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[1] While permeability scaling of fractured media has been so far studied independently
at the fracture- and network- scales, we propose a numerical analysis of the combined
effect of fracture-scale heterogeneities and the network-scale topology. The analysis is
based on 2�106 discrete fracture network (DFNs) simulations performed with highly robust
numerical methods. Fracture local apertures are distributed according to a truncated
Gaussian law, and exhibit self-affine spatial correlations up to a cutoff scale Lc. Network
structures range widely over sparse and dense systems of short, long or widely distributed
fracture sizes and display a large variety of fracture interconnections, flow bottlenecks and
dead-ends. At the fracture scale, accounting for aperture heterogeneities leads to a
reduction of the equivalent fracture transmissivity of up to a factor of 6 as compared to the
parallel plate of identical mean aperture. At the network scale, a significant coupling is
observed in most cases between flow heterogeneities at the fracture and at the network
scale. The upscaling from the fracture to the network scale modifies the impact of fracture
roughness on the measured permeability. This change can be quantified by the measure a2,

which is analogous to the more classical power-averaging exponent used with
heterogeneous porous media, and whose magnitude results from the competition of two
effects: (i) the permeability is enhanced by the highly transmissive zones within the
fractures that can bridge fracture intersections within a fracture plane; (ii) it is reduced
by the closed and low transmissive areas that break up connectivity and flow paths.

Citation: de Dreuzy, J.-R., Y. Méheust, and G. Pichot (2012), Influence of fracture scale heterogeneity on the flow properties
of three-dimensional discrete fracture networks (DFN), J. Geophys. Res., 117, B11207, doi:10.1029/2012JB009461.

1. Introduction

[2] Natural fractured media display a strong hydraulic
complexity coming from the fractures’ internal topography,
from their arrangement in complex networks, and from the
interaction of the fractures with the environing rock matrix
[Bear et al., 1993; National Research Council, 1996]. As a
result, flows are generally localized in complex structures
and the bulk hydraulic properties display a large variability
both inside a given medium and between different media.
[Clauser, 1992; Hsieh, 1998; Tsang and Neretnieks, 1998].
Only few of these flow structures can be identified deter-
ministically by geophysical and hydraulic methods [Rubin
and Hubbard, 2006; Yeh and Liu, 2000]; most of them

can only be modeled statistically. Such an approximated
statistical representation is sufficient for a large range of
purposes. For example the knowledge of the detailed flow
structure is not crucial to estimate an effective permeability.
With this in mind, a prerequisite of modeling consists
in determining which fracture properties are essential for
hydraulic and transport properties. This has been the origi-
nal goal of the Discrete Fracture Network approach (DFN).
DFNs mimic natural fractured media by representing each
fracture individually. They have first been designed toward
homogenizing fractured media [Long et al., 1982], and fur-
ther applied to understanding the flow structures of complex
fracture networks [Davy et al., 2006a; de Dreuzy et al.,
2001b, 2001c, 2002, 2004a; Le Goc et al., 2010; Leung and
Zimmerman, 2010], permeability and dispersivity upscaling
[Baghbanan and Jing, 2007;Charlaix et al., 1987; de Dreuzy
et al., 2001a, 2010; Frampton and Cvetkovic, 2007, 2009;
Mettier et al., 2006; Park et al., 2001; Snow, 1969] and, more
generally, the definition of the right modeling approach
[Cello et al., 2009; Davy et al., 2006a; Ji et al., 2011; Jourde
et al., 2007; Long and Witherspoon, 1985; Painter and
Cvetkovic, 2005; Sahimi, 1993]. As a further interest, DFNs
can extract key information on flow properties from the
large geological and geophysical data available on fracture
media [Bonnet et al., 2001; Davy et al., 2010]. In this sense
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the DFN approach is used to “precondition” equivalent con-
tinuum heterogeneous approaches, to which it becomes com-
plementary rather than competitive [Hsieh, 1998; Neuman,
2005]. It is according to this logic that the generalized radial
flow model has been developed [Barker, 1988], used [Cappa
et al., 2006; Le Borgne et al., 2004], justified [de Dreuzy
and Davy, 2007; de Dreuzy et al., 2004b] and extended
[Acuna and Yortsos, 1995; Cello et al., 2009].
[3] So far, hydraulic DFN studies have been performed

