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Non-lithostatic pressure in subduction zones

The pressure at depth is not directly observable and no one knows precisely to which extent the pressure conditions in subduction zones, recorded by high-pressure metamorphic rocks, deviate from mantle lithostatic pressure. As an alternative to large-scale complex numerical models of subduction zones, the analytical subduction channel model can give us some insight on the physical processes that control the development of non-lithostatic pressure, as well as some estimation of its amplitude. We propose a new approach coupling the flow of crust within the channel to the deformation of the mantle bounding the channel, occurring as the pressure within the channel deviates from mantle lithostatic values. While for very weak crust within the subduction channel, the channel walls are rigid and channel geometry does not vary, for stronger crust, our coupled approach unravels a new domain of behaviour where the mantle is no longer completely rigid and the deformation of the channel walls prevents arbitrarily large non-lithostatic pressure to develop. This new regime poses an upper bound on the amplitude of non-lithostatic pressure within the channel that depends only on the mantle viscosity. The transition from one regime to another is dependent on an adimensional parameter 3 0 3 m c h L     , incorporating not only mantle and crust viscosity but also the geometry of the channel. The development of larger non-lithostatic pressure in thinner channels than in larger ones, predicted in the rigid channel model, is partly inhibited in the fully coupled model as thinner channels more easily induce channel wall deformation. The lengthscale of the channel width perturbations influences the amplitude of non-lithostatic pressure, as small-scale ones, inducing a more rigid response of the mantle, potentially trigger larger non-lithostatic pressure.

Introduction

Petrological analysis of metamorphic rocks is a powerful tool to assess the circulation of crustal material, as it enables to decipher P T conditions recorded by a given rock during its evolution. In order to build geodynamical models, P is commonly converted into depth assuming a mantle lithostatic pressure gradient. This assumption has been challenged in analytical and numerical models [START_REF] Mancktelow | Tectonic overpressure in competent mafic layers and the development of isolated eclogites[END_REF][START_REF] Mancktelow | Nonlithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks[END_REF][START_REF] Mancktelow | Tectonic pressure: Theoretical concepts and modelled examples[END_REF][START_REF] Petrini | Lithospheric pressure-depth relationship in compressive regions of thickened crust[END_REF] as well as in geological and petrological studies [START_REF] Duchêne | Exhumation of the Dora Maira UHP unit: a special case?[END_REF][START_REF] Stüwe | Contribution of deviatoric stress to metamorphic P-T paths: an example appropriate to low-P, high-T metamorphism[END_REF], leading to the much controversial concept of non-lithostatic pressure (i.e. deviations from the mantle lithostatic pressure).

The doubt cast by such studies is most acute in subduction zones, where extremely large pressures are recorded by deeply buried rocks [START_REF] Chopin | Coesite and pure pyrope in high-grade blueschists of the western Alps: A first record and some consequences[END_REF][START_REF] Smith | Coesite in clinopyroxene in the Caledonides and its implications for geodynamics[END_REF]. Numerical models of subduction zones are numerous, but they give somehow disagreeing results as regards the extent of non-lithostatic pressure, predicting either under- [START_REF] Toussaint | Tectonic evolution of a continental collision zone: a thermomechanical numerical model[END_REF], overpressure [START_REF] Burg | The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps[END_REF], or neglectible non-lithostatic pressure [START_REF] Burov | A thermomechanical model of exhumation of high pressure (HP) and ultra-high pressure (UHP) metamorphic rocks in Alpine-type collision belts[END_REF]. In addition, because of their complexity itself, such studies cannot provide any explicit relationship between the extent of non-lithostatic pressure and other relevant parameters.

The analytical "subduction channel" model [START_REF] England | Archimedes and the Tauern eclogites: the role of buoyancy in the preservation of exotic eclogite blocks[END_REF][START_REF] Shreve | Dynamics of sediment subduction, melange formation, and prism accretion[END_REF] is the appropriate tool to describe circulation of the thin layer of crust on top of the slab and to decipher the physical processes controlling the associated pressure field. This subduction channel was the framework chosen by [START_REF] Mancktelow | Nonlithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks[END_REF] to derive extremely large (1GPa) overpressures, equivalent to the pressure generated by a 30km-thick rock column.

