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Abstract 

This study proposes a simple and novel synthesis route for rhombohedral single crystals 

(<2µm) of magnesite. This synthesis can be summarized by two main sequential reactions: (1) 

aqueous carbonation of synthetic brucite (Mg(OH)2) by injection of CO2 in a highly alkaline 

medium (2Molal of NaOH) at ambient temperature (∼ 20°C), leading to precipitation of platy-

compacted aggregates of dypingite ( OHOHCOMg 22435 5.)()( ) after 24h; (2) complete dypingite-

to-magnesite transformation after 24h by a simple heat-ageing step from 20 to 90°C. The 

dypingite-to-magnesite transformation implies the simultaneous dehydration and carbonation of a 

brucitic layer of dypingite coupled with instantaneous formation of magnesite crystals. In this 

study, the NaOH played a catalytic role, i.e., it accelerated brucite carbonation by an increase in 

carbonate ion concentration with time and it promoted the formation of magnesite during the 

heat-ageing step as illustrated in the following global reaction: 

OHMgCOCOOHMg s
NaOH

aqs 2)(3
2

)(2)(2)( + →+  

At laboratory scale, magnesite is typically synthesized at high temperature (>90°C) and its 

synthesis requires several days or weeks depending on experimental conditions. For this reason, 

industrial-scale magnesite production has been limited. The proposed magnesite synthesis 

method, requiring only 48h and moderate temperature, could easily be extrapolated on an 

industrial scale. Moreover, a simple and novel synthesis route for the production of fine platy 

particles of hydromagnesite is reported, with synthesis requiring only 5h. Based on their chemical 

compositions and textural properties, there are potential applications for both minerals, for 

example as a mineral filler and/or as a flame-retardant. 
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1. Introduction 

The formation and textural properties of natural mineral Mg-carbonates have already been 

investigated in the past. However, various questions still remain unanswered concerning their 

formation in natural systems as well as their production at laboratory and industrial scales. Over 

the past two decades, the precipitation of Mg-carbonates from Mg-rich solutions or Mg-rich 

suspensions has been actively investigated with a view to the permanent storage of the captured 

anthropogenic CO2 via ex-situ mineral carbonation; i.e., CO2(gas)-to-carbonate(solid) 

transformation (e.g., 1-4). Such a carbonation reaction could therefore potentially be part of a 

Carbon Dioxide Capture and Storage (CCS) system, which attempts to capture CO2 from 

industrial sources and store it permanently. The most successful implementation of this mineral 

carbonation process involves the extraction of magnesium from natural olivine or serpentines 

and/or Mg-rich solid waste in aqueous solutions and subsequent precipitation of Mg-carbonate 

under a CO2 atmosphere (5-10). In addition, the reaction path for the MgO-H2O-CO2 system at 

ambient temperatures and at atmospheric CO2 partial pressure is of both geological interest and 

practical significance. For example, if the reaction path in this system is known, this would lead 

to a better understanding of the low temperature alteration or weathering of mafic and ultramafic 

rocks. Moreover, exact knowledge of the reaction path in this system is important in order to 

assess the performance of geological repositories for nuclear waste where mineral periclase 

(MgO) and brucite (Mg(OH)2) have been proposed as engineered barriers (e.g., 11). 

Generally, in the MgO-H2O-CO2 or Mg(OH)2-H2O-CO2 slurry systems a significant 

number of hydrated and basic (or hydroxylated) carbonates (e.g. nesquehontite, lansfordite, 

artinite, hydromagnesite, dypingite, pokrosvskite, etc.) can be formed at ambient temperature and 
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at moderate CO2 pressure (<55 bar) (1, 12-20, this study). All of these minerals are considered to 

be metastable compounds with respect to magnesite (anhydrous form: MgCO3), which is the 

most stable form of Mg-carbonate. However, the low temperature precipitation of magnesite is 

kinetically inhibited by the preferential precipitation of some of the hydrated and/or hydroxylated 