mostly in 2D. The three-dimensional (3D) flow simulation
models have been developed essentially either as a proof
of concept [Dershowitz and Fidelibus, 1999; Lenti and
Fidelibus, 2003; Long et al., 1985; Maryka et al., 2004] or
for specific site studies [Cacas et al., 1990a, 1990b;Kalbacher
et al., 2007]. The only existing 3D stochastic DFN simulations
have demonstrated first the broad range of transport transit
times within a given fracture networks, as well as between
average travel times measured from different simulation runs
[Nordqvist et al., 1996], and second the possibility of remov-
ing smaller fractures from fracture networks dominated by the
longest fractures [Wellman et al., 2009]. 3D stochastic DFN
modeling has been hindered because of the difficulty of gen-
erating meshes of good quality with classical mesh generation
algorithms [Kalbacher et al., 2007; Maryka et al., 2004;
Vohralik et al., 2007]. Flow simulations in complex 3D frac-
ture networks require either modifications of the geometrical
configurations that are detrimental to the mesh generation on
the whole 3D structure [Erhel et al., 2009a], or the decoupling
of the mesh generation between fractures using Mortar-like
methods [Pichot et al., 2010].
[4] In the fracture network models mentioned above, the

basic geometric and hydraulic object is the single fracture. Its
hydraulic behavior is classically described by a scalar trans-
missivity: independently of the flow conditions, the ratio of
the overall volumetric flow through the fracture to the norm
of the corresponding pressure gradient (computed between
the fracture’s inlet and outlet) is equal to the ratio of the
transmissivity to the fluid’s absolute viscosity, the transmis-
sivity being solely dependent on the fracture geometry. The
first approximation model for a fracture is the parallel plate,
for which the transmissivity is proportional to the plate sep-
aration distance to the power of 3 (see, among many others,
Zimmerman and Bodvarsson [1996b]). In reality, the distri-
bution of local apertures within a geological fracture is non-
uniform, due to the roughness of the two facing rock walls.
Early experiments [Cook, 1992; Durham and Bonner, 1995;
Durham, 1997; Witherspoon et al., 1979] demonstrated that
the resulting transmissivity is different from that of a parallel
plate model of identical mean aperture [Cook, 1992; Durham
and Bonner, 1995;Durham, 1997;Witherspoon et al., 1979].
Numerical modeling of the flow has shown how the devia-
tion from the parallel plate model increases with fracture
closure and how it results from aperture heterogeneities-
induced flow channeling within the fracture plane. Indeed,
the rough walls of a rock joint exhibit peculiar statistical
properties: their topographies are scale-invariant over a broad
range of length scales [Brown and Scholz, 1985; Power and
Durham, 1997; Schmittbuhl et al., 1993] and are matched
over a characteristic “correlation” scale [Brown et al., 1986;
Isakov et al., 2001], so that the aperture distribution is
also scale invariant from at least the scale of the rock grain
up to the latter correlation length [Brown et al., 1986; Glover

et al., 1998]. This scale invariance is controlled in first
approximation by a scalar parameter usually denoted Hurst
exponent; over a broad range of length scales and material
types (including geological fracture walls), rough surfaces
resulting from brittle fracturing have been measured to
exhibit a Hurst exponent very close to 0.8 [Bouchaud et al.,
1990]. The spatially correlated fluctuations of the aperture
field allow for the existence of correlated large aperture
“channels” and low aperture “barriers” within the aperture
plane; numerical simulations based on the Reynolds equation
[Brown, 1987] have shown that these channels and barriers are
responsible for a channeling of the flow [Brown, 1987], which
impacts the permeability of a given fracture, for a given
direction of the macroscopic flow. That permeability may
also be estimated through a generalized critical path analysis
from a critical barrier defined as the smallest permeability line
orthogonal to flow [Talon et al., 2010a, 2010b]. Numerical
simulations show that, depending on how the channels and
barriers are oriented with respect to the macroscropic flow,
they can either ease the flow through the fracture and make it
more permeable than a parallel plate model of identical mean
aperture [Méheust and Schmittbuhl, 2000], or hinder the flow
with respect to that through a parallel plate model [Brown,
1987; Méheust and Schmittbuhl, 2000, 2001]. However, if
one considers a population of statistically identical fractures,
favorable configurations are less frequent than unfavorable
ones, so that the mean behavior corresponds to a transmissivity
lower than that of the parallel plate of identical mean aperture
[Méheust and Schmittbuhl, 2001]. In addition, the variability
over the statistics increases with the fracture closure, defined
as the ratio of the aperture spatial variability to its mean value.
Another puzzling finding byMéheust and Schmittbuhl [2001]
is that a given rough fracture does not have an intrinsic trans-
missivity: it depends in particular on the flow orientation with
respect to the fracture at least at scales smaller than the corre-
lation length. The role played by the correlation length has
however been little studied. Méheust and Schmittbuhl [2003]
have shown that as soon as the correlation length is signifi-
cantly smaller than the distance between the inlet and outlet,
the fracture behaves as a parallel plate. Note also that the
average behavior of a statistically homogeneous population of
fractures depends only weakly on the spatial correlations
[Méheust and Schmittbuhl, 2001]: it is mostly identical to that
of a population of uncorrelated fractures.
[5] Up to now little has been tempted to model the hydraulic