We propose here first to briefly describe why the question of the amplitude of non-lithostatic pressure is a relevant one and then to reassess such non-lithostatic pressure and the general flow properties within the subduction channel, using a new approach coupling both crustal deformation within the channel and deformation of the channel geometry itself.

Review of the non-lithostatic pressure concept in subduction zones

The first process through which non-lithostatic pressure may be generated within subduction zones, proposed by Jischke (Ref???), is related to the global force balance:

The non-lithostatic pressure concept is rather unpopular, as many geologists believe either that non-lithostatic pressure, i.e. deviations from the mantle lithostatic pressure, are of sufficiently limited amplitude, or that they are only a transient phenomenon that vanishes sufficiently quickly to be disregarded. Before developing our analysis, it seems therefore necessary to precise what kind of mechanisms may possibly trigger the development of persistent non-lithostatic pressure in the deformed zone on top of the slab.

Non-lithostatic pressure as a force balancing slab pull

As an explanation to the fact that subducting slabs, although they are heated and weakened as they move through the mantle, do not bend to 90 dip angle, Jischke [START_REF] Jischke | On the dynamics of descending lithospheric plates and slip zones[END_REF] proposed that the slip zone (called hereafter channel) on top of the slab monotonically widens along depth, giving rise to underpressures that act normal to the slab surface against the slab pull (Fig. 1).

Let us define the pressure p (non-lithostatic pressure) as the difference of the actual pressure channel P within the channel to mantle lithostatic pressure at the same depth, i.e. The slab pull force [START_REF] Forsyth | On the relative importance of driving forces on plate motion[END_REF] depends on the density difference mantle   between the subducting slab and surrounding mantle as

p mantle F gHL  
where H and L are the slab thickness and length, respectively.

In the direction normal to the slab surface, the slab pull force where  is the dip angle.

Therefore, according to [START_REF] Jischke | On the dynamics of descending lithospheric plates and slip zones[END_REF] model, the amplitude of the underpressure is controlled by the slab pull force. Density differences, arisen as the slab is colder than surrounding mantle, are at most of the order of 3 100 / kg m [START_REF] Bina | Implications of slab mineralogy for subduction dynamics[END_REF][START_REF] Cloos | Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges and seamounts[END_REF][START_REF] Jischke | On the dynamics of descending lithospheric plates and slip zones[END_REF][START_REF] Marton | Effects of slab mineralogy on subduction rates[END_REF]. Considering a slab with a thickness of 100 km , a subduction dip of 45 , yields an estimate of average underpressure as

70 p MPa
Such a value is clearly neglectible with respect to ambient mantle lithostatic pressure and this model cannot account for large non-lithostatic pressures.

Balanced non-lithostatic pressure within the subduction channel

In [START_REF] Jischke | On the dynamics of descending lithospheric plates and slip zones[END_REF] model presented above, where the channel width is monotonically varying, underpressures are derived from the global force balance of the slab and are consequently bounded by the pull force exerted by the dense cold slab.

A alternative way to develop non-lithostatic pressure on top of the slab is to consider a confined flow of sediments within a rigid channel of varying width [START_REF] Mancktelow | Nonlithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks[END_REF].

In the precise configuration of [START_REF] Mancktelow | Nonlithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks[END_REF] model, the channel thins then widens, giving rise to overpressure upstream of the narrow point and underpressure downstream of it (Fig. 2). As overpressures are compensated by underpressures, their respective amplitude can grow arbitrarily large without much affecting the net force (i.e.

summed over the slab surface), which still needs to be balanced by the slab pull force.