Mg-carbonates mentioned above, possibly due to the high hydration nature of Mg2+ ions in 

solution (21). For this reason, the formation of magnesite at ambient temperature is virtually 

impossible (1). The minimum reported temperature for magnesite production is about 60-100°C, 

and its formation also requires a high CO2 pressure (21-23). In various cases, the magnesite is 

obtained by transformation of pre-existing hydroxylated Mg-carbonate such as hydromagnesite 

(18, 24). This transition can be very slow; for example, below 150°C and at moderate pressures, 

its duration is often in the order of days. Higher temperatures, high salinity, high CO2 pressure, 

low magnesium concentration (in a closed system) and the use of organic additives (ex. 

monoethylene glycol) are known to accelerate the hydromagnesite-to-magnesite transformation 

(18, 25). Reported transformation times are between 2h at 200°C in a solution saturated with 

NaCl, and over 100 days at 110°C at lower salinity in a closed system. Magnesite formation 

without any apparent hydromagnesite initially or at an intermediate stage has also been reported 

under high CO2 pressures (100-150 bar) and at high temperatures (150-180°C), for experiments 

combining the dissolution of Mg-silicates with carbonate precipitation (23, 26-28). The 

requirement for high temperatures and high CO2 pressures to precipitate the magnesite has 

limited its production at industrial scale. Moreover, magnesite used as a filler and pigment in 

paper, paint, rubber and plastics can sometimes be replaced by synthetic calcite that can be 

produced in a wide panel of lower temperatures and CO2 pressures (29-31). Identifying novel 

and/or innovative synthesis methods for magnesite at low temperature and low CO2 pressure still 
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remains a major scientific challenge to obtain a better understanding of its formation in natural 

systems and to facilitate its production on an industrial scale. 

In this context, this study proposes a novel and simple synthesis route for the production 

of rhombohedral single crystals (<2 µm) of magnesite. This synthesis can be summarized by two 

main sequential reactions: (1) aqueous carbonation of synthetic brucite (Mg(OH)2) by injection of 

CO2 (50 bar) in a highly alkaline medium (2Molal of NaOH) at ambient temperature (∼ 20°C), 

leading to the precipitation of platy-compacted aggregates of dypingite 

( OHOHCOMg 22435 5.)()( ) after 24h; (2) complete dypingite-to-magnesite transformation after 

24h by a simple heat-ageing step from 20 to 90°C. The NaOH plays a catalytic role, i.e., it 

accelerates brucite carbonation by increasing the concentration of carbonate ions and promoting 

the exclusive formation of magnesite during the heat-ageing step. Conversely, when the 

experiment was carried out in the absence of NaOH, incomplete carbonation of brucite was 

observed and the hydromagnesite became the dominant Mg-carbonate after the heat-ageing step. 

Here, the solid product contained only about 5% of magnesite, and is called hydromagnesite-

magnesite-brucite composite hereafter. The specific PCO2-T conditions required to precipitate 

pure hydromagnesite as well as hydromagnesite-eitelite and hydromagnesite-magnesite-brucite 

composites from Mg(OH)2-H2O-CO2 slurry in the presence/absence of NaOH are also reported. 

Various analytical tools such as X-ray diffraction (XRD), Field Emission Gun Scanning Electron 

Microscopy (FESEM), Thermogravimetric analyses (TGA) and N2 adsorption isotherms were 

used to characterize the solid products. 
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2. Materials and Methods 

The main experimental conditions required to synthesize magnesite, hydromagnesite and Mg-

carbonate composites are summarized in Table 1 and the experimental procedures are described 

in detail in the following sections. 