effects of the fracture-scale aperture heterogeneity and of
the network-scale intricate structure simultaneously. A first
intuitive approximation would consist in replacing the inter-
nally heterogeneous fractures by parallel plates having the
same equivalent transmissivity T or equivalently a distance
between the plates equal to (12T)1/3. It is however both
practically difficult and theoretically questionable. First, as
explained above, a rough fracture does not have an intrinsic
permeability independent of the boundary conditions, which
makes this approximation both wrong from a theoretical
point of view and arbitrary from a practical point of view.
Second, the organization of flow potentially exploits the 2D
aperture heterogeneity within the fracture plane and 3D high
transmissivity shortcuts at the network scale simultaneously:
the inlets and outlets for flow in a fracture are intersections
with other fractures, and therefore depend on the network
structure. In the most dramatic configurations, local fracture
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closure may lead to the disconnection of some hydraulic
paths and consequently induce an extended flow reorgani-
zation at the network scale.
[6] Such effects can only be addressed using a three-

dimensional model that accounts both for (i) interior fracture
geometrical heterogeneities and (ii) the fracture arrangements
in networks of complex topology. Due to previous technical
limitations of 3D simulation methods, the flow localization
effects at the fracture- and at the network- scale have so far
been analyzed separately, with the exception of one article
[Hamzehpour et al., 2009] that presented a model based on
very restrictive assumptions. First, the fractures had a binary
aperture distribution, that is, the apertures within a fracture
plane could be either null or have a nonzero value given once
for all, for all open regions in all fractures in the DFN. Sec-
ond, all fractures had the same size. Third, the fracture den-
sity was much larger than that corresponding to the
percolation threshold. In what follows, thanks to recently
developed 3D simulation methods [Erhel et al., 2009a], we
analyze the combined effects of fracture-scale heterogeneity
and network-scale structure on the permeability of the bulk
fractured media, investigating DFNs in which individual
fractures (i) have a realistic aperture distribution that is self-
affine up to the correlation length in open regions of the
fracture plane, and (ii) have sizes that can be as large as the
medium size L and as small as L/10. We investigate different
types of network structures, including networks with a power
law size distribution of the fracture sizes, and vary the frac-
ture density from configurations far above the percolation
threshold, for which mean field approximations are likely to
be relevant, down to the vicinity of the percolation threshold,
for which only extensive Monte-Carlo numerical experi-
ments can give insight into the systems’ hydraulic behavior.
[7] In what follows, we describe the studied model at

the fracture and network scales successively, as well as the
flow models (section 2) and their numerical implementation
(section 3). Because of a lack of reference results at the fracture
scale for the range of closures considered, we first study the
mean fracture-scale permeability (section 4), which we then
use when discussing the network scale equivalent permeability
(section 5). We finally discuss the hydraulic interaction
between the network topology and the fracture scale hetero-
geneity, in section 6.

2. Discrete Fracture Network Model

[8] Among the large range of possible Discrete Fracture
Network models (DFNs), we have chosen a classical design
and added complexities at the fracture scale. The rockmatrix is
assumed to be almost impervious in comparison to the frac-
tures so that flow only occurs inside fractures. At the fracture
scale, the flow complexity consists in a channeling that arises
from the self-affine aperture distribution of the individual
fracture. At the network scale, the flow complexity arises from
the fracture size distribution and depends on the density of the
fractures in the network. Other assumptions have been taken as
simple and standard as possible. The originality of this study
lies in that the stochastic DFN flow simulations are performed
with a resolution high enough for the flow complexity to be
solved inside the smallest fractures.
[9] We successively present the network structure, the

geometrical characteristics both of a single fracture and of

the ensemble of fractures, and the flow models at the fracture
and network scales.

2.1. Fracture Network Structure

[10] For the sake of simplicity, fractures are modeled as
disks. The fracture size thus corresponds to the diameter of
the disk. No location or position is favored, meaning that
the fracture orientation and position distributions are uniform
within the system. Under these simplifications, the two geo-
metrical features that control hydraulic properties at the net-
work scale are the uniform scalar density of fractures and the
fracture size-distribution. In fact, both these features have a
dramatic impact on the connection and homogenization scales
of the medium. The connection scale is the scale above which
networks become connected on average. The homogenization
scale is characteristic of flow channeling; it is defined as the
characteristic distance between two adjacent flow channels
carrying equally large flow rates [de Dreuzy et al., 2001b].
[11] Let us first discuss the size distribution. Observations

