq. (6) is only a function of the 

particles forming the bed. I thus modify Eq. (6) to incorporate wall effects while 
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taking only into account the presence of particles of size Dc among the whole size 

distribution. 

Considering a cylindrical container of diameter T and volume Vc, the volume 

available for flow is Vc and the total wetted surface is the cumulated areas of all size 

Dc clasts, n(Dc)Vc Dc
2
, plus the area of the container walls, 4Vc/T. The hydraulic 

radius becomes: 

TDDn
R
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h
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This formulation expresses the hydraulic radius of a monodisperse bed of particles 

of size Dc and porosity  that is contained in a cylinder of diameter T. It is easy to 

verify that Eq. (7) equals Eq. (6) if the bed is monodisperse because then 

n(Dc)(/6)Dc
3
=1- and wall effects are negligible (T=∞). If, on the other hand, no 

particles are present, Rh=T/4 because then =1 and n(Dc)=0. 

The denominator of Eq. (7) suggests that wall friction becomes as important as 

particle friction when TDDn cc /4)( 2  . Using this equality and transforming size 

distribution by particle number per unit volume, n(Dc), into size distribution by weight 

fraction, w(Dc), using Eq. (2) yields the minimum weight fraction of particles of a 

given size that affects the permeability of a polydisperse bed by friction: 
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Owing to the linear dependence on particle size, one can expect this minimum 

amount of particles to be maximal at the coarse tail of the size distribution. This is 

consistent with w(Dc) defining the upper bound of the effective size distribution. 

Equation (8) can thus be used to test whether the coarse tail of a pyroclastic size 
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distribution can be truncated so as to ignore sizes that are present in quantities inferior 

to w(Dc). 

The lower bound of the effective size distribution 

Permeability is generally measured by injecting gas through the bed at a rate just 

below bed fluidization and expansion. The pressure gradient created by the upward 

gas flow is thus exactly balancing that of the bed at maximum loose packing. Under 

such conditions and neglecting the gas contribution to bed weight, the gas pressure 

gradient is a simple function of the particle average density, avg, and the bed porosity 

at maximum packing. The velocity, UE, at which gas escapes from the bed (a.k.a. gas 

volume flux per unit area, or interstitial gas velocity) can thus be found by applying 

Darcy’s law: 



 gk
U

avg

E

)1( 
  (9) 

where  is gas viscosity and g is the gravity acceleration. 

A very small particle of size De trapped in a coarse bed will be elutriated if the 

gas velocity is greater than its terminal fall velocity UT (Fig. 1A). Wilson and Huang 

(1979) studied the terminal fall velocity of volcanic ash particles in air and proposed a 

relationship valid over a wide range of particle sizes and shapes. Assuming laminar 

gas flow around the particles, their relationship can be simplified to: 





18

828.02 gFD
U ee

T   (10) 

where e is particle density, De is particle size, and F is a measure of the non-

sphericity of the clasts. The factor F is equal to (x2+x3)/2x1, where x1, x2, and x3 are the 

longest, middle, and shortest axes of the clast, respectively. The simplification induces 
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an error ≤1% on UT for clasts ≤125 m, which will be shown to be accurate enough 

for permeability calculations. 

In order to find the lower bound of the effective size distribution, I postulate that there 

is a particle size, De, of density p(De)=e below which elutriation takes place while 

coarser particles form the network of the permeable bed. This occurs when UE=UT, 

which simplifies to: 



 )1(
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Expressing the permeability with Eq. (1) and rearranging gives: 












1

18
828.0

2

1

e

avg

e
AFM

M
D  (12) 

The Mi are the moments of the effective particle size distribution from the coarser 

end to the size just above De. Two ways to solve Eq. (12) are presented below. 

The most direct but somewhat cumbersome method is to calculate the moments 

directly from the sieved size distribution. Traditionally, sieve data are acquired by 

weighing sample fraction every  unit, where particle size is equal to 2
-

 mm (0  = 1 

mm, -1  = 2 mm, etc.). The class size is thus halving at each  increment. The 

distribution n(D) from which moments are calculated, however, is defined in number 

of particle by linear class size in meters. So, once weight fractions are converted to 

numbers of particles, the moments have to be calculated incrementally by, for 

example, a middle Riemann sum: 





m

ej

j

i

ji DnDBM
1

1 )(  (13) 

where e+1 is the class size just above De, and B is a constant equal to   222 /1/1 pp   

with p being the sieve interval. The constant B is thus 3/4 if the sieve interval is 1 
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(p=1) and 8/1  if the interval is ½ (p=2). The elutriation size De is obtained by 

finding numerically the root of Eq. (12). The bed permeability at a given porosity can 

then be calculated using M1, M2, and Eq. (3). To simplify calculations, the number of 

particle per unit weight in Eq. (2) can also be used, as bed bulk density cancels out 

when calculating the ratio M2/M1. 