2.1. Synthesis of magnesite (MgCO3) 

One litre of high-purity water with electrical resistivity of 18.2 M�·cm, 2 mol of NaOH 

and 1 mol of synthetic brucite (Mg(OH)2, with chemical purity >95%) were placed in a titanium 

reactor (autoclave with internal volume of two litres). This reactive suspension was immediately 

stirred during the reaction by means of a constant mechanical stirring system (400 rpm). The 

temperature of the suspension increased instantaneously to 26°C due to the exothermic 

dissolution of NaOH in the system. At this reference temperature, CO2 (�2 mol) was immediately 

injected in the system at a pressure of 50 bar. The carbonation reaction started instantaneously as 

attested by the continuous consumption of CO2 (monitored by a pressure drop in the system) and 

an increase in temperature during the exothermic carbonation reaction (the maximum temperature 

reached was �38°C after 1h of reaction (�T�12°C)). After 24h of carbonation reaction at ambient 

(or room) temperature (16-20 °C) (including the exothermic period), a heat-ageing step was 

performed from ambient temperature to 90°C for a further 24h. Based on preliminary 

experiments, was found that the NaOH played a catalytic role, i.e., it accelerated brucite 

carbonation by an increase in carbonate ion concentration with time and promoted the formation 

of magnesite during the heat-ageing step. More details are provided in the Results and Discussion 

section. 
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At the end of the experiment, the autoclave was removed from the heating system and immersed 

in cold water. The residual CO2 was degassed from the reactor during water-cooling period. After 

water cooling at 30°C (for about 15 minutes) the autoclave was disassembled, and the solid 

product was carefully recovered and separated by centrifugation (30 minutes at 12,000 rpm), 

decanting the supernatant solutions. The solid product was washed twice by re-

dispersion/centrifugation processes in order to remove the soluble sodium carbonates formed 

during the synthesis. Finally, the solid product was dried directly in the centrifugation flasks at 

80°C for 48 h. The dry solid product was manually recovered and stored in plastic flasks for 

subsequent characterization (FESEM, XRD, TGA and N2 sorption isotherms). 

 

2.2. Synthesis of hydromagnesite (Mg5(CO3)4(OH)2.4H2O) 

Two methods are reported in this study. 

(i) Precipitation of hydromagnesite from Mg(OH)2-H2O-CO2 slurry. One litre of high-purity 

water with electrical resistivity of 18.2 M�·cm and 1 mol of synthetic brucite (Mg(OH)2) with 

chemical purity >95%) were placed in a titanium reactor (autoclave with internal volume of two 

litres). This reactive suspension was immediately stirred at 400 rpm and heated to 90°C. Once the 

temperature had stabilized, CO2 was injected at a pressure of 50 bar and the total pressure in the 

system was immediately increased from 50 to 90 bar by argon injection. At these T and P 

conditions, the vapor phase primarily consists of a mixture of Ar + CO2, with CO2 in a 

supercritical state. The reaction time in this solid-liquid-gas thiphasic experiment (Mg(OH)2-

H2O-CO2 slurry) was typically 12 days in order to obtain high-purity hydromagnesite. The solid 
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product recovery/drying procedures were similar to those described above for the synthesis of 

magnesite. 

(ii) Knowing the catalytic action of NaOH on brucite carbonation, a faster method was 

implemented to synthesize hydromagnesite. This simple method required only five hours of 

carbonation reaction. In fact, this method is very similar to the synthesis method for magnesite 

(see above) except for the reaction time in each carbonation step: only 3h for carbonation at 

ambient temperature (including the exothermic period) and 2h for the heat-ageing step at 90°C 

were required to obtain high-purity hydromagnesite. The solid product recovery/drying 

procedures were the same as described above for magnesite synthesis. 

2.3. Synthesis of Mg-carbonate composites 

Hydromagnesite-magnesite-brucite composite. This composite material was synthesized by 

making a simple modification to the synthesis method for magnesite (see above). More 

specifically, the carbonation reaction of brucite was carried out in the absence of NaOH, leading 

to the formation of hydromagnesite (dominant phase) and magnesite (minor phase). These Mg 

carbonates were intimately dispersed with residual (or unreacted) brucite forming a so-called 

hydromagnesite-magnesite-brucite composite. The solid product recovery/drying procedures 

were similar to those described above for the synthesis of magnesite, although in this case the 

solid product washing procedure to remove soluble Na carbonate was not necessary for this 

synthesis. 

