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Abstract  

Identification of the earliest traces of life is made difficult by the scarcity of the preserved 

microbial remains and by the alteration and potential contamination of the organic matter (OM) 

content of rocks. These factors can confuse interpretations of the biogenicity and syngenicity of 

fossilised structures and organic molecules found in ancient rocks. In order to improve our 

knowledge of the fossilisation processes and their effects at the molecular level, we made a 

preliminary study of the fate of OM during experimental fossilisation. Changes in the composition 

and quantity of amino acids, monosaccharides and fatty acids were followed with HPLC, GC and 

GC-MS analyses during one year of silicification of the hyperthermophilic Archaea 

Methanocaldococcus jannaschii. Although the cells themselves did not fossilise and the 

accompanying extracellular polymeric substances (EPS) did, our analyses showed that the OM 

initially present in both cells and EPS was uniformly preserved in the precipitated silica, with 

amino acids and fatty acids being the best preserved compounds. This study thus completes 

previous data obtained by electron microscopy investigations of simulated microbial fossilisation 

and can help better identification and interpretation of microbial biosignatures in both ancient 

rocks and in recent hydrothermal formations and sediments. 

 

Introduction 

Traces of ancient life in rocks occur as fossilised remains of 

microorganisms, their communities and biostructures, as degraded organic 

compounds derived from original biological components, or as isotopic signatures 

(e.g. Brocks and Pearson 2005 and references therein; Westall 2011; Westall and 

Cavalazzi 2011). When it comes to investigations of the most ancient traces of 

life, the search is complicated by the limited preservation of ancient rocks in terms 

of quantity and metamorphic grade. The oldest known sedimentary rocks occur in 

the Barberton Greenstone Belt (South Africa, 3.2-3.5 Ga), the Pilbara Craton (NW 

Australia, 3.3-3.5 Ga) and the Isua and Akilia Greenstone Belts (Greenland, 3.7-

3.8 Ga). Only those in Barberton and the Pilbara are of low enough metamorphic 

grade to be useful for in depth investigation of biosignatures. The oldest traces of 

life identified in these rocks (3.5-3.8 Ga) comprise silicified microfossils in the 

form of colonies, microbial mats and stromatolites that probably included 

chemotrophic and possibly anoxygenic photosynthetic microorganisms (Walsh 

1992, 2004; Tice and Lowe 2004, 2007; Allwood et al. 2006, 2009; Westall and 

Southam 2006; Westall et al. 2006a,b, 2011; Westall 2011). However, due to the 
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degradation sustained by these biosignatures and the possibility of a 

contamination by non-syngenetic OM (Brocks 2011), numerous debates have 

arisen concerning the biogenicity of observed structures (e.g. Apex Chert: Schopf 

(1993) and Brasier et al. (2002); Isua: Pflug and Jaeschke-Boyer et al. (1979) and 

Westall and Folk (2003), Mojzsis et al. (1996) and van Zuilen et al. (2002)). 

These debates have highlighted the difficulty of identifying physical structures as 

well as molecules preserved in ancient rocks as traces of life, and our lack of 

knowledge concerning the fossilisation processes that lead to the long-term 

preservation of biosignatures and, especially, of their most fragile cellular/organic 

components.  

This article is part of a broader study of the preservation of the kinds of 

microorganisms that could have lived under the extreme environmental conditions 

of the early Earth, such as the deep-sea hyperthermophilic methanogenic Archaea 

Methanocaldococcus jannaschii (Jones et al. 1983), through experimental 

fossilisation. Previous experiments to fossilise microorganisms had been 

successfully applied to a wide range of species, including Cyanobacteria (Oehler 

and Schopf 1971; Oehler 1976; Francis et al. 1978; Phoenix et al. 2000; Benning 

et al. 2004a, 2004b), diverse marine microbes (Westall et al. 1995), Gram-positive 

(Ferris et al. 1988; Westall 1997) and -negative Bacteria (Birnbaum et al. 1989; 

Westall et al. 1995 ; Westall 1997; Toporski et al. 2002; Lalonde et al. 2005), and 

Archaea (Orange et al. 2009, 2011). They provided important information for the 

understanding of the fossilisation processes. In particular, in two previous studies 

(Orange et al. 2009, 2011) we investigated the mechanisms of fossilisation of 

Archaea in saturated silica solutions and the preservation of morphological 

structures by electron microscopy monitoring. In one species, most of the cells of 

M. jannaschii lysed naturally within a week after the beginning of the experiment 

despite the rapid formation of a silica precipitate (Orange et al. 2009). Only a few 

significantly deformed cells and cell remains were still present after 1 month of 

fossilisation and they lost all their recognisable features as the fossilisation 

continued over the period of a year. However, a significant amount of 

extracellular polymeric substances (EPS) was fossilised and preserved. This study 

is the first reported case of an experimental fossilisation that did not lead to the 

preservation of the cells and it underlines the importance of heterogeneous cell 

preservation in the rock record.  
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In this particular context, we wanted to investigate the processes that take 

place during the experimental fossilisation of M. jannaschii in more detail through 

the monitoring of progressive changes in the OM. The particular unfolding of this 

fossilisation seemed to us more interesting and worthwhile to obtain information 

on the changes in the OM compositions during fossilisation, since the actual 

physical preservation of cells in the rock record is less common than the 

preservation of the organic remnants of the cells. More precisely, our objectives 

were to verify the impact of silicification at the molecular level, through a year-

long monitoring of the most common and most labile organic compounds of M. 

jannaschii cells and EPS (amino-acids, monosaccharides, fatty acids) and to 

provide a first insight into the preservation of the OM during silicification at the 

molecular level. This was particularly important given that, in this case, these 

biological compounds were not directly protected by efficient fossilisation of the 

cellular structures.  