Formally, perfect match between both sides of Eq. (12) is not possible because 

the moments expressed by Eq. (13) are discrete values whereas the value of De is only 

limited by machine precision. In other words, De is considered as a continuous value 

in Eq. (12) and is allowed to take values between bin increments, whereas n(De+1) will 

be rounded to the nearest bin in Eq. (13). A workaround is to refine the values of n(D) 

to a smaller interval by setting p=10 and perform a linear interpolation of n(Dj) 

between the actual sieved intervals. This is the solution proposed in the Electronic 

Supplementary Material under the form of an MS Excel spreadsheet. 

Another way to solve Eq. (12) is to fit a continuous expression of the form 

  DDn )(  to the size distribution, where  is a fitting constant and  is the fractal 

dimension of the distribution (e.g., Kaminski and Jaupart, 1998). If  ≠ 2 and  ≠ 3, 

moments of the continuous distribution can readily be integrated using Eq. (4) from 

the smallest size of the effective distribution, De+1, which is the size above De, to the 

coarsest size, Dm. Maintaining the order of terms in both sides of the equation, Eq. 

(12) becomes: 
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Equation (14) has to be solved numerically, but a special case of interest can be 

solved for analytically. It requires that =2.5, avg=e, and De+1=De: 
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Permeability can then easily be calculated using Eqs. (3) and (15): 

3828.02
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Experimental permeability data from the literature 

Druitt et al. (2007) have measured the permeability of pyroclastic beds at various 

stages of expansion above maximum packing and at different temperatures. The beds 

were formed of natural pyroclastic material sieved as to eliminate the coarser part, 

either from 4 mm (-2 ) up, or from 250 m (2 ) up, respectively. The resulting grain 

sizes were analyzed down to 1 m (10 ). Beds were formed of 2.5 kg of material 

enclosed in a 14-cm-wide fluidization rig fed by nitrogen between 50 and 500 °C. 

They measured the bulk density of the loosely packed bed, from which I recalculated 

bed porosity (Table 1). Expanded bed experiments were treated the same way as 

maximum packing ones, except that bed porosity is that of the expanded bed. 

Permeabilities of loosely packed beds reported in Table 1 were taken from their Fig. 

9, and the largest source of error is the measure of fluidization velocities. Errors 

linked to permeabilities of loosely packed beds are thus considered to be of the same 

magnitude as the errors on fluidization velocities (±0.08 log unit, or ~20%). 

Permeabilities of expanded beds reported in Table 1 were calculated using their 

equation 10 with the exponent n=4 (Table 1). Errors linked to expanded beds were 

quantified by taking the two extreme values for the exponent n (2 and 6 for <2  

samples, and 7 and 12 for <-2  samples, Druitt et al., 2007). 

The shape factor, F, of individual clasts is not reported by Druitt et al. (2007), but 

a range of likely values can be calculated from Wilson and Huang (1979) data. The 26 
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smallest ash particles from their Table 1 yield a median F value of 0.4 with a 

minimum of 0.27 and a maximum of 0.57. These ash particles have median axes ≤3, 

which will be shown a posteriori to be an appropriate size for the lower bound of the 

effective size distribution, De. Such a departure from spherical shape (F=1) is due to 

the fact that fine clasts are generally broken bubble walls, glass shards, and crystals of 

angular shape. Since the proportions of these types of elements vary between bin sizes 

and between deposits, the full range of F values will be considered. 

Results 

The semi-empirical nature of the method proposed herein stems from the fact that 

the experimental constant A need to be determined before solving for permeability. 

The constant A partly characterizes the irregularity of the clasts belonging to the 

effective distribution and partly depends on the particle spatial organization 

(Knackstedt and Zhang, 1994). Many values have been suggested for this constant, 

ranging from the theoretical value of 44.4 for spheres to experimentally fitted values 

of 150 or 180 (MacDonald et al., 1991) and to even larger values for fractal media 

(Xu and Yu, 2008). I use the data of Druitt et al. (2007) to constrain the likely range 

of A by considering that bed permeability is known (Table 1). Calculation of A can be 

carried out by fixing F, solving Eq. (11) for De, calculating the moments using Eq. 

(13), and solving for A using Eq. (3). 

