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Abstract 

The pressure at depth is not directly observable and no one knows precisely to which 

extent the pressure conditions in subduction zones, recorded by high-pressure 

metamorphic rocks, deviate from mantle lithostatic pressure. As an alternative to 

large-scale complex numerical models of subduction zones, the analytical subduction 

channel model can give us some insight on the physical processes that control the 

development of non-lithostatic pressure, as well as some estimation of its amplitude. We 

propose a new approach coupling the flow of crust within the channel to the 

deformation of the mantle bounding the channel, occurring as the pressure within the 

channel deviates from mantle lithostatic values. While for very weak crust within the 

subduction channel, the channel walls are rigid and channel geometry does not vary, for 

stronger crust, our coupled approach unravels a new domain of behaviour where the 

mantle is no longer completely rigid and the deformation of the channel walls prevents 

arbitrarily large non-lithostatic pressure to develop. This new regime poses an upper 

bound on the amplitude of non-lithostatic pressure within the channel that depends only 

on the mantle viscosity. The transition from one regime to another is dependent on an 

adimensional parameter 
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 , incorporating not only mantle and crust viscosity 

but also the geometry of the channel. The development of larger non-lithostatic pressure 



in thinner channels than in larger ones, predicted in the rigid channel model, is partly 

inhibited in the fully coupled model as thinner channels more easily induce channel wall 

deformation. The lengthscale of the channel width perturbations influences the 

amplitude of non-lithostatic pressure, as small-scale ones, inducing a more rigid 

response of the mantle, potentially trigger larger non-lithostatic pressure. 

1 Introduction 

Petrological analysis of metamorphic rocks is a powerful tool to assess the circulation of 

crustal material, as it enables to decipher P T conditions recorded by a given rock during 

its evolution. In order to build geodynamical models, P is commonly converted into 

depth assuming a mantle lithostatic pressure gradient. This assumption has been 

challenged in analytical and numerical models (Mancktelow, 1993; Mancktelow, 1995; 

Mancktelow, 2007; Petrini and Podladchikov, 2000) as well as in geological and 

petrological studies (Duchêne and Ford, 2006; Stüwe and Sandiford, 1994), leading to 

the much controversial concept of non-lithostatic pressure (i.e. deviations from the 

mantle lithostatic pressure).  

The doubt cast by such studies is most acute in subduction zones, where extremely large 

pressures are recorded by deeply buried rocks (Chopin, 1984; Smith, 1984). Numerical 

models of subduction zones are numerous, but they give somehow disagreeing results as 



regards the extent of non-lithostatic pressure, predicting either under- (Toussaint et al., 

2004), overpressure (Burg and Gerya, 2005), or neglectible non-lithostatic pressure 

(Burov et al., 2001). In addition, because of their complexity itself, such studies cannot 

provide any explicit relationship between the extent of non-lithostatic pressure and other 

relevant parameters. 

The analytical “subduction channel” model (England and Holland, 1979; Shreve and 

Cloos, 1986) is the appropriate tool to describe circulation of the thin layer of crust on 

top of the slab and to decipher the physical processes controlling the associated pressure 

field. This subduction channel was the framework chosen by (Mancktelow, 1995) to 

derive extremely large (1GPa) overpressures, equivalent to the pressure generated by a 

30km-thick rock column. 

We propose here first to briefly describe why the question of the amplitude of 

non-lithostatic pressure is a relevant one and then to reassess such non-lithostatic 

pressure and the general flow properties within the subduction channel, using a new 

approach coupling both crustal deformation within the channel and deformation of the 

channel geometry itself. 

2 Review of the non-lithostatic pressure concept in subduction zones 

The first process through which non-lithostatic pressure may be generated within 



subduction zones, proposed by Jischke (Ref???), is related to the global force balance:  

The non-lithostatic pressure concept is rather unpopular, as many geologists believe 

either that non-lithostatic pressure, i.e. deviations from the mantle lithostatic pressure, 

are of sufficiently limited amplitude, or that they are only a transient phenomenon that 

vanishes sufficiently quickly to be disregarded. Before developing our analysis, it seems 

therefore necessary to precise what kind of mechanisms may possibly trigger the 

development of persistent non-lithostatic pressure in the deformed zone on top of the 

slab. 