of geological fractured media have shown that the density
function for their fracture size is broad-ranged and exhibits
no characteristic length scale; it is well modeled by a power
law in the form:

f Lfð Þ ¼ a3D � 1

L�a3Dþ1
fmin

L�a3D
f for Lf ∈ Lfmin;Lfmax

� � ð1Þ

where –a3D is the characteristic exponent for the probability
density, and [Lfmin; Lfmax] is the range of modeled fracture
sizes [Bonnet et al., 2001; Davy et al., 2010; Segall and
Pollard, 1983]. The exponent a3D controls the relative pro-
portion of longer and shorter fractures. Field data, in partic-
ular from outcrops, provide essentially the 2D exponent a2D,
which ranges between 1 and 3.5 [Bonnet et al., 2001]. For
uncorrelated fractures, the 3D and 2D exponents are related
according to a3D = a2D + 1 [Darcel et al., 2003b; Piggot,
1997]; the exponent a3D thus ranges in the interval [2; 4.5].
[12] While the observed fracture size distribution extends

over several orders of magnitude, 3D flow simulations can-
not account for such a scale dynamics and remain techni-
cally limited to a narrower scale interval, covering around
one order of magnitude. Because of this limitation, three
types of size distribution are considered in what follows. In
the first type, fractures are all much longer than the system
size (Figure 1, left). This type of 3D system has been widely
used since the pioneering work of Snow [1969]. From the
hydraulic point of view it corresponds to a power law dis-
tribution with a3D = 2 [Bour and Davy, 1998] because in
power law distributed systems with a3D = 2 all fractures that
contribute to flow extend across the whole medium. In the
second type, all fractures have the same size Lfmin signifi-
cantly smaller than the system size L (Figure 1, middle). This
case corresponds to the classical percolation theory scheme
[Stauffer and Aharony, 1992] and is obtained when a3D goes
to infinity (Figure 1, left). In the third type, fracture sizes
effectively follow a power law distribution with an exponent
a3D = 3.5 on a scale range extending from Lfmin to the system
size L (Figure 1, right). As the impact of a given fracture
on percolation is rated by the cube of its size because of
excluded volume arguments [Balberg et al., 1984; de Dreuzy
et al., 2000], both smaller and longer fractures effectively
contribute to network connectivity for a3D = 3.5 [Bour and
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Davy, 1998; de Dreuzy et al., 2000]. We shall denote those
three types of network as SHORT, LONG andDIST (Table 1),
respectively.
[13] As mentioned above, the other key characteristic

parameter of the fracture network is the fracture density. We
consider the two extreme cases of sparse and dense fracture
networks. Below the percolation threshold, hydraulic prop-
erties are determined neither by the network structure nor
by the fracture internal characteristics but rather by rock
matrix properties [Hsieh et al., 1993]. The sparsest networks
of interest in our framework are thus networks at the perco-
lation threshold. We denote as dense networks those with a
fracture density much larger than the threshold density.
Whatever the configuration, density is always defined by
reference to the percolation threshold. We choose the per-
colation parameter p as the measure of density; it is defined
from the truncated third moment of the fracture size distri-
bution, according to

p ¼ N

L2

ZLfmax

Lfmin

min Lf ;aLð Þð Þ3 f Lfð ÞdLf ð2Þ

where N is the fracture number and aL is the mean size of
a fracture truncated by the boundaries of the cubic domain
of linear size L [de Dreuzy et al., 2000]. The percolation
parameter is less classical than other measures like the frac-
ture number per unit length P30 or the total fracture surface
per unit volume P32 [Davy et al., 2006b]. The advantage of
the percolation parameter over other measures is that it pro-
vides the same rating of the position of the fracture network
with respect to the percolation threshold whatever the frac-
ture size distribution. In what follows, the sparse network

case corresponds to p = pc,, while the dense network case will
be taken as p = 3pc for the LONG and DIST configurations.
Because of numerical limitations, the fracture density is
bounded toward larger values by time constraints imposed on
running the flow simulations.

2.2. Aperture Distribution of Individual Fractures

[14] As described at length in the introduction, geological
fractures are defined by two facing rock surfaces, which are
rough but can be approximated at large scales as two parallel
planes. If the fracture walls do not touch each other, the

Figure 1. Examples of discrete fracture networks: (left) with long fractures (LONG) and L/Lfmin = 10,
(middle) with a power law fracture size distribution (DIST) and L/Lfmin = 10, and (right) with uniform
fracture sizes and L/Lfmin = 5 (SHORT). (top) Two networks that are close to the percolation threshold
( p/pc = 1.1) and (bottom) those that are significantly above it (p/pc = 3). Note that colors do not have
any further meaning than identifying the different fractures.