Figure 2 shows values of A given by the 38 permeabilities reported in Table 1 for 

three representative values of F (minimum, median, and maximum). Values of A 

display positively skewed normal distributions lying between 130 and 526, a span that 

includes but extends to much larger values than the commonly assumed 150 for 

monodisperse beds (e.g., Roche, 2012). The factor F is a weak control of A, and the 

range of values within one standard deviation is restricted between 203 and 289 with a 
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median value of 242. This suggests that a single value of A might represent bed 

permeability to an acceptable degree of accuracy. 

Using the same data of Druitt et al. (2007), I applied the generalized Blake-

Kozeny equation (1) on the effective size distribution with single values for F and A 

(0.4 and 242, respectively) and compared the theoretical result to their measured 

permeabilities (Fig. 3). Uncertainties on calculated permeabilities were obtained by 

combining the minimum, median, and maximum values of F and A, respectively. The 

best results were obtained by calculating the moments from the sieved size 

distribution that were interpolated to a finer (0.1  or pinterval and without 

constraining the upper bound of the size distribution (see the implemented resolution 

in Supplementary Material). As a result, the lower bound of the effective distribution 

satisfies Eq. (12) using the discrete class sizes from sieve data in Eq. (13). Theoretical 

values lay less than ±0.6 log unit (a factor of 3.8) from their experimental 

counterparts, offering a good match over 3 orders of magnitude. The concept of 

effective size distribution coupled with fixed values for F and A thus adequately links 

bed characteristics and permeability. A similar conclusion is reached if the 

permeabilities of Table 1 are randomly split into a subset from which an A value is 

obtained, and another subset against which predicted values are compared to. This 

suggests that the 38 measures of Table 1 constitute a sufficient sample size to 

determine A. 

The lower bound of the effective distribution of the loosely packed beds lay 

between 5 and 7  (Fig. 4). Once expanded, the lower bound shifts towards coarser 

clasts to lie between 3 and 6 . These values justify a posteriori the ash sizes used to 

constrain F. Data of Fig. 4 suggest that clasts <7  (<8 m) were being elutriated 

during the steady-state stage of all the fluidization experiments. Druitt et al. (2004) 
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report that ash <100 m was being elutriated from sample NES250 when gas supply 

was at or above maximum pressure velocity (Ump, Wilson, 1984). This is consistent 

with De values up to 40 m for that sample (Table 1). More precise evaluations of 

elutriation sizes from experimental data would be a test of the robustness of the 

concept of effective size distribution. 

Samples used by Druitt et al. (2007) were sieved at 1  intervals, and best results 

were obtained when refining these intervals to 0.1 . Figure 5A shows the effect of 

not interpolating these distributions to a finer interval. Discrepancies of more than an 

order of magnitude arise for expanded beds. Permeabilities of packed beds, however, 

are not sensitive to interval refinements. 

The most straightforward method to solve for the moments is to fit a power law to 

the size distribution because it leads to the analytical solution of Eq. (16). Several 

assumptions, however, must be made to apply Eq. (16). The first assumption is that all 

clasts have the same, average density. Calculations of Fig. 4 used the density 

distribution measured by Druitt et al. (2007). When assuming that p(D)=avg, 

calculated permeabilities are increased by less than 0.08 log unit (16%) for fine beds 

and less than 0.25 log unit (43%) for coarse beds, regardless of bed expansion. These 

errors are less than those induced by the uncertainties on F and A, which suggests that 

this assumption (avg=e) is valid. 

Examination of Table 1 suggests that the additional assumptions required to use 

the continuous method in Eq. (16) to obtain the moments of the distribution seem 

reasonable (=2.5 and De+1=De). Agreement between theoretical and experimental 

values, however, holds only for the finer beds (with clasts <250 m; Fig. 5B). It 

seems unlikely that the major discrepancy observed for coarser beds is caused by 

fixing to 2.5 the value for the exponent of the fitted distribution, as coarser beds have 



Burgisser, Pyroclastic bed permeability 17 

 values closest to 2.5 (Table 1). This was confirmed by taking the best-fit  value for 

each sample and solving Eq. (14) numerically, which yielded a similar divergence for 

the coarser beds. Instead, this deviation seems to be caused by the fact that power-law 

distributions do not accurately represent the moments of the coarser distributions, 

despite excellent fits with sieve data (R
2
 values are between 0.96 and 0.99, Fig. 1B). 

Figure 6 shows that there could be significant differences between moments 

calculated from the discrete distribution and the ones calculated from best-fit power 

laws. It depends on both the goodness-of-fit of the distribution and the relevant value 

for De. 