2.1 Non-lithostatic pressure as a force balancing slab pull 

As an explanation to the fact that subducting slabs, although they are heated and 

weakened as they move through the mantle, do not bend to 90  dip angle, Jischke 

(Jischke, 1975) proposed that the slip zone (called hereafter channel) on top of the slab 

monotonically widens along depth, giving rise to underpressures that act normal to the 

slab surface against the slab pull (Fig. 1).  

Let us define the pressure p  (non-lithostatic pressure) as the difference of the actual 

pressure channelP  within the channel to mantle lithostatic pressure at the same depth, i.e. 

channel mp P gz   (all variables definitions are summarized in table 1). Overpressure 

(underpressure) is defined as positive (negative) non-lithostatic pressure. 



The slab pull force (Forsyth and Uyeda, 1975) depends on the density difference 

mantle  between the subducting slab and surrounding mantle as 

p mantleF gHL   

where H and L are the slab thickness and length, respectively.  

In the direction normal to the slab surface, the slab pull force pF  is equilibrated by the 

traction pL  resulting from the presence of underpressures within the channel 

overlying the entire slab length, yielding: 

cosp gH    

where   is the dip angle. 

Therefore, according to (Jischke, 1975) model, the amplitude of the underpressure is 

controlled by the slab pull force. Density differences, arisen as the slab is colder than 

surrounding mantle, are at most of the order of 3100 /kg m  (Bina et al., 2001; Cloos, 

1993; Jischke, 1975; Marton et al., 1999). Considering a slab with a thickness of 

100km , a subduction dip of 45 , yields an estimate of average underpressure as 

70p MPa  

Such a value is clearly neglectible with respect to ambient mantle lithostatic pressure 

and this model cannot account for large non-lithostatic pressures.  

2.2 Balanced non-lithostatic pressure within the subduction channel 



In (Jischke, 1975) model presented above, where the channel width is monotonically 

varying, underpressures are derived from the global force balance of the slab and are 

consequently bounded by the pull force exerted by the dense cold slab. 

A alternative way to develop non-lithostatic pressure on top of the slab is to consider a 

confined flow of sediments within a rigid channel of varying width (Mancktelow, 1995). 

In the precise configuration of (Mancktelow, 1995) model, the channel thins then 

widens, giving rise to overpressure upstream of the narrow point and underpressure 

downstream of it (Fig. 2). As overpressures are compensated by underpressures, their 

respective amplitude can grow arbitrarily large without much affecting the net force (i.e. 

summed over the slab surface), which still needs to be balanced by the slab pull force. 

Then, within this subduction channel framework, even if instantaneous large 

non-lithostatic pressures can be potentially generated, a different question regards their 

persistence. Indeed, one can wonder whether non-lithostatic pressures, resulting from 

the non-uniformity of the channel width, would not tend to quickly deform the channel 

walls into parallelism and therefore annihilate themselves. A rapid examination of the 

correspondence between the topography and the non-lithostatic pressure (Fig. 2) shows 

that maxima of the non-lithostatic pressure coincide not with the extrema of channel 

topography but with the extrema of its gradient. Conversely, at points where the channel 



is narrowest, the non-lithostatic pressure vanishes. Similarly, averaging the 

non-lithostatic pressure over a channel portion centered on the narrow point yields a 

null resulting force. As a result, if indeed non-lithostatic pressures act on the sections 

where width gradients are largest, they do not, or at least not in any simple fashion, 

tends to reduce the average gradient h . So non-lithostatic pressures presumably affect 

the channel geometry, but not necessarily in a self-destructing way. 

The subduction channel of variable width described by (Mancktelow, 1995; 

Mancktelow, 2007) appears therefore as a reasonable candidate to generate large 

non-lithostatic pressure persistent over time-scales relevant for geological record. 

3 Non-lithostatic pressure in the rigid subduction channel model 

In this section we describe the subduction channel model and recall the results of 

(Mancktelow, 1995; Mancktelow, 2007) about the amplitude of non-lithostatic pressure 

in the case where the channel walls are not parallel and when the channel geometry is 

fixed, i.e. when the channel walls are sufficiently rigid so that they are not deformed. 