 

Materials and Methods 

Cell growth 

Pure cultures of M. jannaschii were provided by the Laboratoire de 

Microbiologie des Environnements Extrêmes, Plouzané, France. M. jannaschii 

was cultured in an autotrophic medium. The medium contained (per litre of 

distilled water) 25 g of NaCl, 3 g of MgCl2, 1 g of NH4Cl, 0.15 g of CaCl2, 0.5 g 

of KCl, 0.3 g of KH2PO4 and 0.001 g of resazurin (as an anaerobic indicator). The 

pH was adjusted to 6.5 and the medium was sterilised by autoclaving. 500 mL of 

medium were dispensed into 1 L sterile bottles. Anaerobiosis was obtained by 

first applying vacuum to the bottle and then saturating it with N2 (Balch and 

Wolfe 1976). The N2 atmosphere was then replaced by a H2/CO2 atmosphere 

(80:20; 300 kPa). The medium was finally reduced by adding 5 mL of a sterile 

10% (wt/vol) solution of Na2S.9H2O to each vial. The medium, inoculated to a 

final concentration of 1%, was incubated at 80 °C with shaking. Microbial growth 

was monitored with a phase-contrast microscope (Olympus CX 40).  
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Experimental fossilisation 

The silicification procedure is derived from the methods used for previous 

silicification experiments (Birnbaum et al. 1989; Toporski et al. 2002), and is 

identical to that used by Orange et al. (2009). 

Silicification was launched at the end of the exponential growth phase of 

the microorganisms. As a silicifying agent, we used a commercially available pure 

sodium silicate solution (Riedel de Haën) containing ~27% SiO2 and ~10% 

NaOH. This pure solution was diluted 10 times to make a stock solution and 

filtered using a 0.2 µm polycarbonate Millipore filter for sterilisation and to 

remove particulate material. 9 mL of this stock solution were injected into each 

vial to obtain a final approximate silica concentration of 350 ppm Si. The 

injection of silica into the microbial cultures marked the start or „zero time‟ of the 

silicification. Spontaneous polymerisation of silica occurred within a few hours 

after the injection of silica, leading to the formation of a white precipitate of 

colloidal amorphous silica at the bottom of the flasks. Separate bottles were 

prepared for silicification times of 24 hours to 1 year. After the silica injection, 

each vial was placed in an oven at 60 °C until sampled. The bottles remained 

sealed in anaerobic and contamination-free conditions until sampled.  

 

Lyophilisation 

At the end of each fossilisation period, the 500 mL cultures were 

centrifuged (Sorvall, SLA-1500 rotor, 7000 g, 20 min). For the purpose of 

lyophilisation, the silica/cell pellet was collected, along with ~50 mL of culture 

medium (the rest was discarded; thus only a small part of the EPS dissolved in the 

medium was kept). The silica/cell pellet was thereafter frozen at –80°C before 

being lyophilised. A M. jannaschii cell pellet, collected from a fresh culture with 

no silica added, was also lyophilised this way. After one year of fossilisation, the 

silica/cell pellet at the bottom of the culture bottles formed a very dense 

precipitate, which was lyophilised as described above. In addition, for this sample, 

a part of the medium was also kept and lyophilised for separate analysis. Although 

the microbial cultures had a volume of 500 mL, the amount of dried samples 

recovered after lyophilisation was always low, which prevented us from making 
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systematic replicates of the OM analyses. Instead, punctual replicates were made 

for each categories of organic compounds analysed.  

 

EPS extraction 

In addition to monitoring the experimental fossilisation made on 

lyophilised samples, the EPS and cells in a fresh M. jannaschii culture were 

separated in order to identify specific compounds and to follow their evolution 

during the experimental fossilisation. The EPS were recovered and purified using 

the cold ethanol extraction method (Antón et al. 1988; Underwood et al. 1995; 

Decho et al. 2005; Klock et al. 2007). A 500 mL M. jannaschii culture was 

centrifuged (2 hours, 20000 g). The pellet, hereafter called “cell” fraction and 

containing cells and some cell-bound EPS, was recovered. The dissolved EPS 

contained in the supernatant (hereafter called “EPS” fraction) were precipitated 

and recovered using the following procedure. NaCl was added to the supernatant 

to a final concentration of 20 g/L. The samples were kept at 4°C to allow 

precipitation and decantation of the EPS. The latter were finally recovered by 

centrifugation (5000 g) and rinsed in successive ethanol baths (from 70% to 100 

% aqueous ethanol). The same rinsing procedure was applied to the “cell” 

fraction. The “EPS” and “cell” fractions were kept in absolute ethanol at 4°C until 

used. 

To evaluate the presence of organic materials (e.g. EPS) in the silica 

precipitate that formed after the silica injection, a control experiment was 

performed where the silica was injected in a medium of a fresh M. jannaschii 

culture after having removed the cells by centrifugation (2 hours, 20000g). The 

silica precipitate was collected after 24 hours and fixed with 2.5% glutaraldehyde. 

The sample was then prepared for scanning electron microscopy (SEM) 

observation with the critical point drying method using the procedure described in 

Orange et al. (2009). SEM observations and analyses were carried with a Hitachi 

S-4500 Field Emission Gun SEM equipped with a EDX detector (Oxford 

Instruments). 
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Amino acid analyses 