Constraining bounds of the effective size distribution 

Clasts less abundant than w(Dc) are predicted to have a negligible effect on 

permeability. Thus, the first and second moment of the size distribution shall not be 

sensitive to small amounts of coarse clasts in order for Eq. (3) to correctly predict 

permeability. This can be tested by comparing a distribution that includes a small 

amount of coarse clasts to a distribution that does not. First, take the distribution of 

the fine sample NES250 with a 52 vol.% bed porosity (Table 1), the coarsest clasts of 

which are <2  (250 m) and calculate w(Dc) for -1  (2 mm) clasts using Eq. (8) 

(Fig. 7). Then, add small amounts of -1  clasts while keeping the bed porosity 

constant and calculate the resulting permeability using Eqs. (3), (12), and (13). Figure 

7 compares the theoretical value w(Dc) with the evolution of permeability as coarse (-

1 ) clasts are added. It illustrates nicely that coarse clasts can safely be neglected if 

less abundant than w(Dc) because the coarser they are, the less influence they have on 

bed permeability. This is in agreement with experiments on horizontally flowing 

fluidized beds, which demonstrated that small quantities of coarse particles added to a 

fluidized monodisperse bed do not influence its flowing characteristics (Roche et al., 
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2005). Calculating w(Dc) for all the samples in Table 1 shows that the coarsest clasts 

of the sieve data always participate to the permeable network. 

The lower bound of the effective distribution, however, has values much larger 

than the smallest clasts present in the samples (Fig. 4). The bed permeability with 

unconstrained lower bound can be calculated by assuming that particles given as <10 

 (1 m) in Druitt et al. (2007) were 11  (0.5 m). For sample NES250, forcing the 

lower bound, De, to 11  yields 4.18×10
-13

 m
2
. This is an order of magnitude below 

the measured value (3.63×10
-12

; Table 1), which illustrates nicely that the original law 

of MacDonald et al. (1991) needs to be modified so as to take into account that clasts 

below a certain size do not influence bed permeability. 

Discussion 

The present model replicates permeabilities of both loosely packed and expanded 

beds and links permeability to material properties only (bed void fraction, clast sizes 

and densities). These results have several implications on the physics of fluidization. 

First, the interactions between clasts and gas control the system, which is trying to 

maintain equilibrium between settling and elutriating particles. As expected, particle-

particle interactions play a subordinate role, as the effective distribution is only a 

function of the average relative speed between gas and particles and of the settling 

speed of non-interacting particles. This remains true as long as gas pore pressure 

exists within the settling bed, regardless whether touching clasts form chains or 

exchange momentum through collisions or frictional contact. 

Fitting power laws to size distributions of pyroclastic material is common practice 

(e.g., Kaminski and Jaupart, 1998; Horwell et al., 2001; Maria and Carey, 2007), and 

many permeability determination methods based on power-law size distribution have 
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been proposed (e.g., Gmachowski, 1998; Karacan and Halleck, 2003; Wu and Yu, 

2007). Figure 8 compares the experimental permeabilities reported in Table 1 and 

those calculated with the methods proposed by Gmachowski (1998) and Karacan and 

Halleck (2003). Such comparison suggests that the permeability of pyroclastic 

material cannot easily be related to power-law-fitted distributions. A shortcoming of 

the Karacan and Halleck (2003) method is that it assumes that pore size distributions 

follow power-laws that are linked to those of clast size distributions. While this might 

be true for loosely packed beds, it is not the case for expanded beds because 

expansion only affects porosity. Difficulties encountered when applying the method 

by Gmachowski (1998) are caused by the coarse tail of the distributions, which not 

only deviate from power laws, but also is present in amounts greater than w(Dc), 

thereby affecting bed permeability. Power-law size distribution is thus an approximate 

description of the fractal nature of pyroclastic beds that has a limited use to quantify 

bed permeability. 

Implications for experimental work 

The semi-empirical law developed herein depends on several critical assumptions 

that condition its applicability to experiments on fluidized material. Experiments of 

Druitt et al. (2007) were conducted on static beds having reached steady-state 

fluidization. In the light of the law developed herein, it means that the balance 

between fluidization and elutriation of fines was reached. At the inception of 

fluidization, however, unsteady fluidization prevails (see Di Felice, 1995, for a full 

description) and the fines are trapped within the highly concentrated bed. Their 

elutriation speed is thus different from that predicted by the terminal velocity of a 

single particle in Eq. (10) because of the small size of the interstices and the presence 
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of other finer particles. This effect is expected to increases when the proportion of 

fines increases. 