Then, within this subduction channel framework, even if instantaneous large non-lithostatic pressures can be potentially generated, a different question regards their persistence. Indeed, one can wonder whether non-lithostatic pressures, resulting from the non-uniformity of the channel width, would not tend to quickly deform the channel walls into parallelism and therefore annihilate themselves. A rapid examination of the correspondence between the topography and the non-lithostatic pressure (Fig. 2) shows that maxima of the non-lithostatic pressure coincide not with the extrema of channel topography but with the extrema of its gradient. Conversely, at points where the channel is narrowest, the non-lithostatic pressure vanishes. Similarly, averaging the non-lithostatic pressure over a channel portion centered on the narrow point yields a null resulting force. As a result, if indeed non-lithostatic pressures act on the sections where width gradients are largest, they do not, or at least not in any simple fashion, tends to reduce the average gradient h  . So non-lithostatic pressures presumably affect the channel geometry, but not necessarily in a self-destructing way.

The subduction channel of variable width described by [START_REF] Mancktelow | Nonlithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks[END_REF][START_REF] Mancktelow | Tectonic pressure: Theoretical concepts and modelled examples[END_REF] appears therefore as a reasonable candidate to generate large non-lithostatic pressure persistent over time-scales relevant for geological record.

3 Non-lithostatic pressure in the rigid subduction channel model

In this section we describe the subduction channel model and recall the results of [START_REF] Mancktelow | Nonlithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks[END_REF][START_REF] Mancktelow | Tectonic pressure: Theoretical concepts and modelled examples[END_REF] about the amplitude of non-lithostatic pressure in the case where the channel walls are not parallel and when the channel geometry is fixed, i.e. when the channel walls are sufficiently rigid so that they are not deformed.

General structure of the model

The subduction channel model [START_REF] England | Archimedes and the Tauern eclogites: the role of buoyancy in the preservation of exotic eclogite blocks[END_REF][START_REF] Shreve | Dynamics of sediment subduction, melange formation, and prism accretion[END_REF] describes the circulation of crust on top of the subducting slab resulting from the concomitant action of the dragging by the subducting slab and the possible density difference between crust and mantle [START_REF] Raimbourg | Consequences of progressive eclogitisation on crustal exhumation, a mechanical study[END_REF]. The flow is laminar and confined within a channel bounded by the subducting lithospheric mantle below and the mantle wedge above (Fig. 3). The velocity of the crust is unidimensional and parallel to the slab. The crust within the channel can be seen as a thin layer as the width of the channel ( , ) h x t is a few km, while its length L is of the order of 100's of km. As the mantle is considered as rigid with respect to the material within the channel, the channel walls do not deform and the geometry of the channel is fixed.

Constitutive equations

The flow within the channel is a Couette flow, i.e. a laminar flow of viscous material between two surfaces, for which the velocity field is given by [START_REF] Batchelor | An introduction to fluid dynamics[END_REF]:
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Where c  is the crust viscosity, h the width of the 
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, where  is the dip of the subduction.

The net flow through one section of the channel is equal to
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The mass conservation equations relate the flow gradient
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As the channel geometry is fixed ( 0 h t
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), mass conservation equation (3) rewrites as 
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Non-lithostatic pressure amplitude in the rigid subduction channel

Considering the problem where the channel is monotonically narrowing then widening
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), the pressure field is given in [START_REF] Batchelor | An introduction to fluid dynamics[END_REF] as
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If the channel width variations are small. i.e.
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In such a simplified case, the pressure field can be therefore approximated as
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This simplified case clearly stresses the dependence of the non-lithostatic pressure on the various problem parameters.

First, the amplitude of non-lithostatic pressure is scaled by the viscosity of the material flowing within the channel: the larger its viscosity, the larger the non-lithostatic pressure within the channel. Second and maybe less intuitive is the dependence on the width of the channel: thinner channels strongly enhance the amplitude of non-lithostatic pressure.