3.1 General structure of the model 

The subduction channel model (England and Holland, 1979; Shreve and Cloos, 1986) 

describes the circulation of crust on top of the subducting slab resulting from the 

concomitant action of the dragging by the subducting slab and the possible density 



difference between crust and mantle (Raimbourg et al., 2007). The flow is laminar and 

confined within a channel bounded by the subducting lithospheric mantle below and the 

mantle wedge above (Fig. 3). The velocity of the crust is unidimensional and parallel to 

the slab. The crust within the channel can be seen as a thin layer as the width of the 

channel ( , )h x t  is a few km, while its length L  is of the order of 100’s of km. As the 

mantle is considered as rigid with respect to the material within the channel, the channel 

walls do not deform and the geometry of the channel is fixed. 

3.2 Constitutive equations 

The flow within the channel is a Couette flow, i.e. a laminar flow of viscous material 

between two surfaces, for which the velocity field is given by (Batchelor, 1967): 

1
( ) (1 )
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x h
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 (1) 

Where c  is the crust viscosity, h  the width of the channel, 0 y h   the 

coordinate across the channel, channelP  the pressure in the channel and 

channel cP gz    the hydraulic potential. The non-lithostatic pressure p  is defined as 

before as the difference of the actual pressure channelP  within the channel to mantle 

lithostatic pressure at the same depth, i.e. channel mp P gz  . The gradient in hydraulic 

potential can therefore be expressed as sin ( )m c

p
g

x x


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 
, where   is the 

dip of the subduction. 



The net flow through one section of the channel is equal to 
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The mass conservation equations relate the flow gradient 
Q

x




 to the time variations in 

the channel width 
h

t




 by 
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  (3) 

As the channel geometry is fixed ( 0
h

t





), mass conservation equation (3) rewrites as 
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where 
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The term 
'
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U h

x
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
 is a source term expressing the generation of non-lithostatic pressure 

as the result of the interaction of a topography 
h

x




 with a flow constituted of two 

contributions: a flow resulting from dragging by the subducting slab (
2

U
) and a flow 

resulting from density difference between crust and mantle (
2

sin ( )
4
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c

h
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 ). 

3.2 Non-lithostatic pressure amplitude in the rigid subduction channel 

Considering the problem where the channel is monotonically narrowing then widening 

(fig.2) 
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without density difference ( 'U U cst  ), the pressure field is given in (Batchelor, 



1967) as 
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If the channel width variations are small. i.e. 0h h , then 

- 0( 2 )
x

h h h
L

    

- 0(2 ) 2h h h   

In such a simplified case, the pressure field can be therefore approximated as 
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yielding as maximum pressure 
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This simplified case clearly stresses the dependence of the non-lithostatic pressure on 

the various problem parameters. 

First, the amplitude of non-lithostatic pressure is scaled by the viscosity of the material 

flowing within the channel: the larger its viscosity, the larger the non-lithostatic pressure 

within the channel. Second and maybe less intuitive is the dependence on the width of 

the channel: thinner channels strongly enhance the amplitude of non-lithostatic pressure. 

For constant  , U , L  and relative thinning 
0

h

h


, a channel constituted of 1-km 

thick sediment pile develops non-lithostatic pressure 100 times larger than a channel 



filed with a 10-thick crustal pile. This geometrical effect, known from the lubrication 

theory, is related to the strongly anisotropic shape ratio of the channel with 0h L . 

4 Coupled model with deformation of the subduction channel walls 

Following Eq. (5), arbitrarily large non-lithostatic pressure could be generated within 

the channel when considering arbitrarily viscous/thin crust. This is actually not correct, 

as Eq. (5) is only valid as long as the model assumptions are satisfied and in particular 

as long as the channel wall deformation can be neglected. For very viscous crust, the 

channel walls cannot longer be considered as rigid. Therefore, the amplitude the 

non-lithostatic pressure is in fact limited by the domain of validity of the model, which 

itself depends among other parameters on the ratio between the viscosity in the channel 

c  and the viscosity of the mantle, m , which controls the deformation of the channel 

walls. 

In his recent reappraisal of subduction channel dynamics, (Mancktelow, 2007) described 

numerical experiments including the deformation of the mantle bordering the channel. 