The need to experimentally calibrate the constant A limits the extrapolation of the 

proposed law to any pyroclastic bed. Hamilton (1997) suggested replacing A by a first 

principle expression depending on bed porosity, thus proposing a universal law. The A 

values so calculated span from 162 to 216 for the samples in Table 1. This is below 

the best-fit value of 242 and, when used in Eqs. (3) and (12), these A values result in 

poor fitting of the permeabilities with discrepancies reaching up to 3 log units. As 

Hamilton (1997) assumes that particles are spheres, which is not the case of the 

pyroclasts studied herein, the poor fit suggests that A is partly controlled by the degree 

of irregularity of the clasts. 

The relationship between bed expansion and permeability is a complex one to 

establish because expansion is linked to porosity, which is difficult to quantify in 

polydisperse material (Wilson, 1984; Roche et al., 2005; Druitt et al., 2007). 

Expanded bed permeabilities reported in Table 1 were calculated thanks to a 

relationship based on the work of Richardson and Zaki (1954). It states that 

permeability is roughly proportional to the ratio of expanded to loosely packed 

porosity elevated to a power ranging from 2 to 12 (Druitt et al., 2007). Following the 

same reasoning, a first-order assessment of how expansion controls permeability can 

be done based on the continuous method in Eq. (16) because it captures the relative 

evolution of permeability with porosity. The ratio between the permeability, k0, of a 

loosely packed bed of porosity, 0, and the permeability, k1, of an expanded bed of 

porosity, 0(1+E), where E is the fraction of expansion, is given by:

  

 30

53
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1

)1(1

)1()1(

E
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If the Blake-Kozeny relationship (1) is taken instead of Eq. (16), this ratio 

becomes: 

 20

32

0

0

1

)1(1

)1()1(

E

E

k

k









  (18) 

Figure 9A plots bed permeability as a function of bed expansion. It shows that Eq. 

(17) captures the increase of permeability upon expansion within an order of 

magnitude for four out of the five samples of Table 1, whereas Eq. (18) does not. The 

large misfit of sample NES4000 is caused by the strong departure from the 

assumption e=avg for large E values. Expansion thus exerts a much stronger control 

on permeability than the Blake-Kozeny relationship suggests. This is partly due to the 

fact that the porosity function 3
/(1-)

2
 in Eq. (1) is only valid for packs of uniformly 

sized spheres, and partly due to the fact that Eq. (18) incorrectly assumes that particle 

size is constant, regardless of expansion. 

The permeability law tested in Fig. 2 is applied to statically fluidized beds, 

although pyroclasts are flowing along the slopes of the volcano. Observations suggest 

that sedimentation in static beds occurs as a sharp front aggrading the deposits 

because gas pore pressure keeps the settling part of the collapsing bed at its initial 

porosity (Druitt et al., 2007). To first order, the permeability of the initially expanded 

bed can thus be linked to sedimentation rate, although such link is made complex by 

non-linear variations of pore pressure during settling (Montserrat et al., 2012). 

Girolami et al. (2008) have shown that the same pyroclastic material as used by Druitt 

et al. (2007) settles at the same speed when flowing along a horizontal base than when 

it is contained in a static rig. Following these authors and integrating the present 

results suggest that the sedimentation rate in homogeneously fluidized, polydisperse 

flows is also controlled by a simple balance between elutriation of smaller particles 
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and gas retention by coarser particles. A first order, permeability-based sedimentation 

law derived from the present work would be quite versatile, as it can be incorporated 

into depth-averaged flow model (e.g., Kelfoun, 2009) through the concept of pore 

pressure diffusion (Montserrat et al., 2012; Roche, 2012), and used in multiphase 

models (e.g., Dufek and Bergantz, 2007) because permeability characterizes the drag 

between the solid phase and the carrier gas. 

Implications for natural pyroclastic flows 

One of the strengths of the semi-empirical law presented herein is that it does not 

depend on gas viscosity and is valid at magmatic temperatures since Druitt et al. 

(2007) data were acquired between 50 and 550°C. Some of the insights developed 

above can thus be extended to flowing pyroclastic density currents. Two issues, 

however, limit the scope of these insights.  

The first issue is whether the permeability determination described herein can be 

applied to natural, coarser material. The strongest limitation is that natural materials 

are generally more poorly sorted than those of Table 1 and will segregate upon 

fluidization (Wilson, 1984). This restricts the extension of the law proposed herein to 

materials that fluidize in a homogeneous fashion. With this limit is mind, Eq. (8) can 

be used to assess whether the coarser end of the size distribution affects permeability. 