Hydromagnesite-eitelite composite. This composite material was synthesized by making simple 

modifications to the synthesis method for magnesite (see above). In this case, a heat-ageing step 
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at 45°C was performed immediately after CO2 injection into the system. The reaction time in this 

Mg(OH)2-H2O-NaOH-CO2 system was typically 10 days in order to obtain a hydromagnesite-

eitelite binary composite. In this particular case, it was found that the sodium initially contained 

in NaOH reacted significantly to produce the eitelite mineral (Na2CO3.MgCO3). So in this case, 

the NaOH had not just a catalytic affect because sodium was also incorporated in the mineral 

phase. The solid product recovery/drying procedures were the same as described above for 

magnesite synthesis. 

2.4. Characterization of solid products 

FESEM observations: magnesite, hydromagnesite and various Mg-carbonate composites were 

dispersed by ultrasonic treatment in absolute ethanol for five to ten minutes. One or two droplets 

of the suspension were then deposited directly on an aluminum support for SEM observations, 

and coated with platinum. The morphology of various selected powders was observed using a 

Zeiss Ultra 55 field emission gun scanning electron microscope (FESEM) with a maximum 

spatial resolution of approximately 1nm at 15kV.  

XRD measurements: X-Ray Powder Diffraction (XRD) analyses were performed using a Siemens 

D5000 diffractometer in Bragg-Brentano geometry; equipped with a theta-theta goniometer with 

a rotating sample holder. The XRD patterns were collected using Cu k�1 (λk�1=1.5406�) and k�2 

(λk�2=1.5444 �) radiation in the range 2θ = 10 - 70° with a step size of 0.04° and a counting time 

of 6 seconds per step. 

Thermogravimetric analyses: TGA for all Mg-carbonate samples were performed with a Mettler 

Toledo TGA/SDTA 851e instrument under the following conditions: sample mass of about 10 
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mg, 150 µl alumina crucible with a pinhole, heating rate of 5°C min-1, and inert N2 atmosphere of 

50 ml min-1. Sample mass loss and associated thermal effects were obtained by TGA/SDTA. In 

order to identify the different mass loss steps, the TGA first derivative (rate of mass loss) was 

used. The TGA apparatus was calibrated in terms of mass and temperature. Calcium oxalate was 

used for the sample mass calibration. The melting points of three compounds (indium, aluminum 

and copper) obtained from the DTA signals were used for the sample temperature calibration. 

N2 sorption isotherms: N2 sorption isotherms for magnesite, hydromagnesite and Mg-carbonate 

composites were obtained by using a sorptomatic system (Thermo Electron Corporation). The 

specific surface area of powdered samples was estimated by applying the Brunauer-Emmet-Teller 

(BET) equation in the 0.05≤P/P0≤0.35 interval of relative pressure and based on a value of 16.2 

Å2 for the cross-sectional area of molecular N2. A non-linear regression by the least-squares 

method was performed to fit the interval data (nads vs. P/P0) in the experimental isotherms. 

 

3. Results and Discussion 

3.1. Magnesite precipitation: Physicochemical steps and reaction mechanism 

The precipitation of magnesite at low temperature is kinetically inhibited by the 

preferential precipitation of hydrated and/or hydroxylated Mg-carbonates (e.g., nesquehontite, 

lansfordite, artinite, hydromagnesite, dypingite, pokrosvskite, etc.), possibly due to the high 

hydration nature of Mg2+ ions in solution (21). Based on this assumption, the formation of 

magnesite at ambient temperature is virtually impossible (1).  
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A simple and novel synthesis route for the formation of rhombohedral single crystals 

(<2µm) of magnesite is described here. The precipitation process requires only 48h and can be 

summarized by two main sequential steps (see Fig. 1):  

(1) Aqueous carbonation of synthetic brucite (Mg(OH)2) by injection of CO2 in a highly 

alkaline medium (2Molal of NaOH) at ambient temperature (∼ 20°C). This physicochemical step 

led to the precipitation of platy-compacted aggregates of dypingite ( OHOHCOMg 22435 5.)()( ) 

after 24h of fluid-solid interaction as attested by XRD and FESEM observations on the solid (see 

Fig. 1 and 2). Moreover, a moderate specific surface area (9 m2/g) was deduced from the N2 

adsorption isotherm (Table 2).  

