Sequential precipitation of a new goethite-calcite nanocomposite and its possible application in the removal of toxic ions from polluted water - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles Chemical Engineering Journal Year : 2013

Sequential precipitation of a new goethite-calcite nanocomposite and its possible application in the removal of toxic ions from polluted water

Abstract

This study proposes a simple and innovative synthesis route for a goethite-calcite nanocomposite. This synthesis is summarized by three sequential precipitation reactions: (1) precipitation of nanosized acicular goethite (α-FeOOH) using a high OH/Fe molar ratio (=5); (2) instantaneous precipitation of portlandite (Ca(OH)2) by adding CaCl2 salt to a goethite alkaline suspension (2NaOH + CaCl2=Ca(OH)2 + 2NaCl) and; (3) sub-micrometric calcite precipitation by injection of CO2 into a goethite-portlandite alkaline suspension (Ca(OH)2 + CO2=CaCO3+H2O). The XRD patterns have confirmed the goethite and calcite mineral composition in the composite precipitated at 30 and 70°C. FESEM and TEM observations have revealed the formation of nanosized goethite particles well dispersed with sub-micrometric calcite particles, leading to an orange-brown colour nanocomposite with high specific surface area of around 92 m2/g for a composite synthesized at 30°C and 45 m2/g for a composite synthesized at 70°C. Both values were determined using the conventional BET method on N2 sorption isotherms. Finally, a goethite/calcite weight ratio equal to 0.8 in the composite was determined by thermogravimetric analysis (TGA). Additionally, some adsorption experiments carried out at two different pH values revealed that the goethite-calcite composite has a good sequestration capacity for Cu>Cd>As(III)>Se(IV)>As(V). Conversely, the Se(VI) did not show any chemical affinity with the goethite-calcite composite under the physico-chemical conditions studied. In practice, the goethite-calcite composite can neutralise acidic wastewater by slight calcite dissolution, enhancing the removal of heavy metals (e.g. Cu and Cd) at the calcite-solution interfaces.
Fichier principal
Vignette du fichier
CEJ-D-12-02738.pdf (2.85 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

insu-00749245 , version 1 (07-11-2012)

Identifiers

Cite

German Montes-Hernandez, François Renard, Rodica Chiriac, Nathaniel Findling, Jaafar Ghanbaja, et al.. Sequential precipitation of a new goethite-calcite nanocomposite and its possible application in the removal of toxic ions from polluted water. Chemical Engineering Journal, 2013, 214, pp.139-148. ⟨10.1016/j.cej.2012.10.050⟩. ⟨insu-00749245⟩
1232 View
633 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More