For constant  , U , L and relative thinning 0 h h  , a channel constituted of 1-km thick sediment pile develops non-lithostatic pressure 100 times larger than a channel filed with a 10-thick crustal pile. This geometrical effect, known from the lubrication theory, is related to the strongly anisotropic shape ratio of the channel with 0 hL .

Coupled model with deformation of the subduction channel walls

Following Eq. ( 5), arbitrarily large non-lithostatic pressure could be generated within the channel when considering arbitrarily viscous/thin crust. This is actually not correct, as Eq. ( 5) is only valid as long as the model assumptions are satisfied and in particular as long as the channel wall deformation can be neglected. For very viscous crust, the channel walls cannot longer be considered as rigid. Therefore, the amplitude the non-lithostatic pressure is in fact limited by the domain of validity of the model, which itself depends among other parameters on the ratio between the viscosity in the channel c  and the viscosity of the mantle, m  , which controls the deformation of the channel walls.

In his recent reappraisal of subduction channel dynamics, [START_REF] Mancktelow | Tectonic pressure: Theoretical concepts and modelled examples[END_REF] described numerical experiments including the deformation of the mantle bordering the channel.

His conclusion was that for the particular configuration used in the experiments, a ratio of 7 10 m c    was a sufficient condition for the channel walls to be considered as rigid.

Similarly to this numerical approach, we develop in the following an analytical channel model that includes, in addition to the deformation within the channel, the deformation of the channel walls. This coupled approach reflects the fact that variations in the non-lithostatic pressure within the channel may induce some deformation of the mantle surrounding it, therefore variations in the width of the channel, which in turn affect the pressure. This coupling seems of prime importance when crust viscosity becomes high, i.e. when non-lithostatic pressure is potentially large.

General structure of the model

In the case where deformation of the channel walls is considered, the term h t   of the mass conservation equation (Eq. ( 3)) cannot be dropped and Eq. ( 3) is developed as
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Deformation of mantle walls

The choice made in the previous equation of using not the total pressure Additionally, due to temperature difference, the mantle within the slab is probably more rigid than its counterpart in the mantle wedge. Consequently, we assume in the following that the basal boundary of the channel is flat and rigid, and that only the upper wall of the channel can deform when non-lithostatic pressure are generated. If the slab and the mantle wedge have similar viscosity, then the deformation of the channel walls is simply distributed between both foot and hanging walls, without much affecting the constitutive equations described hereafter.

The precise response of the mantle wedge to a non-lithostatic pressure field is complex and not precisely known, but we propose to use as approximate solution the deformation of a semi-infinite viscous media (mantle wedge) under the application of a load field (the non-lithostatic pressure p field in the channel) on its surface. In consequence of this wavelength dependence, no simple expression can be found to relate dh dt to any arbitrary pressure field p . Nevertheless, considering the actual pressure field resulting from the geometry depicted in Fig. 3 (with rigid channel wall assumption), which was also used in [START_REF] Mancktelow | Nonlithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks[END_REF], its form is relatively close to 0 2 sin p p x L   so that the amplitude of the higher terms of the serie is small. Similarly, even if the narrowing is concentrated in the central part of the channel, in the resulting pressure field the long wavelength term is still dominant (Fig. 3). Therefore, if the channel width is monotonically decreasing then increasing (or conversely) over L , whatever the precise channel topography, the pressure field can be broadly approximated by We consider in the following, as a first step of modeling, a channel with this schematic geometry, i.e. a channel whose width variations have a lengthscale of the order of L , so that the channel width variations can be approximated by Eq. 7. We will show in section 6.3 that much shorter lengthscale variations can be reduced to this simple model.

Pressure-width coupled equations

Equations ( 6) and ( 7) control the coupled evolution of the pressure and channel geometry over time. Combining them gives
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which describes the instantaneous pressure field resulting from a given channel width profile.