Assuming that CO2 absorption in the highly alkaline solution of NaOH is faster and greater than 

in water via the following exothermic reaction: 

OHCONaCONaOH aq 232)(22 +→+                                                                                             (1) 

the carbonation of brucite leading to the precipitation of dypingite can be written as follows:  

NaOHOHOHCOMgOHCONaOHMg 6.15.)()(2.08.0)( 224352322 +→++                                (2) 

These two coupled reactions take place at ambient temperature (∼ 20°C) for the first 24 hours. 

However, as observed in the experiments, these reactions are exothermic, with the suspension 

temperature reaching a maximum value of 38±1°C after about 1h of reaction. The maximum 

value of temperature remains constant for about 2h and then it decreases slowly to ambient 

temperature (∼ 20°C). 
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(2) A heat-ageing step from 20 to 90°C was performed to obtain complete transformation 

of dypingite to magnesite after 24 hours. This assumes a solid state transition implying the 

simultaneous dehydration and carbonation of a brucitic layer of dypingite precursor coupled with 

instantaneous formation of magnesite crystals. However, the dissolution of the dypingite 

precursor coupled with magnesite precipitation cannot be excluded. The general reaction for the 

dypingite-to-magnesite transformation can be written as follows: 

OHNaOHMgCOCONaOHOHCOMg 233222435 4.02.05.)()(2.0 ++→+                                    (3) 

In this study, NaOH played a catalytic role, i.e., it accelerated brucite carbonation by an increase 

in carbonate ion concentration with time. The catalytic role can be verified by adding reactions 1 

to 3. The presence of NaOH also promoted magnesite formation during the heat-ageing step. In 

this way, the precipitation of magnesite, enhanced by NaOH and a heat-ageing step, can be 

illustrated by the following global carbonation reaction: 

OHMgCOCOOHMg s
NaOH

aqs 2)(3
2

)(2)(2)( + →+                                                                         (4) 

This reaction takes place exclusively when NaOH is used as a catalytic agent. Conversely, if the 

same experiment is carried out in the absence of NaOH, incomplete carbonation of brucite is 

observed and hydromagnesite is the dominant Mg-carbonate after the heat-ageing step. In such 

case, the hydromagnesite-magnesite-brucite composite obtained contains only about 5% of 

magnesite (see Fig. 3). 
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3.2. Synthesis of hydromagnesite 

Hydromagnesite (Mg5(CO3)4(OH)2.4H2O) is a naturally occurring compound found in 

magnesium-rich minerals such as serpentine and altered magnesium-rich igneous rocks. It is also 

produced by alteration of brucite in periclase marbles. In view of its potential use in industrial 

applications, several scientific studies, technical reports and patents have been published 

concerning its synthesis at laboratory scale (e.g., 19). 

Two different methods for synthesizing hydromagnesite under laboratory conditions are reported 

here; both methods can be used to synthesize high-pure hydromagnesite as attested by X-ray 

diffraction observations on the powder products where the experimental XRD patterns 

successfully match with the ICDD card # 070-0361 (see Fig. 4). Platy fine particles with 

moderate specific surface area (>20m2/g) were obtained for both methods (see Table 2 and 

FESEM image for synthesis S3 in Fig. 5). However, the synthesis time is drastically reduced 

from 12 days to 5 hours when NaOH is used as catalyst and/or additive in the Mg(OH)2-H2O-

CO2 system. Similarly to the synthesis of magnesite, the NaOH-rich solution accelerates brucite 

carbonation by an increase in carbonate ion concentration with time. For this case, the general 

reaction for hydromagnesite precipitation, i.e., an intermediate hydroxylated (or basic) Mg-

carbonate with respect to magnesite, can be written as follows: 

NaOHOHOHCOMgOHCONaOHMg 6.14.)()(2.08.08.0)( 224352322 +→++                           (5) 

As mentioned above, this carbonation reaction of brucite takes only five hours. Conversely, the 

hydrothermal carbonation of brucite in the absence of NaOH takes about 12 days to obtain 

hydromagnesite with similar textural properties. The hydrothermal carbonation of brucite to form 



���

hydromagnesite at 90°C, 90 bar, and in the absence of NaOH can be described by the following 

global reaction. 