Table 1. Common Characteristics of the Discrete Fracture
Networksa

Parameter Notation Value

Network Scale
Domain size [L, L, L] DIST: L/Lfmin = 10

SHORT: L/Lfmin = 5
Orientation distribution Uniform
Position distribution Poissonian
Length distribution SHORT Lf = Lfmin

DIST Lfmin ≤ Lf ≤ Lfmax

LONG Lf = Lfmax

Fracture density p/pc 1.05 ≤ p/pc ≤ 3

Fracture Scale
Roughness exponent Η 0.8
Cutoff length Lc 0.5 ≤ Lc/Lfmin ≤ 3
Fracture closure cfrac 0.5 ≤ cfrac ≤ 3

aDensity is defined by the percolation parameter p with pc its value at
percolation threshold. The maximum fracture length Lfmax is not equal but
close to the system size L as the truncation of the largest fractures by the
cubic system generates a complex object, the typical size of which may
be somewhat larger than the system size L.
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distribution of local apertures, a, is simply the difference
between the two facing topographies, and its mean value ā
is equal to the separation between the two average planes,
traditionally denoted mechanical aperture, am. When the
wall topographies are brought sufficiently close to each
other, they touch at one point, at which a goes to zero. In our
model, we allow further closure of the fracture by “melting”
the overlapping rock masses into each other. In other words
we put all negative local values of the aperture to zero. The
motivation for this procedure is mostly simplicity, and its
mechanical validation may be considered doubtful; it is how-
ever common practice in the field [Brown, 1987; Thompson
and Brown, 1991; Thompson, 1991]. A fracture with closed
zones has a mean aperture that is larger than its mechanical
aperture: ā > am.
[15] As the two fracture walls of a natural fracture exhibit

Gaussian height distributions of identical amplitudes, and
due to the closure rule presented above, the aperture field is
distributed according to a Gaussian law truncated so that a
values always be nonnegative:

p að Þ ¼ 1

sa

ffiffiffiffiffiffi
2p

p e
� a� amð Þ2

2s2
a if a ≥ 0

0 if a ≤ 0

������� ð3Þ

where sa = sa(Lf) is the standard deviation of the overall dis-
tribution prior to the truncation of negative values. Further-
more, the spatial organization of this distribution obeys the
following constraints: wall topographies are (i) self-affine and
(ii) matched above a characteristic scale Lc, which we denote
correlation length. Note that the meaning of that correlation
length is unusual, since the two surfaces are uncorrelated with
each other at scales smaller than Lc, and identical above.
Consequently, prior to the truncation of negative aperture
values, the aperture field is self-affine up to the correlation
length Lc and exhibits no spatial correlations at scales larger
than Lc [Brown, 1995; Méheust and Schmittbuhl, 2003]. In
other words, the standard deviation of a computed on a win-
dow of size l, sa(l), and prior to its truncation to only positive
values, scales as [Schmittbuhl et al., 1995]:

sa lð Þ ∝ lH for 0 ≤ l ≤ Lc
sa lð Þ ∝ LHc for Lc ≤ l ≤ Lf

;

�
ð4Þ

whereH is the Hurst exponent (or roughness exponent) that is
characteristic of the self-affinity. Note that after truncation of
the negative values, the effective standard deviation of a
computed on a window of size l, sa*(l), is smaller than sa(l).
[16] The above scale-invariance property corresponds to a

power spectral density S = |ã|2 (where the ã denotes the
Fourier transform of a) of the aperture field prior to trunca-
tion in the form [Méheust and Schmittbuhl, 2003]:

S kð Þ ¼ j~aj2 kcð Þ for k ≤ kc

S kð Þ ¼ j~aj2 kcð Þ k

kc

� ��2 1þHð Þ
for k ≥ kc

8><
>: ð5Þ

where k is the two-dimensional Fourier vector along the frac-
ture plane, k is its Euclidian norm, and kc is the wave number
corresponding to the correlation length. This description in the

Fourier space is completely equivalent to that in terms of
spatial correlations.
[17] Provided that the Hurst exponent be set to 0.8