Amino acid (AA) compositions of the samples were determined by 

Thermo-Spectra High Pressure Liquid Chromatography (HPLC) after acid 

hydrolysis and phenylisothiocyanate (PITC) derivatisation, with the method used 

by Gautret and Trichet (2005). For the analyses, ~30 mg of lyophilised samples 

were used. 400 µL of the “cell” fraction and 1 mL of the “EPS” fraction in 

absolute ethanol were collected and air dried. Due to the very small amount of 

material, it was not possible to determine the precise dry weight of these fractions 

used for this analysis (~1 mg). Hydrolysis was performed in 6N HCl at 110°C for 

24 hours in sealed tubes under a N2 atmosphere to prevent oxidation. The samples 

were neutralised by adding 200 µl of a ddH2O/methanol/triethylamine mixture 

(proportions 1:1:1 v/v/v) and then dried in a SpeedVac. The samples were 

derivatised for 20 minutes by phenylisothiocyanate (PITC) by adding, in each 

sample, 20 µL of a stock solution of methanol/triethylamine/ddH2O/PITC 

(proportions: 140, 20, 20 and 20 µL, respectively). The samples were analysed by 

reverse phase chromatography using a Thermo Finnigan HPLC equipped with a 

Hypersil ODS C18 5µm column with an acetonitrile gradient (Eluent A: 0.8 mL 

of orthophosphoric acid per liter of ultrapure water, pH adjusted to 7.6 by addition 

of 30% NaOH solution; Eluent B: 50% eluent A / 50% acetonitrile; 1 hour 

gradient from 2% of Eluent B as the chromatographic starting condition to 50%, 

followed by a short 80% cleaning phase and equilibration back to the starting 

condition; flow rate: 1mL/min; injection volume: 20 µL). The molecular 

composition was determined by calculating peak areas from the analysed 

compounds compared with a standard (STP : “Amino-acid standard for hydrolyse 

analysis”, Beckman System 7300/6300). The total mass of the soluble proteinic 

compounds (in µg per g of dried sample) was obtained by adding the individual 

masses of all the analysed AAs. Due to a permanent contamination peak, arginine 

could not be quantified in the lyophilised samples but was measured in samples 

kept in absolute ethanol (“cell” and “EPS” fraction) (Table 1). Error bars were 

determined for each individual amino acid on the basis of 3 analyses of standard 

solutions prepared at 3 different concentrations. Errors thus differ for each AA.  

 



 9 

Monosaccharide analysis 

The monosaccharide composition was measured using gas 

chromatography (GC) after moderate acid hydrolysis (1.2 M H2SO4) and 

silylation (Comont et al. 2006, Disnar et al. 2008). Approximately 150 mg of 

lyophilised sample were used for the analyses. Moderate acid hydrolysis was 

performed with 2.5 mL of 1.2 M H2SO4 at 100°C for 3 hours, under vacuum. 6-

deoxy D-glucose was used as an internal standard (Wicks et al. 1991). The 

samples were subsequently neutralised with solid CaCO3. The precipitate was 

removed by centrifugation and the supernatant was evaporated to dryness before 

being redissolved in 0.5 mL of a 0.2% (m/v) LiClO4 / pyridine solution (Bethge et 

al. 1966; Ogier et al. 2001). Samples were once again centrifuged, and the 

supernatant was placed in an oven at 60°C overnight in sealed vials. Finally, 

100µL of a mixture of Trisyl (N,O-Bis-(trimethylsilyl)-trifluoroacetamide 

(BSTFA) + trimethylchlorosilane (TMCS); Sigma) was added and the samples 

were heated at 60°C for 1 hour in sealed and pre-ashed vials, before GC analysis. 

Monosaccharide analysis was performed by gas chromatography with a Auto 

System XL (Perkin-Elmer) equipped with a 25 m × 0.32 mm i.d. CP-Sil 5CB 

capillary column (0.25 µm film thickness) and a flame ionisation detector (FID). 

Helium was used as a carrier gas. After splitless injection at 240°C, analyses were 

performed in the following conditions :  oven temperature kept at 60°C for 1 

minute, then raised to 120°C at 30°C.min
-1

, and finally to 240°C at 3 °C.min
-1

 at 

which it was maintained for 30 minutes. A mixture of eight monosaccharides 

(ribose, arabinose, xylose, rhamnose, fucose, glucose, mannose and galactose) 

was used as external standard (i) for compound identification (through peak 

retention times), (ii) for individual response coefficient determination and (iii) for 

quantification of the different analysed compounds, and by comparison with the 

internal standard (6-deoxy D-glucose). Replicates analyses gave an analytical 

precision better than 15% (Comont et al. 2006; Disnar et al., 2008).  

 

Fatty acid analyses 

Prior to GC-MS analysis, fatty acids (FA) were released following two 

distinct procedures: thermochemolysis with tetramethylamonium hydroxide 

(TMAH, Disnar et al. 2008), and acid hydrolysis (Stefanova and Disnar 2000). 
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The first of these two procedures convert the FAs into methyl esters and the 

second one into free acids. The latter are esterified prior to analysis (details in 

Stefanova and Disnar 2000). Approximately 150 mg of lyophilised sample were 

used. As for the AA analyses, 400 µL and 1 mL of the “cell” and “EPS” fractions, 

respectively, were also collected and evaporated.  

For thermochemolysis, a mixture of a TMAH solution (10 % in MeOH), 

internal standard (heptylbenzoic acid dissolved in MeOH), and methanol 

(proportions 2:1:2 (v/v/v); 1:1:2 for the “cell” and “EPS” fractions) was added to 

the samples in test tubes, which were subsequently sealed and heated at 70°C for 

1 hour. Vacuum was made in the tubes to prevent oxidation, and their bottom 

extremity was placed for 20 minutes in a sand bath heated at 250°C. After 

cooling, the products were extracted with 1 mL of ether. The ether solutions were 

transferred into vials, and evaporated until dryness at room temperature under a 

fumehood. The samples were then dissolved in dichloromethane, before being 

analysed by GC-MS. 

For the acid hydrolysis, a mixture of a 6N HCl solution and methanol 

(proportions 1:1 v/v) was added to the samples in test-tubes along with the 

internal standard (5α-cholestane in MeOH). The tubes were heated overnight in a 

water bath at 100°C. Afterwards, the samples were placed in a separation funnel 

with a few mL of ether. The ether fraction was recovered and evaporated. The 

samples were then dissolved in anhydrous methanol with a few drops of acetyl 

chloride and evaporated to dryness at 80°C for 2 hours. Finally, the samples were 

dissolved in dichloromethane, before GC-MS analysis.  