His conclusion was that for the particular configuration used in the experiments, a ratio 

of 710m

c




  was a sufficient condition for the channel walls to be considered as rigid. 

Similarly to this numerical approach, we develop in the following an analytical channel 

model that includes, in addition to the deformation within the channel, the deformation 



of the channel walls. This coupled approach reflects the fact that variations in the 

non-lithostatic pressure within the channel may induce some deformation of the mantle 

surrounding it, therefore variations in the width of the channel, which in turn affect the 

pressure. This coupling seems of prime importance when crust viscosity becomes high, 

i.e. when non-lithostatic pressure is potentially large. 

4.1 General structure of the model 

In the case where deformation of the channel walls is considered, the term 
h

t




 of the 

mass conservation equation (Eq. (3)) cannot be dropped and Eq. (3) is developed as 

2 3 2
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4.1.1 Deformation of mantle walls 

The choice made in the previous equation of using not the total pressure channelP  but 

rather the difference between channelP  and the mantle lithostatic pressure mP  results 

from the fact that the latter mP  is the equilibrium pressure state for the mantle 

bordering the channel, and its actual state far from the subduction channel. Therefore, 

only the pressure difference defined as the non-lithostatic pressure p , triggers 

deformation of the mantle constituting the channel walls. 

Additionally, due to temperature difference, the mantle within the slab is probably more 

rigid than its counterpart in the mantle wedge. Consequently, we assume in the 



following that the basal boundary of the channel is flat and rigid, and that only the upper 

wall of the channel can deform when non-lithostatic pressure are generated. If the slab 

and the mantle wedge have similar viscosity, then the deformation of the channel walls 

is simply distributed between both foot and hanging walls, without much affecting the 

constitutive equations described hereafter. 

The precise response of the mantle wedge to a non-lithostatic pressure field is complex 

and not precisely known, but we propose to use as approximate solution the 

deformation of a semi-infinite viscous media (mantle wedge) under the application of a 

load field (the non-lithostatic pressure p  field in the channel) on its surface. 

The deflection rate 
dh

dt
 of the surface of a semi-infinite incompressible viscous 

medium of viscosity   resulting from the application of a sinusoidal pressure field 

0

2
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l


  on its surface is given by (Biot, 1961) as 
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If the actual non-lithostatic pressure field, which must satisfy 0p   for 0x   and 

x L , is expressed as Fourier serie as 
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then, as the problem is linear, the resulting deflection is 
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i.e. the deformation generated in the mantle is inversely proportional to the frequency of 

the terms of the Fourier serie of the applied non-lithostatic field. Small wavelength 

terms (i.e. large n) result in mantle deformation whose amplitude is scaled by 
1

n
, that is 

of limited amplitude. 

In consequence of this wavelength dependence, no simple expression can be found to 

relate 
dh

dt
 to any arbitrary pressure field p . Nevertheless, considering the actual 

pressure field resulting from the geometry depicted in Fig. 3 (with rigid channel wall 

assumption), which was also used in (Mancktelow, 1995), its form is relatively close to 

0

2
sinp p x

L


  

so that the amplitude of the higher terms of the serie is small. Similarly, even if the 

narrowing is concentrated in the central part of the channel, in the resulting pressure 

field the long wavelength term is still dominant (Fig. 3). Therefore, if the channel width 

is monotonically decreasing then increasing (or conversely) over L , whatever the 

precise channel topography, the pressure field can be broadly approximated by 

0

2
sinp p x

L


  

and the associated channel width variations by 

4 m

dh L
p

dt 
  (7) 

We consider in the following, as a first step of modeling, a channel with this schematic 



geometry, i.e. a channel whose width variations have a lengthscale of the order of L , so 

that the channel width variations can be approximated by Eq. 7. We will show in section 

6.3 that much shorter lengthscale variations can be reduced to this simple model. 

4.1.2 Pressure-width coupled equations 

Equations (6) and (7) control the coupled evolution of the pressure and channel 

geometry over time. Combining them gives 
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which describes the instantaneous pressure field resulting from a given channel width 

profile. 