Since the concept of rig size used herein loses pertinence when addressing unconfined 

systems, a ratio between deposit thickness and boulder size might be more appropriate 

to characterize outliers. Two additional aspects can cause trouble when applying the 

law to natural materials. First, although F was not determined on the same pyroclasts 

as the ones used in Druitt et al. (2007), assuming a value of 0.4 gives satisfactory 

results over three orders of magnitude (Fig. 3). This might no longer hold for coarser 

beds, which suggests that further testing of the current conclusion that shape 
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irregularities of the elutriated clasts have a small influence on bed permeability is 

needed. Testing can easily be conducted by measuring F on the same clasts as those 

composing the fluidized beds. Second, most published sieve data of pyroclastic 

material do not feature the average clast density of each sieve interval. Results of this 

study indicate that using a constant, average clast density for the whole distribution 

underestimates bed permeability. This effect increases with the abundance of coarse 

particles but remains below the overall uncertainty level of the method for beds with 

clasts up to 4 mm. Most natural material being, however, much coarser than a few 

mm, extrapolation of the present model to natural material most likely necessitates 

clast density distributions. 

The second issue is whether particle-particle interactions, negligible at the flow 

speeds reached in the laboratory (1.5 m/s) for <4 mm clasts mixtures, are also 

negligible in the case of much faster pyroclastic flows. Several recent lines of 

evidence suggest that fluidization plays a key role in the transport system of natural 

flows. Research centered on dense granular mechanics that ignores the role of the gas 

(e.g., Forterre and Pouliquen, 2008) has proposed rheology laws that explain non-

fluidized, laboratory flows much more accurately (e.g., Lube et al., 2007) than natural 

flows (Kelfoun et al., 2009; Doyle et al., 2010). Quantifications carried out with pore 

pressure diffusion values corresponding to permeabilities from 10
-13

 to 10
-9

 m
2
 

indicate that large-scale flows are likely to remain fluidized over much of their travel 

time (Roche et al., 2010; Roche, 2012). Even if this is encouraging, it remains that the 

delicate balance expressed by equating gas speed to settling speed in Eq. (11) will be 

upset by incomplete fluidization (i.e., loss of pore pressure, Roche et al., 2008), 

attrition, or irruption of momentum-driven boulders in the settling bed. Assuming 

nevertheless that the kinetics of fluidized pyroclastic flows is controlled by such a 
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balance, one can try estimating the consequences of upsetting it by a modification of 

the flow expansion. Events affecting flow porosity include, for instance, thickening 

following a break in the pathway slope. The approximate relationship between of bed 

expansion and permeability (Fig. 9B) suggests that a ~30% change in bed expansion 

results in one order of magnitude change in permeability. This suggests that the 

kinetics of pore pressure diffusion in natural flows is only moderately sensitive to 

flow thickness changes, and that flows might be able to quickly re-establish their 

balanced permeability after being subjected to perturbations such as slope changes. 

Conclusions 

 This work postulates that highly polydisperse materials have an effective size 

distribution that controls permeability. Existence of such effective distribution implies 

that not all clasts participate to the permeable network resisting to gas flow and that 

clasts smaller than the minimal effective size are elutriated. When this concept is 

coupled to a generalized Blake-Kozeny equation, the resulting law is able to predict 

the permeabilities of pyroclastic material within ±0.6 log unit. The dataset used to 

carry out the comparison is based on natural pyroclastic deposits that were resampled 

so as to ensure homogeneous fluidization (Druitt et al., 2007). Results suggest that the 

effective size distribution is not sensitive to small amounts of large particles, which 

are correctly treated as outliers floating in a finer matrix. If Eq. (8) is verified, there is 

no need to constrain the upper bound of the effective size distribution other than by 

sieve data. The lower bound is best constrained by solving Eq. (12) using the method 

in Eq. (13) and interpolating sieve data to 0.1  intervals. Bed permeability can then 

be obtained using Eq. (3) (see Supplementary Material). The presence of an 

experimentally calibrated constant and the necessary absence of segregation during 

fluidization limit the extrapolation of the proposed law to any given pyroclastic bed. 
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The result that permeability is controlled by a balance between settling of the coarse 

clasts and elutriation of the fines has nevertheless implications on the kinetics of 

dense pyroclastic flows. This balance implies a first-order relationship between 

permeability and expansion, which suggests that pore pressure diffusion in 

homogeneously fluidized parts of natural pyroclastic flows is only moderately 

sensitive to perturbations of the flow thickness. 
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Table 1: Size distribution parameters from pyroclastic beds and permeability 

determinations. 