Lipid analyses were performed by GC-MS on a TRACE-Polaris GCQ. The 

gas chromatograph was fitted with a Rtx-5MS capillary column (30 m, 0.25mm 

i.d., 0.25 μm film thickness). The GC operating conditions were: temperature held 

at 40°C for 1 min, then increased from 40 to 120°C at 30 °C.min
-1

, 120 to 240°C 

at 5°C.min
-1

, with final isothermal hold at 240°C over 30 min. The sample was 

injected splitless, with the injector temperature set at 280 °C. The carrier gas was 

helium. The mass spectrometer was operated in the electron ionisation (EI) mode 

at 70 eV ionisation energy and scanned from 50 to 600 Da. Compounds were 

identified by using their retention time and their mass spectra. Quantification was 

made using the internal standard. Error margins were calculated from replicates 

analyses. 
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Results 

 

Table 1 shows the analysis results for AAs, monosaccharides and FAs.  

 

Amino acid analyses 

Fresh M. jannaschii cultures contain more dicarboxylic (Asp, Glu) than 

basic AAs (Lys, His) (Fig. 1a). The amounts of neutral AAs (Gly, Ala, Val, Leu, 

Ile) are also significant, with slightly more of the smallest ones (Gly, Ala, Val), as 

well as proline (Pro). AA compositions of the “cell” and “EPS” fractions showed 

some differences. The “cell” fraction contained a relatively large amount of 

charged (Asp, Glu, His, Lys, Arg; 48.3%) and non-polar AAs (Ala, Ile, Leu, Val, 

Phe, Pro; 43.7%) and a low content of polar AAs (Cys, Ser, Thr, Tyr ; 8.0%) (Fig. 

1a, Table 1). In comparison, the “EPS” fraction was characterised by a majority of 

non-polar AAs (71.0 %) and low amounts of dicarboxylic AAs (Asp, Glu; 7.5 %, 

vs. 34.2% for the “cell” fraction). The AA composition of the whole lyophilised 

M. jannaschii culture appeared logically as a mean of the “cell” and “EPS” 

compositions (Fig. 1a). 

24 hours after the injection of the silica solution in the culture, the total 

amount of analysed AAs was three times higher in the freshly formed precipitate 

than in the fresh culture (Fig. 1b), probably as a consequence of the formation of 

this precipitate, which had fixed EPS originally dissolved in the medium (see 

Discussion). Afterwards, this amount decreased progressively in the first month of 

fossilisation to reach the fresh culture value. After one year, the total amount 

analysed was slightly higher than the fresh culture amount. The two months value 

was also significantly higher (see Discussion). Figs 1c, 1d, 1e and 1f show the 

evolution of the percentage of individual AAs during the experimental 

fossilisation, sorted by types. Basic and dicarboxylic AAs show opposite trends 

(Figs. 1c, 1d). Apart from glycine and serine, neutral and other AA proportions 

did not change significantly during the experiment (Figs 1e, 1f). The analyses 

made after one year of fossilisation showed that there was still a large amount of 
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AAs remaining in the dense silica precipitate, as well as in the medium (Fig. 1g). 

While the total amount of AAs in the silica precipitate after one year was twice 

the amount measured in the fresh culture (Fig. 1b; Table 1), the initial and final 

AA compositions were similar (Fig. 1h).  

 

Monosaccharide analyses 

The analysis of a fresh M. jannaschii culture showed the presence of four 

aldohexoses: mannose, allose, galactose and glucose (Table 1). Glucose was the 

most abundant compound (~80 % of the total monosaccharides analysed). 

According to the chromatograms, no other peaks related to other compounds were 

present. Due to the small amounts of samples available, individual analyses of the 

“cell” and “EPS” fractions failed to give relevant results.  

Only glucose and mannose could be followed in the silica precipitate 

during the whole fossilisation, the former being always much more abundant than 

the latter (Table 1; Fig. 2b). The other monosaccharides were not identified in the 

fossilised samples, apart from traces of allose after one month (Table 1). Similar 

to the AAs, the total amount of analysed monosaccharides in the silica precipitate 

was twice as high as in the fresh culture 24 hours after the injection of silica in M. 

jannaschii cultures (see Discussion). This amount decreased strongly after 1 

month and remained constant afterwards (Fig. 2a). For the individual 

monosaccharide compositions, while the quantity of glucose remained stable after 

one month, mannose progressively disappeared and was not detected after one 

year (Fig. 2b). The final glucose quantity in the precipitate was only about one 

third of the fresh culture value (Table 1, Fig. 2b).  

 

Fatty acid analyses 

Thermochemolysis with TMAH allowed the identification of a wide range 

of FAs in the fresh M. jannaschii culture from n-C12:0 to n-C22:0 (Fig. 3a). We 

noticed the expected predominance of compounds with an even carbon number 

and, in particular, high amounts of n-C16:0 and n-C18:0 which together represented 

almost 60 % of the total analysed (Table 1). There were also significant amounts 

of n-C20:0 and n-C22:0. Acid hydrolysis allowed detection of a wider range of FAs, 
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up to n-C30:0, as well as compounds that were not seen after thermochemolysis 

(e.g. n-C19:0) (Fig. 3a). As in the preceding analysis, the even over odd carbon 

number compound predominance was the rule. n-C16:0 and n-C18:0 represented 70 

% of the total FAs analysed (Fig. 3a, Table 1). The other FAs were usually only 

found in small quantities (< 5%). Thermochemolysis performed on “cell” and 

“EPS” fractions showed only minor compositional differences (Fig. 3b) with a 

distribution of FAs similar to that analysed in the whole culture.  

Generally, the total amounts of FAs released were similar for the two 

extraction methods (Table 1, Fig. 3c). As for the AAs and monosaccharides, both 

methods showed a significant increase of the quantities analysed in the silica 

precipitate after 24 hours of fossilisation, followed by a quick decrease. After one 

week, the total amounts analysed seemed to stabilise above the fresh culture value 

for the TMAH extraction. The results of the acid hydrolysis extraction also 

showed an important increase after 2 months.  