Asymptotic behaviour of governing equation

Within the 3 pressure terms in Eq. 8 ((1), ( 2) and (3)), 
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The ratio of the channel flow terms ((1) or ( 2)) over the channel wall terms (3) is therefore approximately given by the adimensional factor
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The behaviour of Eq. 8 depends on the value of  , and in particular in the domains where 1

 and 1



, some of its terms, either (3) or ( 1) and ( 2), respectively, get neglectible, so that Eq. 8 can be simplified into asymptotic forms.

 "high  " endmember regime For 1
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, equation ( 8) can be simplified as
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This "high  " regime is the "classical" one, where the geometry of the channel is fixed as a result of high mantle viscosity, which prevents channel walls deformation. The flux is constant throughout the channel.

 "low  " endmember regime This "low  " regime is diametrically different from the "classical" model described hereafter, as the geometry of the channel evolves over time, therefore the flux varies in time and space. In this regime, the pressure is controlled by the deformation of the channel walls, which is enabled by the "low" viscosity of the mantle.

Amplitude of non-lithostatic pressure

Particular geometry

As an illustration of the problem, we consider in this section the numerical solution to complete Eq. ( 6) for a channel whose initial topography profile is given by (Fig. 4): 0 2 (0.9 0.1cos(

)) 0 x h h x L L      (10) 
i.e. channel narrowing then widening back over a length L . We do not aim here at analyzing the time-evolution of the channel geometry, but rather to take an instantaneous picture of the channel state for a given topography and in particular to estimate the amplitude of overpressure, defined as max( ( ) ) 0

amp p p x x L   

Asymptotic solutions

Regardless of their relevance to the complete Eq. 8, simplified equations (9.1) and (9.2) can be approximately solved for this particular system geometry.

 "high  " endmember regime

As the variations of ' U along the channel for the particular geometry given by (10) are small ( ' ' 0.1 Uh Uh  ), they can be neglected in order to obtain a approximate but simpler solution, computed as ' 2 3 0 12 (0.1 0.6cos ) 0 2 (0.9 0.1cos )

c U px xL x x h L L           yielding ' 2 0 0.13 high c amp UL p h    (11.1)
which is very similar to the rigid channel approximate solution Eq. 5. The dependence on the channel thickness is once again apparent and thin channel develop strongly amplified non-lithostatic pressure.

 "Low  " endmember regime Under the same assumption that ' U cst  , Eq. 9.2 can solved to obtain the amplitude of non-lithostatic pressure as We solved numerically Eq. 8 for the channel geometry given by Eq. 10 and given values of all the parameters. As graphical representation, by analogy with similar studies [START_REF] Mancktelow | Nonlithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks[END_REF][START_REF] Mancktelow | Tectonic pressure: Theoretical concepts and modelled examples[END_REF], we plotted amp p as a function of increasing c  , all the other parameters being kept constant (Fig. 5). Nevertheless, in order to highlight the role of The numerical solution rapidly converges towards the two asymptotic solutions outside of the central domain where 1   . Furthermore, the non-lithostatic pressure amplitude is always bounded by the lower of the two asymptotic solutions. As the crust viscosity c  increases from very low values (corresponding to high- domain), the amplitude of the non-lithostatic pressure increases at the same rate as high- endmember solution (Eq. 11.1), the solution for a rigid channel. Then as c  gets larger (i.e. in the domain 1   ), the deformation of the channel wall cannot be disregarded anymore and the actual non-lithostatic pressure, although still increasing, diverges from high- endmember solution. Finally, as c  get so large that 1  , the amplitude of non-lithostatic pressure, always increasing but at a slower and slower rate, converge asymptotically towards the low- endmember solution (Eq. 11.2), i.e. towards the case where the pressure within the channel is controlled by the deformation of the channel walls. This conclusion should not be misunderstood: we did not show that the non-lithostatic pressure disappears quickly due to mantle deformation; but that the deformation of the channel wall instantly prevents arbitrarily large non-lithostatic pressure to exist within the channel.