4.2 Asymptotic behaviour of governing equation 

Within the 3 pressure terms in Eq. 8 ((1), (2) and (3)), 
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(channel flow terms (1) and (2)) correspond to the response of the material flowing 

within the channel to the channel geometry, while 
4 m

L
p


 (channel wall term (3)) 

corresponds to the channel wall deformation. Similarly to classical problems of flow in 

boundary layers where the length L  of the system is much larger than its width h  

(e.g. the Prandtl boundary layer, e.g. (Elder and Williams, 1996)), we seek approximate 

solutions to complete Eq. 8 by estimating the contribution of the different terms 

composing it. 



Consequently: 

Term (1): 
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Term (2):
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The ratio of the channel flow terms ((1) or (2)) over the channel wall terms (3) is 

therefore approximately given by the adimensional factor 
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The behaviour of Eq. 8 depends on the value of  , and in particular in the domains 

where 1  and 1 , some of its terms, either (3) or (1) and (2), respectively, get 

neglectible, so that Eq. 8 can be simplified into asymptotic forms. 

 ”high  ” endmember regime 

For 1 , equation (8) can be simplified as 

2 3 2
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This ”high  ” regime is the “classical” one, where the geometry of the channel is fixed 

as a result of high mantle viscosity, which prevents channel walls deformation. The flux 

is constant throughout the channel. 

 ”low  ” endmember regime 

For 1 , equation (8) reduces to 
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    (9.2) 



This ”low  ” regime is diametrically different from the “classical” model described 

hereafter, as the geometry of the channel evolves over time, therefore the flux varies in 

time and space. In this regime, the pressure is controlled by the deformation of the 

channel walls, which is enabled by the “low” viscosity of the mantle. 

4.3 Amplitude of non-lithostatic pressure 

4.3.1 Particular geometry 

As an illustration of the problem, we consider in this section the numerical solution to 

complete Eq. (6) for a channel whose initial topography profile is given by (Fig. 4): 

0

2
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x
h h x L

L


     (10) 

i.e. channel narrowing then widening back over a length L . We do not aim here at 

analyzing the time-evolution of the channel geometry, but rather to take an 

instantaneous picture of the channel state for a given topography and in particular to 

estimate the amplitude of overpressure, defined as 

max( ( ) ) 0ampp p x x L    

4.3.2 Asymptotic solutions 

Regardless of their relevance to the complete Eq. 8, simplified equations (9.1) and (9.2) 

can be approximately solved for this particular system geometry. 

 ”high  ” endmember regime 



As the variations of 'U  along the channel for the particular geometry given by (10) are 

small (
'

'
0.1

U h
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  ), they can be neglected in order to obtain a approximate but 

simpler solution, computed as 
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yielding 
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  (11.1) 

which is very similar to the rigid channel approximate solution Eq. 5. The dependence 

on the channel thickness is once again apparent and thin channel develop strongly 

amplified non-lithostatic pressure. 

 ”Low  ” endmember regime 

Under the same assumption that 'U cst , Eq. 9.2 can solved to obtain the amplitude of 

non-lithostatic pressure as 
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4.3.3 Maximum non-lithostatic pressure controlled by the channel wall deformation 

We solved numerically Eq. 8 for the channel geometry given by Eq. 10 and given values 

of all the parameters. As graphical representation, by analogy with similar studies 

(Mancktelow, 1995; Mancktelow, 2007), we plotted ampp  as a function of increasing 



c , all the other parameters being kept constant (Fig. 5). Nevertheless, in order to 

highlight the role of 
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 , which controls the equation behaviour, in Fig. 5 we 

used as abscissa not simply the crust viscosity, c , but crust viscosity multiplied by a 

constant factor, 
3

3

0

1

m

L

h
, as the product is equal to the inverse of   (
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The numerical solution rapidly converges towards the two asymptotic solutions outside 

of the central domain where 1  . Furthermore, the non-lithostatic pressure amplitude 

is always bounded by the lower of the two asymptotic solutions. As the crust viscosity 

c  increases from very low values (corresponding to high-  domain), the amplitude 

of the non-lithostatic pressure increases at the same rate as high-  endmember 

solution (Eq. 11.1), the solution for a rigid channel. Then as c  gets larger (i.e. in the 

domain 1  ), the deformation of the channel wall cannot be disregarded anymore and 