Monitoring of the FA composition during the fossilisation was limited to 

thermochemolysis, which gave the most reproducible results. After 24 hours of 

fossilisation, the amounts of FAs extracted in this way were ten times greater than 

those found in the fresh culture (Fig. 3c). This was accompanied by an increase in 

the proportions of the two main FAs identified (n-C16:0  and  n-C18:0) and a 

depletion in the larger compounds (n-C20:0 and n-C22:0) (Fig. 3d). Only the two 

most abundant compounds (n-C16:0 and n-C18:0) could be monitored satisfactorily 

during the fossilisation (Fig. 3e). Since the analysed quantities of the other 

compounds was low and the peaks formed were small, it was difficult to follow 

their evolution during the fossilisation. After 24 hours, n-C18:0 quantities decreased 

quickly before stabilising until the end of the experiment, while n-C16:0 decreased 

more slowly after one month (Fig. 3e). After one year, only a few light FAs (≤ n-

C16:0) remained in the aqueous medium (Table 1) and those in the silica precipitate 

had the same distribution (Fig. 3f). The FAs extracted by acid hydrolysis in the 

fresh culture and in the silica precipitate after one year of fossilisation were 

similar (Fig. 3h), with similar total analysed masses in the two samples (Fig. 3c). 

This was not the case for the FAs extracted by thermochemolysis (Fig. 3g), which 

showed a final enrichment in n-C14:0 and n-C16:0, and the absence of the largest 

compounds (n-C20:0, n-C22:0), with total masses three times higher than in the fresh 

culture (Fig. 3c). 



 14 

 

Discussion 

This study represents a first attempt to monitor the degradation and 

preservation of the microbial OM during a one-year fossilisation experiment. The 

similarity between the AA composition of the fresh culture and the sample 

fossilised for one year (Fig. 1h) demonstrates consistency in the measurements 

and indicates that these AA analyses were not biased by the presence of silica. For 

the FAs, the use of an internal standard introduced at the start of the analysis was 

a guarantee of the reliability of the results. The two methods used to analyse these 

compounds (thermochemolysis and acid hydrolysis) theoretically release FAs 

involved in different chemical combinations (saponifiable amides, and 

hydrolysable esters, respectively; Stefanova and Disnar 2000, and references 

therein), giving complementary results. Moreover, both methods used could also 

detect free FAs (initially, or liberated during fossilisation). 

 Although replicate analyses could not be made on a systematic basis, the 

reliability of the measurements is also supported by the common trends followed 

by the total analysed masses of each category of organic molecules (Figs. 1b, 2a, 

3c). However, these trends remain partly unexplained. Whereas the trends 

observed during the first week of the fossilisation can be linked to lysis of the M. 

jannaschii cells and the formation of the silica precipitate (see below), the peak 

observed after two months (Figs. 1b, 2a, 3c) cannot be related to a process that 

occurred during the experimental fossilisation: after the precipitation of silica and 

the cell lysis, a steady-state was observed during the fossilisation beyond 1 month 

with the only process observed being the continuous compaction of the silica 

precipitate (Orange et al. 2009). It may be due to an experimental artifact due to 

sampling or lyophilisation. 

In this study we focused on a global analysis of compound families. As a 

consequence, the results provide no information regarding the origin of the 

analysed compounds (cytoplasm, cell wall, EPS) nor can we differentiate between 

molecules involved in polymers, those present in the free state in the medium, or 

those originating from the degradation of larger compounds during fossilisation. 

However, similarities between the initial and final compositions in AAs and FAs 

(Figs. 1h, 3h) suggest that there was only limited loss of monomeric compounds 
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from the organic macromolecules preserved in the silica precipitate.  However, it 

may have affected the monosaccharides, which are likely the most reactive among 

the analysed compounds because of their carbonyl functional group.  

 

OM composition of a M. jannaschii culture 

Apart from monitoring changes in the OM during the experimental 

fossilisation of M. jannaschii, this study also provides information regarding the 

AA, monosaccharide and FA composition of a fresh M. jannaschii culture.  

Previous proteomic studies of the AA composition of hyperthermophilic 

Archaea and Methano(caldo)coccales show ubiquitous higher amounts of charged 

AAs (Asp, Glu, His, Lys, Arg) in comparison with their mesophilic counterparts 

(Cambilleau and Claverie 2000; Das and Gernstein 2000; Haney et al. 1999; 

McDonald et al. 1999; Chakravarty and Varadarajan 2000). The charged AAs 

allow better stability of the protein in a high temperature environment. In addition, 

archaeal S-Layer proteins, in particular, are characterised by large quantities of 

non polar AAs (Ala, Ile, Leu, Val, Phe, Pro) (Akça et al. 2002; Claus et al. 2002; 

Eichler 2003). High amounts of charged and non-polar AAs were observed in the 

composition of M. jannaschii “cell” fraction (Fig. 1a ; Table 1) along with a lower 

dicarboxylic AAs content in the “EPS” fraction. The S-Layer and EPS were also 

identified as the most likely to have been preserved at the end of the experimental 

fossilisation (Orange et al. 2009) and as primary silica binding sites during the 

fossilisation process. If low dicarboxylic AAs amounts can be considered as 

characteristic of EPS during the subsequent monitoring of the fossilisation, non-

polar AAs cannot be used as specific markers of the S-Layer (i.e. markers of cell 

remains) as they are also found in important amounts in the “EPS” fraction (Fig. 

1a).  