[Bouchaud et al., 1990], our statistical model of rough frac-
ture is based on three parameters: the ratio of the fracture
length to the correlation length, Lf /Lc; the root mean square
amplitude of the aperture field, which we can choose to
define at the scale of the fracture, sa = sa(Lf); and the
mechanical aperture am. We introduce the a priori fracture
closure as the ratio of sa to the mechanical aperture:

cfrac ¼ sa

am
: ð6Þ

cfrac represents the magnitude of the roughness relative to the
distance between the two mean planes of the fracture walls. It
is important to keep in mind that ā and sa*, differ all the more
from am and sa, respectively, as cfrac, and therefore the pro-
portion of closed regions within the fracture plane, are larger.
Consequently, the effective fracture closure

c*frac ¼
s*a
�a

differs all the more from cfrac as the closure is larger
(Figure 2a). From equation (3) it follows that

p a=amð Þ ¼ 1

cfrac
ffiffiffiffiffiffi
2p

p e
� a=am � 1ð Þ2

2c2frac if a ≥ 0

0 if a ≤ 0

�������
and the proportion of closed regions within the fracture plane
is simply

g cfracð Þ ¼ p a ¼ 0ð Þ ¼ 1

2
1� erf

1ffiffiffi
2

p
cfrac

� �	 

: ð7Þ

Figure 2b illustrates the dependency of g on cfrac. Note that
the distribution of the local fracture transmissivities, p(T), can
be derived directly from the p(a) by assuming locally the
validity of the cubic law:

p Tð Þ ¼ 1

sa

ffiffiffiffiffiffi
2p

p 1

3b1=3T2=3
exp �

T=bð Þ1=3 � sa=cfrac
� �2

2s2
a

0
B@

1
CA
ð8Þ

for T > 0, with b = 1/12. The aperture and transmissivity
distributions are illustrated in Appendix A.
[18] In conclusion, the aperture distribution of a rough frac-

ture is fully described by the set of parameters (c, sa, Lf /Lc).

2.3. Variability Among the Fractures of a Network

[19] A given DFN consists of rough fractures all described
by the same statistical model. The variability within the pop-
ulation of fractures arises from two effects: first, the variability
among the values chosen for c, sa, and Lf /Lc; and second,
through the stochastic nature of the aperture field generation
for individual fractures. We have chosen to consider a frac-
tured medium that is homogeneous to some extent, in that the
correlation length of its fractures, Lc, and the fluctuations of
their roughness, if measured at the same given scale for all, are
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both uniform across the medium; consequently, sa(Lc) is
uniform. Furthermore, we assume that the mechanical load per
surface unit, FN/Lf

2, that is imposed on each fracture plane, and
which is responsible for its partial closure, is uniform across
the medium as well, and independent of the fracture orienta-
tion: in other words, the stress tensor within the medium is
uniform and isotropic. These are reasonable simple assump-
tions if all fractures in the network arise from the same frac-
turing process. Another more subtle assumption, which we
have not addressed here, would consist in correlating the
mechanical load and the fracture orientations.
[20] Let us now relate the assumption of uniform load

per surface unit and the variability of the fracture closures
in the DFN. Persson [2001] developed a theory of contact
mechanics between randomly rough surfaces. If the contact is
elastic, it is well known [see, e.g., Johnson, 1985] that the
contact between two surfaces is equivalent to that between a
flat plane and a rough surface corresponding to the negated
aperture field. Persson [2001] addressed in particular the case
of a rough topography that is self-affine up to a given cutoff

scale. This corresponds exactly to the closure of our synthetic
rough fractures, the system size being our fracture size Lf and
the cutoff scale being our correlation length Lc. These theo-
retical results by Persson [2001], later verified by numerical
simulations [Persson et al., 2002], showed that the total
contact surface is always proportional to the mechanical load
(computed by considering asperities defined down to the
smallest meaningful scale), that is, that closure occurs under
constant stress on contact points. Furthermore, if Lc is inde-
pendent of the system size Lf, the contact surface Sc is also
independent of Lf, but if Lc is equal to Lf, then Sc is propor-
tional to Lf

H. Expressed for the fractures in our DFNs, it
means that the ratio of the closed area of a given fracture’s
plane to its total area is

Sc
L2f

¼ F ⋅
FN

L2f
⋅ min LHc ; L

H
f


 � ð9Þ

where both the stress factor FN/Lf
2, the cutoff scale Lc and

the prefactor F are uniform over the medium. The mechanical
properties of the bulk material (elastic modulus and Poisson
ratio) are here hidden inside the prefactor F, which also fea-
tures the geometric parameters that are characteristic of the
rough surfaces: typical size of the smallest asperities, cutoff
length Lc, and Hurst exponent H [Persson, 2001]. As the
relation between the a priori closure cfrac of a fracture and Sc/Lf

2

is the one to one function g defined by equation (7), identical
for all fractures in the medium (at least if

ffiffiffiffiffi
Sc

p
≤ Lc), one can

define a global medium closure, c, as

c ¼ g�1 F ⋅
FN

L2f
⋅ LHc

� �
ð10Þ

such that each individual a priori fracture closure can be
written as

cfrac ¼ c if Lf ≥ Lc

cfrac ¼ g�1 g cð Þ⋅ Lf
Lc

� �H
 !