the actual non-lithostatic pressure, although still increasing, diverges from high-  

endmember solution. Finally, as c  get so large that 1 , the amplitude of 

non-lithostatic pressure, always increasing but at a slower and slower rate, converge 

asymptotically towards the low-  endmember solution (Eq. 11.2), i.e. towards the case 

where the pressure within the channel is controlled by the deformation of the channel 

walls. This conclusion should not be misunderstood: we did not show that the 

non-lithostatic pressure disappears quickly due to mantle deformation; but that the 



deformation of the channel wall instantly prevents arbitrarily large non-lithostatic 

pressure to exist within the channel. 

The largest non-lithostatic pressure over the parameter space that possibly develops 

within the channel is bounded by the solution to the simplified low-  equations. From 

the solution to a particular channel configuration given by Eq. 11.2, a generic form of 

the largest non-lithostatic pressure (called hereafter maxp ) can be expressed as: 

'

max 2
( ) m

U h
p f geom

L



   (12) 

where ( )f geom  is a numerical factor that depends on the precise geometry of the 

subduction channel. As apparent in Eq. 12, the maximal amplitude of the non-lithostatic 

pressure is independent on c , i.e. independent on the properties of the material 

flowing within the channel. Material within the channel controls to which extent the 

actual flow regime is close to this limit, but the limit itself is control only by the mantle 

constituting the channel. 

6 Discussion 

6.1 Maximum non-lithostatic pressure in subduction zones 

6.1.1 Application of coupled channel approach to existing problems 

In his pioneering approach of overpressures in subduction zones, (Mancktelow, 1995)’s 

study considers a channel filled with sediments bounded by mantle infinitely rigid. The 



parameters are as follows: 

3

010averageh m h  , max min 900h h h m    , 250L km , 186.10 .s Pa s  , 

8 /U cm yr  

blueschist sediments density: 33250 .s kg m   

asthenospheric density: 33350 .m kg m   

2

( ) '
2

m s

s

h
U g U U 


   

Although in (Mancktelow, 1995)’s assumptions, mantle has infinite viscosity ( m   ), 

we can try to assign realistic values to m , and use for the rest of parameters the same 

values as his, and estimate what the coupled channel approach used here would predict. 

Calculating the value of 

3

0

3

m

c

h

L





  for this set of parameters gives 

23 3

25 1

10 . 1.0710

10 . 1.0710

m

m

Pa s

Pa s

 

 





  

  
 

therefore 1 . Accordingly, for these values of mantle viscosity, even if the mantle is 

still much stronger than sediments, the channel wall deformation cannot be neglected 

and resulting non-lithostatic pressure is lower than calculated with the rigid channel 

assumptions. 

This estimation points the importance of the geometry in addition to viscosity contrast 

to determine whether the channel is rigid or not.   depends of course on the viscosity 



ratio m

c




 but also on the geometry of the channel through the factor 

3

0

3

h

L
, of the order 

of 710  in this particular case. 

This effect of geometry is apparent in the 2-D numerical model of (Mancktelow, 2007), 

in which the deformation of the channel walls is explicitly considered. For 710c m  , 

the rigid-wall assumption is effectively met, while when c  is increased in the range 

710 m c m     , the non-lithostatic pressure within the channel deviates more and 

more from the rigid-channel solution. From his figure 17b, the deviations can be 

considered as significant from 510c m  . In (Mancktelow, 2007)’s geometry, 

0 1

64

h

L
  (his channel length is half what we defined as channel length), yielding for 

510c m  : 

3

0

3
0.38m

c

h

L





   

in agreement with the condition 1   for the limit of applicability of rigid channel 

model. 

6.1.2 Estimates of maximum non-lithostatic pressure 

Using the material parameters of (Mancktelow, 1995), we can estimate the maximum 

overpressure in the channel, using Eq. 11.2 as approximate solution, yielding 

15

max 1.5610 mp   



Therefore, for 2310 .m Pa s  , max 156p MPa  and for 2410 .m Pa s  , 

max 1.56p GPa . These values, very similar to (Mancktelow, 2007)’s estimates based 

on numerical simulations, are upper bounds on the actual pressures within the channel. 