Monosaccharide analysis of the M. jannaschii culture identified two major 

components, glucose and mannose, and also small quantities of allose and 

galactose that could not be monitored during fossilisation (Table 1). Previous 

reports of monosaccharide composition of archaeal EPS (Rinker and Kelly 1996; 

Sowers and Gunsalus 1988; Antón et al. 1988; LaPaglia and Hartzell 1997; Poli et 

al. 2010; Hall-Stoodley et al. 2005; Schopf et al. 2008) have mainly shown the 

great compositional diversity among them, including some methanogenic 
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Archaea: only mannose for Thermococcus littoralis (Rinker et al. 1996), mainly 

mannose for Haloferax mediterranei (Antón et al. 1988), a mixture of rhamnose, 

mannose, galactose and glucose for Methanobacterium formicium (LaPaglia and 

Hartzell 1997), galactose and glucosamine for Methanosarcina mazeii (LaPaglia 

and Hartzell 1997). Our results confirm this diversity.  

Most of the literature concerning archaeal lipids deals with their specific 

membrane lipids (which were not analysed in this study; see review in Patel and 

Sprott 2006). Archaea and Bacteria are distinguished by the composition of their 

cell envelopes. While the bacterial membrane is made of diacyl-D-glycerol 

diesters, the archaeal membrane consists of isoprenoid L-glycerol diethers or di-

L-glycerol tetraethers with long isoprenoid chains containing 20–40 carbon atoms 

(Kandler and König, 1998). Consequently, polar lipid FAs (PLFA) have thus been 

used as a marker of the presence of Bacterial and Eukaryotic biomass, while the 

presence of isoprenoid diether/tetraether is considered as indicative of the 

presence of Archaea (Jeanthon 2000). However, FAs were also identified in 

Archaea as a minor part of the total lipid fraction (Tornabene et al. 1978; 

Tornabene and Langworthy 1979; Nishihira et al. 2000; Carballeira et al. 1997). 

The FA composition of M. jannaschii shows similarities with the composition of 

the Archaea Pyrococcus furiosus (Carballeira et al. 1997), which has a similar 

range of FAs (M. jannaschii : n-C12:0 to n-C30:0 ; P. furiosus : n-C12:0 to n-C26:0), an 

even over odd carbon number compound predominance, and with n-C16:0 and n-

C18:0 as the major compounds. However, in our case, all the FAs analysed were 

saturated, while the amount of monounsaturated FAs in P. furiosus is large. 

 

General effects of the fossilisation on the OM 

Electron microscopy observation of M. jannaschii fossilisation (Orange et 

al. 2009) showed that, while the EPS were preserved, most M. jannaschii cells 

lysed quickly and only a few badly damaged cells and cell remains could be 

observed after one year of fossilisation. In contrast to these morphological 

changes, the identity of the AA composition of the silica precipitate after one year 

of fossilisation with that of the fresh M. jannaschii culture (Fig. 1h) provides 

strong evidence that all the AAs were preserved, without any selectivity either for 

those more abundant in the EPS (Val, Leu, Ile, Pro, Phe) or for those in the cells 
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(dicarboxylic AAs: Asp, Glu) (Fig. 1a). Thus, the OM preserved by silica after 

one year of fossilisation appears not to be restricted to EPS, but also most 

probably includes the remains of degraded M. jannaschii cells. This thus differs 

from conclusions drawn from electron microscopy monitoring which had 

suggested that the preservation of cell remains in general was very limited 

(Orange et al., 2009). It is more difficult to establish the preservation of the FAs 

due to the two extraction methods used. However, similarities between the fresh 

culture and one year FA compositions (acid hydrolysis; Fig. 3h) suggest that these 

constituents were also very well preserved. On the other hand, the 

monosaccharides were significantly degraded during fossilisation (Fig. 2a; Fig. 4). 

Consequently, as AAs were the most abundant and also the best preserved 

compounds over the duration of this experimental fossilisation (Fig. 4), we mainly 

base the following discussion on them, with the results from the others 

compounds being used as a complement. 

 

OM behaviour during experimental fossilisation 

The similarity between initial and final AA compositions are all the more 

surprising since important variations in the total analysed masses and in individual 

organic components were observed during fossilisation.  

 The first major changes in organic molecule composition were noticed 

during the first 24 hours of the experimental fossilisation, with a ubiquitous 

increase of the total analysed masses (Figs. 1b, 2a, 3c). Shortly after being 

injected in the M. jannaschii media, the polymerisation of silica led to the 

formation of a silica precipitate within a few hours. The formation of this 

precipitate is slightly faster in the cell containing samples than in control samples 

(without cells) (as observed in Orange et al. 2009), as dissolved EPS provide a 

good passive support for silica nucleation (Westall et al. 2000; Handley et al. 

2008). These EPS could thus have been dragged to the bottom of the flasks with 

the silica precipitate, thus increasing the total analysed masses of OM. This 

hypothesis was verified by SEM observation of smooth EPS within the silica 

precipitate formed after injection of silica in a M. jannaschii culture growth 

medium whose cells had been removed (Figs. 5a, 5b). The increases in the AA 

amounts analysed after 24 hours could also be attributed to an EPS production by 
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M. jannaschii cells as a stress reaction to the injection of the silica solution. EPS 

production is one of the protective mechanisms used by microorganisms facing 

environmental challenges and has been demonstrated as a stress reaction of M. 

jannaschii (LaPaglia and Hartzell 1997; Johnson et al. 2005) and also during the 

experimental fossilisation of S. azorense (Lalonde et al. 2005). EPS precipitation 

and production hypotheses are both consistent with previous electron microscopy 

observations (Orange et al. 2009). Consequently, the AA composition after 24 

hours would be expected to be richer in AAs preferentially present in the “EPS” 

fraction (Val, Leu, Ile, Pro, Phe, Met) and poorer in AAs specific to the “cell” 

fraction (dicaboxylic AAs: Asp, Glu) (Fig. 1a). A depletion of dicarboxylic AAs 

(Asp, Glu) was indeed noticed, but no significant enrichment in EPS-specific AAs 

(Val, Leu, Ile, Pro, Phe) could be seen (Figs. 1c, 1e). It was not possible to verify 

this hypothesis from the FA analysis, as “cell” and “EPS” fractions showed no 

major differences (Fig. 3b). 