OHOHCOMgCOOHMg aq 22435)(22 4.)()(2.08.0)( →+                                                                 (6) 

In conclusion, the use of NaOH as a catalyst is a powerful option to accelerate the production of 

hydromagnesite (only five hours) with potential industrial applications given its advantageous 

textural properties and composition, as reported in Table 2. 

 

3.3. Synthesis of Mg-carbonate composites  

As mentioned in the Introduction, magnesite is considered to be the most stable Mg-carbonate 

compound. However, its precipitation at low temperature is kinetically inhibited by the 

preferential precipitation of hydrated and/or hydroxylated Mg-carbonates, possibly due to the 

high hydration nature of Mg2+ ions in solution (21). Based on these concepts, the formation of 

anhydrous Mg-carbonates (e.g., magnesite and dolomite) at ambient temperature is virtually 

impossible (1). However, anhydrous eitelite (Na2CO3.MgCO3) can be formed at low-temperature 

(32). This mineral is not found in large quantities in natural sedimentary environments but its 

anhydrous form is certainly of interest for understanding how Mg in solution can be dehydrated 

to form anhydrous Mg carbonates at low temperature.  

In the present study, the catalytic role of NaOH has been demonstrated for rapid 

precipitation of magnesite (reactions 1 to 4) and hydromagnesite (reaction 5) (see also Tables 1 

and 2). However, under specific conditions (see S4 in Table 1), the sodium dissolved during the 

carbonation process may react significantly after 10 days to form an atypical hydromagnesite-
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eitelite composite at low temperature (45°C), both minerals were clearly identified by X-ray 

diffraction on the solid product and the experimental XRD pattern obtained successfully matched 

the ICDD cards #070-0361 for hydromagnesite and #024-1227 for eitelite (see S4 in Fig. 6). 

FESEM observations have revealed irregular fine aggregates (S4 in Fig. 5) and a moderate 

specific surface area (11 m2/g) was deduced from the N2 adsorption isotherm (see also Table 2). 

It is assumed that hydromagnesite is initially formed in this system, according to reaction (5), 

followed by the precipitation of eitelite. In such a case, two explanations are possible: (i) 

dissolution of hydromagnesite (so-called precursor) coupled with eitelite precipitation or (ii) a 

solid state transition implying the simultaneous dehydration and carbonation of a brucitic layer of 

hydromagnesite precursor coupled with the progressive formation of eitelite crystals. The general 

reaction for hydromagnesite-to-eitelite transformation can be written as follows:  

OHNaOHMgCOCONaCONaOHOHCOMg 23323222435 8.04.0.2.14.)()(2.0 ++→+                  (7) 

This reaction cannot be completed because only 1mol of Na2CO3 can be produced in the system, 

see reaction (1). For this reason, the solid recovered after 10 days of reaction contains mainly 

hydromagnesite and eitelite minerals, the so-called hydromagnesite-eitelite composite in the 

present study. 

On the other hand, as mentioned in sub-section 3.1, the carbonation of brucite in the absence of 

NaOH, leads to incomplete brucite carbonation after a heat-ageing step (S2 synthesis) where the 

mineral composition of the recovered solid was hydromagnesite, magnesite and residual brucite 

(see Fig. 3 and 6). More specific information on the experimental conditions, composition and 

textural properties are provided in Tables 1 and 2. For this case, the hydromagnesite formation is 

in agreement with reaction (6) where a small proportion of hydromagnesite was transformed into 
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magnesite by the following classical reaction: 

OHMgCOCOOHOHCOMg aq 23)(222435 2.04.)()(2.0 +→+                                                          (8) 

In general, higher temperatures (>150°C), high salinity, high CO2 pressure, low magnesium 

concentration (in a closed system) and the use of organic additives (e.g., monoethylene glycol) 

are known to accelerate the hydromagnesite-to-magnesite transformation (18, 25). 