Sample
*
 

 





avg/e
*

 

 

Porosity
*
 

% 

Expansion
*
 

% 
k measured

*
 

m
2
 

k discrete 

m
2
 

k continuous 

m
2
 

De 

 

NES250 2.39 

0.995 52 0 3.63 10
-12

 4.19 10
-12

 3.52 10
-12

 6.4 

0.995 52 0 5.60 10
-12

 4.13 10
-12

 3.44 10
-12

 6.4 

0.995 53 0 6.79 10
-12

 4.64 10
-12

 4.14 10
-12

 6.3 

0.995 54 0 1.64 10
-11

 5.86 10
-12

 4.62 10
-12

 6.2 

0.995 63 21 1.05 10
-11

 4.02 10
-11

 2.06 10
-11

 5.1 

0.995 63 21 1.58 10
-11

 3.66 10
-11

 1.97 10
-11

 5.1 

0.995 66 24 2.37 10
-11

 6.00 10
-11

 3.07 10
-11

 4.9 

0.995 68 26 6.76 10
-11

 8.70 10
-11

 4.21 10
-11

 4.6 

DOR250 2.18 

0.981 46 0 3.30 10
-12

 5.10 10
-12

 1.33 10
-12

 6.1 

0.981 47 0 4.75 10
-12

 5.80 10
-12

 1.52 10
-12

 6.0 

0.981 47 0 6.26 10
-12

 6.23 10
-12

 1.70 10
-12

 6.0 

0.981 49 0 1.37 10
-11

 7.76 10
-12

 2.24 10
-12

 5.8 

0.981 58 26 9.10 10
-12

 2.65 10
-11

 9.17 10
-12

 5.2 

0.981 61 31 1.73 10
-11

 4.40 10
-11

 1.58 10
-11

 5.0 

0.981 63 33 2.54 10
-11

 5.44 10
-11

 2.00 10
-11

 4.8 

0.981 65 32 5.97 10
-11

 7.48 10
-11

 2.69 10
-11

 4.7 

PDD250 2.23 

0.989 52 0 9.10 10
-12

 6.16 10
-12

 3.29 10
-12

 6.1 

0.989 52 0 1.13 10
-11

 6.45 10
-12

 3.54 10
-12

 6.1 

0.989 58 0 1.62 10
-11

 1.56 10
-11

 9.61 10
-12

 5.6 

0.989 60 0 2.72 10
-11

 2.14 10
-11

 1.25 10
-11

 5.4 

0.989 56 9 1.38 10
-11

 1.27 10
-11

 7.01 10
-12

 5.7 

0.989 59 13 2.13 10
-11

 1.93 10
-11

 1.07 10
-11

 5.5 

0.989 69 19 5.64 10
-11

 1.26 10
-10

 5.86 10
-11

 4.4 

1.041 72 20 1.15 10
-10

 2.57 10
-10

 9.21 10
-11

 4.0 

NES4000 2.79 

0.942 42 0 3.76 10
-12

 2.07 10
-12

 1.80 10
-10

 6.6 

0.942 41 0 4.75 10
-12

 2.09 10
-12

 1.59 10
-10

 6.6 

0.942 43 0 6.73 10
-12

 3.00 10
-12

 2.12 10
-10

 6.4 

0.961 58 38 9.40 10
-11

 1.41 10
-10

 2.35 10
-9

 4.0 

0.961 60 46 2.33 10
-10

 2.34 10
-10

 3.34 10
-9

 3.7 

1.132 62 45 4.30 10
-10

 9.55 10
-10

 4.71 10
-9

 2.7 

DOR4000 2.59 

0.879 39 0 6.40 10
-12

 6.91 10
-12

 1.03 10
-10

 5.7 

0.879 38 0 5.41 10
-12

 6.33 10
-12

 8.98 10
-11

 5.7 

0.879 39 0 1.15 10
-11

 7.51 10
-12

 1.08 10
-10

 5.7 

0.879 40 0 1.28 10
-11

 8.59 10
-12

 1.21 10
-10

 5.6 

0.879 49 26 4.06 10
-11

 3.78 10
-11

 5.83 10
-10

 4.8 

0.879 49 28 3.63 10
-11

 3.17 10
-11

 5.48 10
-10

 4.9 

0.879 51 29 9.25 10
-11

 4.68 10
-11

 7.27 10
-10

 4.7 

0.879 52 31 1.23 10
-10

 5.85 10
-11

 9.11 10
-10

 4.6 
*
Values from Druitt et al. (2007). See text for details.  
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Figure Caption 