 

Individual compound proportions between 24 hours and 1 month often 

evolved in the opposite way than during the first 24 hours. Molecules which 

became more abundant in the first 24 hours usually became depleted afterwards, 

for example, lysine and histidine for the AAs (Fig. 1c), glucose for the 

monosaccharides (Fig. 2b), n-C18:0 for the FAs (Fig. 3e). The behavior of aspartic 

acid, glutamine, glycine (Figs. 1c, 1e) and mannose (Fig. 2b) was the opposite. 

This suggests that the EPS precipitated or secreted during the first 24 hours were 

eventually released out of the silica precipitate due to compaction soon 

afterwards. As for a squeezed sponge, the observed compaction of the precipitate 

could have released organic molecules in the medium.  

As previously mentioned, between one month and one year, a steady-state 

was reached with no significant changes being noticed by electron microscopy 

observation (see Orange et al. 2009). As most M. jannaschii cells had already 

lysed, no OM could have been produced. Accordingly, except for a limited 

number of individual organic molecules such as lysine or proline, the proportions 

of the individual compounds showed no significant evolution (Figs. 1c, 1d, 1e, 1f, 

2b, 3e).  

After one year of experimental fossilisation, in addition to the silica 

precipitate, significant amounts of OM were still present in the medium, as shown 
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by separate analyses made in this medium (Table 1; Figs. 1g, 3f). Several facts 

suggest that this material mainly originates from EPS, either dissolved in the 

medium, or released from the compacting silica precipitate. The AA composition 

of the medium shows similarities with the “EPS” fraction composition, being 

richer in neutral AAs (Gly, Ala, Val), and poorer in dicarboxylic AAs (Asp, Glu) 

in comparison with the composition of the precipitate (Fig. 1g).  

 

Role of silica in the preservation of the OM 

All the above observations suggest that OM was preserved over the 

experimental period of a year at a macromolecular (e.g. peptide, protein) or 

cellular level (EPS, membrane, S-Layer remains) rather than as monomers 

(individual AAs, FAs). The preservation of the OM during the experimental 

fossilisation was thus not related to a particular affinity between individual 

organic compounds and silica. In addition, since the degradation of the OM in 

culture bottles kept sealed and under anaerobic conditions must have been limited, 

silica is probably also not directly responsible for the preservation of the OM after 

one year of fossilisation.  

However, by acting as a passive support for silica nucleation and 

polymerisation, cells and EPS contained in the medium found themselves quickly 

bound to or trapped in the silica precipitate that formed within a few hours after 

silica injection, as exemplified by the trapping of cell remains and EPS in the 

silica precipitate (Orange et al. 2009). In natural conditions, this silica matrix 

could then be able to provide a physical protection to organic compounds 

throughout its continuous compaction, thus limiting microbial or chemical 

degradation (Mongenot et al. 2001). For example, proteins and carbohydrates are 

known to show a high sensitivity to diagenetic degradation and are not expected 

to be preserved over geological time scale (de Leeuw and Largeau 1993; 

Vandenbroucke and Largeau 2007), as opposed to lipids. However, several 

studies have reported the preservation of proteinaceous material and saccharides 

in kerogens or sediments (Tertiary to Jurassic sediments, Moers et al. 1994; 

Holocene microbialites, Camoin et al. 1999; 140 Ma Kashpir oil shale, Mongenot 

et al. 2001; Cretaceous microbialites, Neuweiler et al. 2002; Late Jurrassic 

kerogen, Riboulleau et al. 2002; 4 Ma Pula kerogen, Nguyen and Harvey 2003, 
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and references therein), as the result of resistance of some molecules to 

degradation (de Leeuw and Largeau 1993; Moers et al. 1994; Tanoue et al., 1996), 

the formation of resistant macromolecules through condensation (Mongenot et al. 

2001), or, more importantly, by immobilisation by fixation to minerals (Mayer 

1994; Hedges and Keil 1995; Salmon et al. 1998; Six et al. 2002) or the 

encapsulation of these molecules in refractory organic substances (Nguyen and 

Harvey 1998, 2001, 2003; Knicker and Hatcher, 1997, 2001; Zang et al. 2000; 

Mongenot et al. 2001). Thus, in a similar way, silica precipitation probably 

stabilised and immobilised the OM through silica binding. Preservation of OM 

has been reported in silica sinters forming around hot springs. These sinters are 

formed as the result of the precipitation of silica, forming deposits of increasing 

thickness, and fossilising and entombing the microbial communities that thrive 

there. Preserved lipids that could be linked to the original microorganisms 

(Bacteria and Archaea) have recently been identified within these sinters (Pancost 

et al. 2005, 2006; Kaur et al. 2008). Our results suggest that proteinaceous 

compounds may also be found in recently formed sinters. However, entombment 

in a silica precipitate does not always prevent modifications at a cellular structural 

level (e.g. cell lysis, as demonstrated by the species M. janaschii used in this 

experiment), or the degradation of highly reactive compounds (such as 

monosaccharides), or a possible recombination between primary organic 

molecules (e.g. reaction between AAs and monosaccharides, Maillard 1916). 

The objective of the characterisation of OM contained in sediments and 

rocks is to try to identify the type of original microorganism through specific 

biomarkers. Previous fossilisation studies have shown that the earliest steps in 

fossilisation are crucial for the long term preservation of morphological and 

molecular traces. Our results show that, although it is no longer possible to 

identify M. jannaschii remains as Archaea using morphological features (e.g. cell 

wall structure) after one year of experimental fossilisation, it was possible to 

identify molecular traces that still retained information related to the molecular 

characteristics of Archaea. AAs and FAs, and likely membrane lipids as well, 

were well preserved during this first step of the fossilisation and still present 

characteristics of (hyper)thermophilic Archaea after one year of fossilisation, such 

as specific AA composition (high content in charged AAs, specific of 

hyperthermophilic Archaea, or in non polar AAs, from archaeal S-Layer, Fig. 1h) 
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or specific archaeal membranes lipids (di- or tetraethers linked to long isoprenoid 

chains) (Cambilleau and Claverie 2000; Das and Gernstein 2000; Haney et al. 