 

3.4. Potential industrial applications 

In general, anhydrous Mg-carbonates (e.g., magnesite, eitelite, dolomite, etc.) and 

intermediate basic magnesium carbonates (e.g., dypingite, hydromagnesite, artinite, pokrosvskite, 

etc.) with controlled morphology and particle size and moderate-to-high specific surface area, 

have great potential for use in applications such as mineral filler and pigment in paper, paint, 

rubber and plastics, and could also be used as flame-retardants. Unfortunately, the production at 

industrial scale has been limited because high pressures, high temperatures and long production 

times are frequently required. The present study shows how high-purity magnesite can be 

produced after 48h of reaction and how high-purity hydromagnesite can be produced after 5h of 

reaction. Based on its composition and textural properties, the magnesite could be used as a 

mineral filler in paper and pigments. Moreover, additional applications such as a flame-retardant 

in electrical and electronic parts, construction materials, etc., can be envisaged for 

hydromagnesite because their dehydration-dehydroxylation-decarbonation processes consume 

significant amount of energy in a broad interval of temperature (see Fig. 7). Moreover, the platy 

fine particles and moderate specific surface area (28 m2/g) of hydromagnesite can facilitate its 

dispersion/distribution when used as a mineral filler or flame-retardant. 
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4. Conclusion 

This study proposes simple and novel synthesis routes for the production of rhombohedral 

single crystals (<2µm) of magnesite and platy fine particles of hydromagnesite. It also 

demonstrates the catalytic action of NaOH during the carbonation process of brucite mineral, 

leading to fast precipitation of high-purity magnesite after 48h of reaction and fast precipitation 

of high-purity hydromagnesite after only 5h of reaction. For each case, a global reaction 

mechanism has been proposed. Finally, it is worth noting that both minerals could have good 

potential for use as mineral filler and/or as flame-retardant. 
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Table 1. Summary of experimental conditions for the synthesis of anhydrous and hydroxylated 

Mg-carbonates. 

Exp. 
Label 

System Use of 
NaOH 

Ti (°C) Pi (bar) Heat-
ageing step 

tr Isobaric/ 
Anisobaric 

Mineral 

S0 Mg(OH)2-H2O-CO2 Yes Ambient 
(~26*) 

50 not 24 hours Anisobaric Dypingite 

S1 Mg(OH)2-H2O-CO2 Yes Ambient 
(~26*) 

50 From 20 to 
90 °C 

48 hours Anisobaric Magnesite  

S2 Mg(OH)2-H2O-CO2 Not Ambient 
(~20) 

50 From 20 to 
90 °C 

48 hours Anisobaric H-M-B composite 

S3 Mg(OH)2-H2O-CO2 Not 90 50 not 12 days Isobaric** Hydromagnesite 
S4 Mg(OH)2-H2O-CO2 Yes Ambient 

(~26* ) 
50 From 26 to 

45 °C 
10 days Anisobaric H-E composite 

S5 Mg(OH)2-H2O-CO2 Yes Ambient 
(~26*) 

50 From 38 to 
90 °C 

5 hours Anisobaric Hydromagnesite 

  

Ti: Temperature at which the CO2 gas was injected; Pi: Initial CO2 pressure in the system; tr: total reaction time (including heat-
ageing step); *: Temperature of suspension (including exothermic dissolution of NaOH in water); **: synthesis at constant gas 
(CO2+Ar) pressure (90 bar), the consumption of CO2 was regulated by automatic argon injection; H: Hydromagnesite; M: 
Magnesite; B: Brucite; E: Eitelite. 
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Table 2. Mineral composition, morphology and specific surface area (SBET) for synthesized Mg-

carbonates deduced from XRD, TGA, FESEM and N2 adsorption isotherms. 