Our coupled model developed here shows that rather than the viscosity of the crust 

within the channel, the largest control on the actual non-lithostatic pressure within the 

channel lies in the properties of the mantle within the slab and the mantle wedge. If 

either one of the two is relatively hot and deformable, with m  of the order of 

2310 .Pa s , then non-lithostatic pressure is necessarily of limited amplitude. On the 

contrary, in the configuration where both mantle wedge and slabs are cold and very 

viscous, non-lithostatic pressure can grow very large, up to the order of ambient 

lithostatic pressure. 

6.2 Control of channel geometry on the amplitude of actual non-lithostatic 

pressure 

6.2.1 Non-lithostatic pressure dependence on channel thickness 

The direct influence of the channel width 0h  on the non-lithostatic pressure amplitude 

is apparent in Eq. 5 and 11.1: for constant c , m , U , L  and width variations h , 

non-lithostatic pressure amplitude varies as 
3

0

1

h
, i.e. is much increased in thin channels, 

which is a classical result of lubrication theory. 



On the other hand, an increase in the channel non-lithostatic pressure amplitude results 

in larger deformation of the channel walls, which reduces this increase. This 

“regulation” process is apparent through the variations of the  

parameter  , which is proportional to 3

0h  (Fig. 6): considering two channels of width 

0h  and 0

10

h
, the rigid channel solution predicts non-lithostatic pressure amplitude larger 

by a factor 1000 for the latter crust ( rigp ). But as, for a given c ,   is much lower 

for the 0

10

h
 crust, it deviates much more from the rigid channel solution, yielding a 

smaller actual pressure difference between the two channels ( cpd rigp p   ). 

Considering coupled equations tends therefore to reduce the effect of channel thickness 

on non-lithostatic pressure amplitude. Eventually, i.e. for large c , the difference 

between the two channels vanishes, as the maximum non-lithostatic pressure does 

depend neither on the crust thickness nor on its viscosity, so that they both converge 

towards the same asymptotic limit. 

6.2.1 Non-lithostatic pressure dependence on the lengthscale of channel topography 

The simple geometries used here or in (Mancktelow, 1995; Mancktelow, 2007) enable 

to derive simple solutions to the narrowing channel problem. Nevertheless, real channel 

geometry is likely to be different, and its characteristics possibly bear some influence on 

the distribution of the non-lithostatic pressure arisen. In particular, we have supposed, to 



describe the deformation of the channel walls (Eq. 7), that the lengthscale of the 

perturbations of the channel width were of the order of channel length, i.e. 100’s of km. 

Although perturbations related to slab bending have probably a long lengthscale, those 

related to serpentinization of the mantle wedge or to subducting seamounts are probably 

of much shorter lengthscale. 

The pressure field resulting from channel perturbation whose lengthscale is reduced 

from L  to '
10

L
L   can be easily obtained from the repetition of the solution we have 

found for a single channel narrowing (Eq. 11.1), using 'L  instead of L . 

As a result, the parameter   is increased by a factor equal to 
'

3 3( ) 10
'

L

L

L

L




  , i.e. 

for constant material properties c  and m , the channel behaves much more rigidly. 

Consequently, as explained in 6.1, even for the same values of viscosities and channel 

wall convergence angle (
'

'

h h

L L

 
 ), the non-lithostatic pressure reaches higher 

amplitude. 

The explanation for this phenomenon lies in the response of the mantle to the applied 

non-lithostatic pressure field, which is scaled by the lengthscale of the pressure field 

variations (see section 4.1.1). As a result, the deformation of the channel walls, for the 

same pressure amplitude, is strongly reduced for a pressure field with shorter 

lengthscale: 



'

'
10

1 1

4 10 4 10L
L Lm m

dh L L dh
p p

dt dt 

 
   

 
 

i.e. channel deformation rate is reduced by a factor 10 when the lengthscale of the 

channel pressure field is divided by 10. 

In summary, the mantle deforms more easily if the pressure gradient is applied over a 

larger distance. Small-scale perturbations of the channel width trigger the development 

of non-lithostatic pressure field with larger amplitude. 