1999; McDonald et al. 1999; Chakravarty and Varadarajan 2000; Akça et al. 

2002; Claus et al. 2002; Eichler 2003; Kandler and König, 1998; Jeanthon 2000).   

The aforementioned authors who studied the long term preservation of 

supposedly labile components have also highlighted important differences in the 

preservation potential of the different organic compounds (see review in de Leeuw 

and Laugeau 1993) and the importance for preservation of favourable 

environmental conditions (Poinar and Stankiewicz, 1999). This has also been 

shown by in situ and experimental fossilisation studies (e.g. Westall et al. 1995; 

Westall 1997; Toporski et al. 2002; Orange et al. 2009). The latter studies also 

documented the importance of rapid fossilisation to ensure good preservation of 

the morphological and molecular traces (e.g. Knoll et al. 1988; Bartley 1996; 

Schultze-Lam et al. 1995 ; Toporski et al. 2002; Konhauser et al. 2004; Orange et 

al. 2009). The results of our present study do not allow forecasting of the long 

term preservation potential of the organic compounds still present after one year 

of fossilisation.  We have not simulated the long and complex diagenetic 

processes which degrade and transform the OM. However, by providing 

knowledge on the behaviour of the OM during the first steps of the fossilisation, 

this study helps to decipher some of the complex processes that took place 

immediately after the death of the organisms and during the beginning of the 

fossilisation, which are crucial for allowing the eventual preservation of OM in 

kerogens or sediments. 

 

 

Conclusions  

 

Monitoring of the fate of organic matter during the fossilisation of M. 

jannaschii over the period of a year has provided new information that helps to 

better assess the mechanisms that take place during fossilisation and the fate of 

OM during its initial degradation. 

With AAs and FAs being the best preserved compounds over the duration 

of the experimental fossilisation, analyses showed that silica precipitation led to a 
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uniform and global preservation of the OM, with no distinction between the 

different microbial products (EPS or cells). This observation is particularly 

noteworthy because the M. jannaschii cells themselves were not well preserved. 

Furthermore, our analyses also provided new information concerning the 

chronology of EPS fossilisation, showing that their preservation was likely due to 

a very rapid association (within 24 hours) between polymerising silica and EPS 

dissolved in the medium, leading eventually to the precipitation of silica and EPS. 

Silica clearly played an important role in the preservation of the OM by stabilising 

it and providing physical protection against possible degrading agents.  

This study thus provides new methods and ideas for the detection and the 

identification of OM during the fossilisation, which could be applied to fossilised 

remains of microorganisms in soil and in both ancient and recent geothermal 

formations. 
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Figures captions 

 

Fig. 1 Results of amino acid (AA) analyses made during the experimental fossilisation of M. 

jannaschii at a 350 ppm Si silica concentration. a, AA compositions of the fresh culture, and of the 

separated “cell” and “EPS” fractions; b, total analysed masses of AA in the fresh culture and in the 

silica precipitate during the experimental fossilisation; c-f, evolution of individual AAs 

percentages during experimental fossilisation. (c, dicarboxylic AAs; d, basic AAs; e, neutral AAs; 

f, aromatic and alcoholic AAs + proline); g, AA compositions of the silica precipitate and the 

medium after 1 year of fossilisation; h, comparison of AA compositions of the fresh culture and of 

the silica precipitate after one year of fossilisation 
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Fig. 2 Results of monosaccharide analyses made during the experimental fossilisation of M. 

jannaschii at a 350 ppm Si silica concentration. a, total analysed masses of monosaccharides in the 

fresh culture and in the silica precipitate during the experimental fossilisation; b, evolution of the 

analysed masses of glucose and mannose in the silica precipitate during the experimental 

fossilisation 

 

 

Fig. 3 Results of fatty acids (FA) analyses made during the experimental fossilisation of M. 

jannaschii at a 350 ppm Si silica concentration. a, FA compositions of the fresh culture, obtained 
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by thermochemolysis and acid hydrolysis, respectively; b, FA compositions of the separated “cell” 

and “EPS” fraction, obtained by thermochemolysis; c, total analysed masses of FAs in the fresh 

culture and in the silica precipitate during the experimental fossilisation, obtained by 

thermochemolysis and acid hydrolysis, respectively; d, FA composition of the fresh culture and of 

the silica precipitate after 24 hours of fossilisation, obtained by thermochemolysis; e, evolution of 

n-C16:0 and n-C18:0 masses in the silica precipitate during the experimental fossilisation, obtained 

by thermochemolysis; f, FA compositions of the silica precipitate and the medium after 1 year of 

fossilisation, obtained by thermochemolysis; g, h, comparisons of FA compositions of the fresh 

culture and of the silica precipitate after one year of fossilisation, obtained by thermochemolysis 

and acid hydrolysis, respectively 

 

 

Fig. 4 Evolution of the proportions of the different kinds of organic compounds analysed during 

the experimental fossilisation of M. jannaschii; proportions were calculated from total analysed 

masses (Table 1). 

 



 35 

 

Fig. 5 Scanning electron microscopy (SEM) micrograph (a) of the silica precipitate formed after 

the injection of silica in a M. jannaschii growth medium after cells had been removed, with the 

corresponding EDX spectrum (b) made on the silica precipitate; note the smooth EPS inside the 

precipitate (arrow) and the carbon signal on the EDX spectrum, indicating important amounts of 

organic materials in the precipitate.   

 

 

 