Exp. 
Label 

Main Mineral(s) Formula Minor mineral(s) 
(<5%) 

Morphology SBET 
(m2/g) 

S0 Dypingite Mg5(CO3)4(OH)2.5H2O Eitelite Platy-compacted aggregates 9 
S1 Magnesite MgCO3 Eitelite+hydromagnesite Rhombohedral crystals 3 
S2 Hydromagnesite 

Magnesite  
Brucite  

Mg5(CO3)4(OH)2.4H2O 
MgCO3 

Mg(OH)2 

Not detected Platy-compacted aggregates 
Rhombohedral crystals 

Hexagonal crystals 

6 

S3 Hydromagnesite Mg5(CO3)4(OH)2.4H2O Brucite Platy fine particles 23 
S4 Hydromagnesite 

Eitelite 
Mg5(CO3)4(OH)2.4H2O 

Na2CO3.MgCO3 

Brucite Irregular aggregation  11 

S5 Hydromagnesite Mg5(CO3)4(OH)2.4H2O Brucite Platy fine particles 28 
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Figure 1. Fast precipitation of magnesite from Mg(OH)2-H2O-CO2 slurry, enhanced by NaOH 
and a heat-ageing step from ambient temperature to 90°C. Only 48h were required to produced 
high-purity magnesite as attested from the XRD pattern (ICDD # 086-2346). Precursor or basic 
Mg-carbonate was identified as dypingite from the XRD pattern (ICDD # 023-1218). High-purity 
synthetic brucite was used as solid starting reactant as attested from the XRD pattern (ICDD # 
083-0114). 
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Figure 2. FESEM images showing the morphology of the dypingite precursor and magnesite 

crystals precipitated from the Mg(OH)2-H2O-NaOH-CO2 system at ambient temperature and after 

a heat-ageing step at 90°C, respectively.  
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Figure 3. XRD patterns showing the aqueous carbonation of brucite Mg(OH)2 in the presence and 

absence of NaOH. The sodium hydroxide played a catalytic role to precipitate the magnesite after 

only 48h of reaction. Experimental XRD patterns matching magnesite (M: ICDD # 086-2346), 

hydromagnesite (H: ICDD # 070-0361), eitelite (E: ICDD # 024-1227) and brucite (B: # 044-

1482). 
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Figure 4. Experimental XRD patterns corresponding to hydromagnesite (ICDD # 070-0361) 

synthesized from the Mg(OH)2-H2O-CO2 system in the absence and presence of NaOH, S2 and 

S5 syntheses in tables 1 and 2, respectively. *: (1) carbonation of brucite without external heating 

for 3h followed by (2) heat-ageing step from 38 to 90°C for 2h. 
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Figure 5. FESEM images showing the morphology of magnesite (S1), hydromagnesite (S3), 

hydromagnesite-magnesite-brucite composite (S2) and hydromagnesite-eitelite composite (S4) 

precipitated from the Mg(OH)2-H2O-CO2 system in the presence/absence of NaOH. Specific 

experimental conditions for these syntheses are reported in Table 1. 
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Figure 6. Characterization by X-ray diffraction of the solid starting reactant (brucite) and the 

solid products recovered after brucite carbonation in the presence or absence of NaOH 

(syntheses: S1, S2, S3 and S4). Experimental XRD patterns matching magnesite (M: ICDD # 

086-2346), hydromagnesite (H: ICDD # 070-0361), eitelite (E: ICDD # 024-1227) and brucite 

(B: # 044-1482). 
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Figure 7. Thermogravimetric analyses (TGA on top graph and differential TGA on bottom graph) 

of synthesized magnesite (S1), hydromagnesite (S3), and hydromagnesite-magnesite-brucite 

composite (S2). 
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Rapid precipitation of magnesite micro-crystals from Mg(OH)2-H2O-CO2 slurry enhanced 
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��������� We proposes simple and novel synthesis routes for the production of rhombohedral 
single crystals (<2µm) of magnesite and platy fine particles of hydromagnesite. It also 
demonstrates the catalytic action of NaOH during the carbonation process of brucite mineral, 
leading to fast precipitation of high-purity magnesite after 48h of reaction and fast precipitation 
of high-purity hydromagnesite after only 5h of reaction. For each case, a global reaction 
mechanism has been proposed. �
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