The largest non-lithostatic pressure over the parameter space that possibly develops within the channel is bounded by the solution to the simplified low- equations. From the solution to a particular channel configuration given by Eq. 11.2, a generic form of the largest non-lithostatic pressure (called hereafter max p ) can be expressed as:

' max 2 () m Uh p f geom L    ( 12 
)
where () f geom is a numerical factor that depends on the precise geometry of the subduction channel. As apparent in Eq. 12, the maximal amplitude of the non-lithostatic pressure is independent on c  , i.e. independent on the properties of the material flowing within the channel. Material within the channel controls to which extent the actual flow regime is close to this limit, but the limit itself is control only by the mantle constituting the channel.

Discussion

6.1 Maximum non-lithostatic pressure in subduction zones

Application of coupled channel approach to existing problems

In his pioneering approach of overpressures in subduction zones, [START_REF] Mancktelow | Nonlithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks[END_REF] 



. Accordingly, for these values of mantle viscosity, even if the mantle is still much stronger than sediments, the channel wall deformation cannot be neglected and resulting non-lithostatic pressure is lower than calculated with the rigid channel assumptions.

This estimation points the importance of the geometry in addition to viscosity contrast to determine whether the channel is rigid or not.  depends of course on the viscosity ratio m c   but also on the geometry of the channel through the factor 3 0 3 h L , of the order of 7 10  in this particular case. This effect of geometry is apparent in the 2-D numerical model of [START_REF] Mancktelow | Tectonic pressure: Theoretical concepts and modelled examples[END_REF], in which the deformation of the channel walls is explicitly considered. For   for the limit of applicability of rigid channel model.

Estimates of maximum non-lithostatic pressure

Using the material parameters of [START_REF] Mancktelow | Nonlithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks[END_REF], we can estimate the maximum overpressure in the channel, using Eq. 11.2 as approximate solution, yielding . These values, very similar to [START_REF] Mancktelow | Tectonic pressure: Theoretical concepts and modelled examples[END_REF]'s estimates based on numerical simulations, are upper bounds on the actual pressures within the channel.

Our coupled model developed here shows that rather than the viscosity of the crust within the channel, the largest control on the actual non-lithostatic pressure within the channel lies in the properties of the mantle within the slab and the mantle wedge. If either one of the two is relatively hot and deformable, with m  of the order of 23 10 . Pa s , then non-lithostatic pressure is necessarily of limited amplitude. On the contrary, in the configuration where both mantle wedge and slabs are cold and very viscous, non-lithostatic pressure can grow very large, up to the order of ambient lithostatic pressure.

Control of channel geometry on the amplitude of actual non-lithostatic pressure

Non-lithostatic pressure dependence on channel thickness

The direct influence of the channel width 0 h on the non-lithostatic pressure amplitude is apparent in Eq. 5 and 11.1: for constant On the other hand, an increase in the channel non-lithostatic pressure amplitude results in larger deformation of the channel walls, which reduces this increase. This "regulation" process is apparent through the variations of the parameter  , which is proportional to 3 0 h (Fig. 6): considering two channels of width 0 h and 0 10 h , the rigid channel solution predicts non-lithostatic pressure amplitude larger by a factor 1000 for the latter crust ( rig p  ). But as, for a given c  ,  is much lower for the 0 10 h crust, it deviates much more from the rigid channel solution, yielding a smaller actual pressure difference between the two channels (

cpd rig pp    ).
Considering coupled equations tends therefore to reduce the effect of channel thickness on non-lithostatic pressure amplitude. Eventually, i.e. for large c  , the difference between the two channels vanishes, as the maximum non-lithostatic pressure does depend neither on the crust thickness nor on its viscosity, so that they both converge towards the same asymptotic limit.

Non-lithostatic pressure dependence on the lengthscale of channel topography

The simple geometries used here or in [START_REF] Mancktelow | Nonlithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks[END_REF][START_REF] Mancktelow | Tectonic pressure: Theoretical concepts and modelled examples[END_REF] enable to derive simple solutions to the narrowing channel problem. Nevertheless, real channel geometry is likely to be different, and its characteristics possibly bear some influence on the distribution of the non-lithostatic pressure arisen. In particular, we have supposed, to describe the deformation of the channel walls (Eq. 7), that the lengthscale of the perturbations of the channel width were of the order of channel length, i.e. 100's of km.