Figure 1: A. Schematic representation of a settling polydisperse bed. Clasts can be 

divided in three categories with respect to settling dynamics, which define the 

effective part of the size distribution that controls bed permeability. Small 

clasts (black) have settling velocities smaller than gas flow (UT<UE) and are 

elutriated. Outsized clasts have sizes, Dm, comparable to that of the settling 

rig, T, and do not influence bed permeability. Intermediate clasts having 

settling velocities larger than gas flow (UT>UE) form the permeable 

framework. On the right are two representations of sieve data from the five 

fluidized pyroclastic samples analyzed by Druitt et al. (2007). B. Normalized 

number of clasts per size bin. C. Normalized weight percent per size bin. 

Permeability is most sensitive to the shape of the distribution in B..  

Figure 2: Spread of values for the permeability coefficient A as a function of three 

values of the clast shape factor F. Population size is 38 (see Table 1). 

Figure 3: Measured vs. calculated permeabilities, k, of pyroclastic beds. Fine beds 

contain clasts <2  and coarse beds contain clasts <-2 . Calculated 

permeabilities are termed discrete because sieve data are directly used to 

determine permeability. Size distribution binning is every 0.1 , a resampling 

from the original data. Vertical error bars on calculated permeabilities were 

obtained by combining the minimum, median, and maximum values of F and 

A (0.27; 0.4; 0.57 and 203; 242; 289, respectively). Errors inferior to symbol 

size are not shown. Measured permeabilities are from data in Druitt et al. 

(2007): expanded beds permeabilities were obtained from data regression, 

generating the vertical error bars, and packed beds permeabilities were 
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obtained from direct measurements, generating errors inferior to symbol size 

(see text).  

Figure 4: Lower bound of the effective size distribution, De, as a function of bed 

expansion. Fine beds contain clasts <2  and coarse beds contain clasts <-2 .  

Figure 5: Measured vs. calculated permeabilities, k, of pyroclastic beds. Fine beds 

contain clasts <2  and coarse beds contain clasts <-2 . Grey areas represent 

the data field of Fig. 3. A. Discrete calculation, in which sieve data are 

directly used to determine permeability. Size distribution binning is every 1 , 

as in original data.  B. Continuous calculation, in which best-fits of sieve data 

(Table 1) are used to determine permeability. 

Figure 6: Difference between moments calculated from the discrete data of the sieve 

analysis using Eq. (13) and the ones calculated from best-fit power laws using 

Eq. (14). Fine bed is sample NES250 and coarse bed is sample NES4000. 

Both M2/M1, which can be viewed as an effective clast size, and the lower 

bound of the effective distribution, De, are shown in  units. 

Figure 7: Permeability of bed formed by NES250 clasts as a function of added weight 

fraction of coarser clasts of size -1  (2 mm). Also shown is the theoretical 

weight fraction, w(Dc), below which added clasts have a small effect on 

permeability of a bed contained in a 14-cm-diameter fluidization rig. The 

effective size distribution (bounded at De) with 1  interval has been used. 

Figure 8: Measured vs. calculated permeabilities, k, of pyroclastic beds using two 

methods (open symbols: Gmachowski, 1998; closed symbols: Karacan and 

Halleck, 2003) assuming power-law size distributions. In the first method, 

sieve intervals of 0.1  were used with their corresponding  values (D in 

equations 13 and 15 of Gmachowski, 1998). In the second method, sieve 
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intervals of 0.1  were used to calculate the total grain surface area while 

assuming no tortuosity of the gas pathways, a complete fragmentation, and a 

pore fractal dimension of two (respectively DT =1, f = bed porosity, and DP 

=2 in Karacan and Halleck, 2003). Triangles are fine beds and circles are 

coarse beds. Grey squares are permeabilities of Fig. 3. 

Figure 9: Effects of expansion on bed permeability. A. Calculated bed permeabilities 

as a function of expansion (Table 1). Only the coarsest samples NES4000 

and DOR4000 are shown for clarity; the two finer samples (NES250 and 

DOR250) having respective curves similar to those of DOR4000. 

Continuous lines are calculated using the discrete size distributions with 0.1 

 intervals and changing the value of . Dashed lines are calculated using 

Eq. (17) and dotted lines are calculated using Eq. (18). B. Increase in 

permeability as a function of bed expansion for three loosely packed 

porosities. The increase is calculated using Eq. (17) and expressed as the 

ratio of expanded bed permeability (k1) over loosely packed bed 

permeability (k0). 
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