7 Conclusions: 

Our approach coupling both deformation of the crust within the channel and the mantle 

bounding it shows that maximum non-lithostatic pressure within the channel is 

controlled by the properties of the mantle, irrespectively of the nature of the subducting 

crust. The deformation of the walls of the channel, resulting from the existence of 

non-lithostatic pressure within the channel, instantly prevents arbitrarily large 

non-lithostatic pressure to develop. The transition from the rigid channel model to a 

regime where the deformation of the channel walls controls the non-lithostatic pressure 

amplitude within the channel is controlled by the adimensional parameter  , which 

includes both the viscosity ratio as well as the geometry of the system. 
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Figure captions 

Figure 1: Development of non-lithostatic pressure within the subduction channel as a 

result of channel monotonic widening, following the model by Jischke(Jischke, 1975). 

(A) the subduction channel act as a lubricating layer ((Batchelor, 1967)-p219) at the 

interface of the two plates. (B) As a result of channel widening between 0h  and 

0h h , the pressure channelP  within the channel is slightly lower than the pressure mP  

of the mantle at the same depth. (C) The resulting underpressure p  ( m channelp P P  ) 

exerts a force on the slab equilibrating the slab pull force pF . The curves were 

calculated without taking into account the density difference between channel and 

mantle, and assuming channel widening by a factor 2, i.e. 0h h  . 

Figure 2: Development of non-lithostatic pressure in a subduction channel that narrows 

then widens back to its original width. The pressure profile is antisymmetric, with 

overpressure in the narrowing portion and underpressure in the widening portion of the 

channel, so that the net force exerted on the slab is null. The curves were calculated 

without taking into account the density difference between channel and mantle, and 



assuming channel narrowing such that 03

4

h
h  . 

Figure 3: The subduction channel model used here describes the circulation of the crust 

overlying the subducting slab. In our model width ( )h x  and pressure ( )P x  are 

coupled: spatial variations in the width of the channel result in the formation of a 

non-lithostatic pressure ( channel mp P gz  ) that affects the flow pattern (A), but which 

also triggers the deformation of mantle bounding the channel, which in turn controls the 

time variations of 
( )h x

x




 (B). 

Figure 4: Pressure field calculated for the given sinusoidal profile of ( )h x  in the two 

extreme regimes 1  and 1 . The profiles have similar shapes, in particular 

overpressures within the narrowing section of the channel are compensated by 

underpressures in the widening section. In contrast, the amplitude of the non-lithostatic 

pressure ampp  is variable (the profiles are not scaled with respect to each other). 

Figure 5: Evolution of the dimensional non-lithostatic pressure amplitude ampp  for 

increasing c . The variable c  in abscissa is scaled by 
3

3

0m

L

h
, which is kept constant. 

As a consequence, for large c ,   is low and ampp  converges towards the “low  ” 

solution. Conversely, for low c ,   is large and ampp  converges towards the “high 

 ”, i.e. the rigid channel, solution. Maximum non-lithostatic pressure is reached in the 

domain 1 , i.e. where the pressure field is controlled by the channel wall 



deformation. The upper bound on ampp  is equal to 
'

2

2
4low

amp m

U
p h

L

    . 

Figure 6: Schematic evolution of non-lithostatic pressure amplitude ampp  for 

increasing crustal viscosity (without log-scale, in contrast with Fig.5). For low c , the 

deformation of the channel walls is neglectible, and ampp  increases in proportion of 

c  increase. When c  gets larger, the flow of crust within the channel trigger channel 

wall deformation, so that actual increase in ampp  deviates from linear increase (dashed 

curves) and asymptotically converge to 
'

max

2
( )amp m

U h
p f geom

L



 , which does not 

depend on c  as it is controlled only by channel walls deformation. The transition 

from “No channel wall deformation” to “Deformation of channel walls” corresponds to 

the transition from 1  to 1 . The rigid channel solution predicts that a channel 

of width 0

10

h
 is affected by non-lithostatic pressure amplified by a constant factor with 

respect to a channel of width 0h . As, for given c ,   is also much decreased for a 

thinner crust, the actual non-lithostatic pressure difference between the two channel 

geometry, cpdp , is smaller than the difference cpdp  predicted in the rigid channel 

model. For large c , the pressure for both geometries converge towards the same limit 

and the geometrical effect vanishes. 
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