Although perturbations related to slab bending have probably a long lengthscale, those related to serpentinization of the mantle wedge or to subducting seamounts are probably of much shorter lengthscale.

The pressure field resulting from channel perturbation whose lengthscale is reduced from L to ' 10

L L 
can be easily obtained from the repetition of the solution we have found for a single channel narrowing (Eq. 11.1), using ' L instead of L .

As a result, the parameter  is increased by a factor equal to ), the non-lithostatic pressure reaches higher amplitude.

The explanation for this phenomenon lies in the response of the mantle to the applied non-lithostatic pressure field, which is scaled by the lengthscale of the pressure field variations (see section 4.1.1). As a result, the deformation of the channel walls, for the same pressure amplitude, is strongly reduced for a pressure field with shorter lengthscale: In summary, the mantle deforms more easily if the pressure gradient is applied over a larger distance. Small-scale perturbations of the channel width trigger the development of non-lithostatic pressure field with larger amplitude.

Conclusions:

Our coupling both of the crust within the channel and the mantle bounding it shows that maximum non-lithostatic pressure within the channel is controlled by the properties of the mantle, irrespectively of the nature of the subducting crust. The deformation of the walls of the channel, resulting from the existence of non-lithostatic pressure within the channel, instantly prevents arbitrarily large non-lithostatic pressure to develop. The transition from the rigid channel model to a regime where the deformation of the channel walls controls the non-lithostatic pressure amplitude within the channel is controlled by the adimensional parameter  , which includes both the viscosity ratio as well as the geometry of the system. 
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  is equilibrated by the traction pL resulting from the presence of underpressures within the channel overlying the entire slab length, yielding: cos p gH  

  a source term expressing the generation of non-lithostatic pressure as the result of the interaction of a topography h x   with a flow constituted of two contributions: a flow resulting from dragging by the subducting slab ( 2 U ) and a flow resulting from density difference between crust and mantle (

  the fact that the latter m P is the equilibrium pressure state for the mantle bordering the channel, and its actual state far from the subduction channel. Therefore, only the pressure difference defined as the non-lithostatic pressure p , triggers deformation of the mantle constituting the channel walls.

  The deflection rate dh dt of the surface of a semi-infinite incompressible viscous medium of viscosity  resulting from the application of a sinusoidal pressure field . the deformation generated in the mantle is inversely proportional to the frequency of the terms of the Fourier serie of the applied non-lithostatic field. Small wavelength terms (i.e. large n) result in mantle deformation whose amplitude is scaled by 1 n , that is of limited amplitude.

  terms (1) and (2)) correspond to the response of the material flowing within the channel to the channel geometry, while 4 channel wall deformation. Similarly to classical problems of flow in boundary layers where the length L of the system is much larger than its width h (e.g. the Prandtl boundary layer, e.g.[START_REF] Elder | Fluid physics for oceanographers and physicists[END_REF])), we seek approximate solutions to complete Eq. 8 by estimating the contribution of the different terms composing it.

  non-lithostatic pressure controlled by the channel wall deformation

  [START_REF] Mancktelow | Nonlithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks[END_REF]'s assumptions, mantle has infinite viscosity (m  ),we can try to assign realistic values to m  , and use for the rest of parameters the same values as his, and estimate what the coupled channel approach used here would predict.

  non-lithostatic pressure within the channel deviates more and more from the rigid-channel solution. From his figure17b, the deviations can be considered

  e. is much increased in thin channels, which is a classical result of lubrication theory.

  . channel deformation rate is reduced by a factor 10 when the lengthscale of the channel pressure field is divided by 10.
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 56 Figure 5: Evolution of the dimensional non-lithostatic pressure amplitude
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