if Lf ≤ Lc
: ð11Þ

[21] Let us examine what this means for the different types
of DFNs. In SHORT systems, all fractures have the same
size Lf and thus the same fracture closure. In LONG systems,
all fractures have a length larger than Lc and thus a constant
fracture closure cfrac equal to c. For DIST systems with Lc
from 0.5 to 3 and L = 10, the a priori closure of a fracture
depends on its length. For these systems we make the
approximation that the a priori individual fracture closures
are all equal to the medium closure c. This is not true for the
majority of fractures that have length smaller than Lc, but
holds for the large fractures that contribute most signifi-
cantly to the overall flow.
[22] In conclusion, assuming a uniform and isotropic stress

tensor within the medium results in all fractures having the
same a priori closure in SHORT and LONG systems. We
make the approximation that this property also holds for
DIST systems. The a priori fracture closure cfrac is then a
scalar quantity that is uniform over the whole medium: for
DFNs of types LONG and DIST, it is equal to the medium
closure c, while for DFNs of type SHORT, it is related to c
according to equation (11). Note that in contrast to cfrac, the
individual effective fracture closures c*frac can exhibit a

Figure 2. Evolution of (a) the effective fracture closure
c*frac and (b) the proportion of closed regions of a fracture
as a function of the imposed a priori fracture closure, cfrac.
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dispersion around a mean value due to the stochastic nature
of the topographies. In what follows, we shall study the
permeability of the medium as a function of the a priori
fracture closure cfrac.

2.4. Flow Model in Individual Fractures

[23] The flow in fractures is modeled according to the
lubrication approximation, i.e., assuming a creeping flow (no
inertial effects) and a gradient of the aperture field topogra-
phy much smaller than 1 [Méheust and Schmittbuhl, 2001;
Zimmerman and Bodvarsson, 1996a, 1996c]. It implies that
(i) the pressure field can be considered to only depend on the
two-dimensional position along the mean fracture plane, and
(ii) that the local flux q field, defined as the integral along the
fracture aperture of the flow velocity field, is related at each
point of the mean fracture plane to the local pressure gradient,
rrrrrrP, according to a local cubic law in the form:

q ¼ � a3

12h

#

P ð12Þ

where a is the local aperture as defined above and h is the
viscosity of water. Note that equation (12) is identical to the
well-known cubic law relating the volumetric flow through a
parallel plate fracture to the macroscopic gradient defined at
the fracture scale. By definition [see Johnson, 1985] the local
flux is a conservative quantity, which yields the well-known
Reynolds equation:

#

⋅ a3

#

P

 � ¼ 0: ð13Þ

To our knowledge, this equation was first utilized to study the
flow through a geological rough fracture by Brown [1987].
Inverting this equation provides the pressure field in the
fracture plane from the knowledge of the aperture field and of
the pressure conditions on the fracture domain boundaries;
the local fluxes are then computed through equation (12), and
the total volumetric fluxQ through the fracture as the integral
of local fluxes through an appropriate section of the fracture.
[24] Models based on the Reynolds equation suffer from

the limitations mentioned above. However, the assumption
of the slowly varying aperture field is valid at sufficiently
large length scales, due to its self-affine nature: its gradient
goes to 0 at very large scales, and to infinity at infinitely small
scales; since it is mostly the few larger Fourier modes of the
aperture field that control the transmissivity of the fracture
[Méheust and Schmittbuhl, 2003], the limitations of the Rey-
nolds equation are mostly those inherent to the Stokes flow
approximation [Brown et al., 1995;Witherspoon et al., 1980].
In other words, our study is only valid for Reynolds numbers
smaller than 1 in all fractures of the network. This is not a very
severe limitation under hydrogeological conditions.

2.5. Flow Model at Network Scale

[25] In order to define a bounded open domain, the net-
work is embedded into a cube of edge size L, orientated
along the directions of a x, y, z coordinate system with the
origin at the center of the cube. The matrix is considered
impervious, thus the flow domain is the union of the NF

fractures Wf (f = 1..NF), with NI intersection Sk (k = 1..NI)
between the fractures. The flow model of the previous sec-
tion (at the fracture scale) is complemented with continuity

conditions on fracture intersections Sk, which are written:

hk;f ¼ hk ;∀f ∈ FkX
f∈Fk

qk; f ⋅ nk; f ¼ 0 ð14Þ

where Fk is the set of fractures intersecting on Sk, hk the head
on the intersection Sk, hk,f the trace of the head on Sk in
fracture f, qk,f the flow through the intersection in the frac-
ture f, and nk,f the normal to the intersection Sk in the frac-
ture Wf [Erhel et al., 2009a; Noetinger and Jarrige, 2012;
Vohralik et al., 2007]. The chosen boundary conditions are
classical permeameter boundary conditions: two opposite
faces of the cube have fixed heads (Dirichlet type boundary
conditions) and the four orthogonal faces are impervious
(Neumann type boundary conditions). Boundary conditions
on the fracture f are summarized as:

h ¼ hþ on Gf ∩ Gyþ
h ¼ h� on Gf ∩ Gy�
q⋅n ¼ 0 on Gf n Gyþ ∪ Gy�


 � ð15Þ

where Gx�, Gx+, Gy�, Gy+, Gz�, Gz+ are the six faces of the
cube and Gf is the border of the fracture f. The direction of
the head gradient along y will be referred to as the main flow
direction.

3. Numerical Methods

[26] We have developed a complete software suite, called
MP_FRAC, which generates a random DFN and simulates a
steady state flow in this network, with various boundary
conditions [Erhel et al., 2009a]. This software is integrated in
the platform H2OLab [Erhel et al., 2009b]. The generation
methods for the networks and for the fracture-scale aperture
distributions are classical and are recalled in Appendices B
and C for completeness. The flow solution method for sin-
gle fractures is classical but features an original measurement
of the connectivity prior to the solving of the flow, while the
flow solution method for full fracture networks is less clas-
sical and applied for the first time to a geophysical study.
They are both described below.

3.1. Independent Resolution of the Flow Inside a Single
Fracture

[27] In section 4 below, we compute the transmissivity of
individual rough fractures inside a DFN and investigate the
statistics of the fracture transmissivities, independently of
their position in the DFN. With this procedure, we aim at
measuring the typical impact of fracture wall roughness on
the hydraulic behavior of a given fracture within the network.
This impact will be utilized for the interpretation of the full
network-scale simulation, which are described in section 3.2
and interpreted in section 5.
[28] The transmissivity of each individual rough fracture is

obtained by computing the pressure field directly on the
square grid on which the aperture field is generated (see
section 2.2), and with simple boundary conditions: a constant
pressure head in-between two of the facing boundaries
(denoted inlet and outlet), and periodic boundary conditions
on the two lateral boundaries. The resolution consists in the
inversion of equation (13) using a conjugate gradient method
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and a dual grid in order for pressure gradients to be computed
in a symmetrical manner at the proper grid nodes. SeeMéheust
and Schmittbuhl [2001, 2003] for a detailed description of the
numerical method.
[29] For these flow simulations at the fracture scale, the

connectivity of the fracture is checked prior to computing the
flow, in the following manner. The aperture field is thresholded
into a mask that only takes two values: 0 for closed areas of
the fracture plane, 1 otherwise. The clusters corresponding to a
mask value of 1 are then labeled using the Hoshen-Kopelman
algorithm [Hoshen, 1997]; if at least one of these clusters
extends throughout the fracture size, parallel to the macro-
scopic pressure head, there exists one connected path of non-
zero apertures from the inlet to the outlet of the fracture. If not
the fracture is considered non-connected, and we do not com-
pute the flow through it. Note that in this manner we also dis-
card a very small proportion of fractures for which the flow
would be possible thanks to the periodic boundary conditions,
along a direction that is very oblique with respect to that of the
macroscopic pressure gradient; for these fractures, the flow
(and, consequently, the transmissivity) computed using peri-
odic lateral boundary conditions is very different from what it
would be using impermeable lateral boundary conditions,
which is why we choose to consider more realistic to define
them as non-connected hydraulically.
[30] For connected networks, we compute the equivalent

fracture permeability, KF, using Darcy’s law at the fracture
scale

KF ¼ Q

LDh
ð16Þ

where Q is the total volumetric flow through the inlet face of
the domain, Dh is the head difference between the domain
inlet and outlet, and L is the characteristic fracture size. We
focus on the dimensionless ratio of the fracture permeability
KF to the permeability K0 of a parallel plate fracture with an
aperture a = sa(Lf)/cfrac identical to the mechanical aperture
of the rough fracture. We recall that sa(Lf) is the standard
deviation of the overall distribution and cfrac is the medium
fracture closure. Whatever the fracture size distribution, K0

is defined unequivocally. Averages will be performed on
500 simulations of individual fractures discretized on 512 �
512 grids.

3.2. Flow Modeling and Simulation in the 3D Fracture
Network

[31] The numerical model of the flow in the entire network,
resolved at the fracture scale, is based on the Mixed Finite
Element method, mainly for two reasons: it ensures both
local and global mass conservation and it provides an accu-
rate velocity field, which can be used in subsequent transport
simulations. We implemented the so-called RT0 scheme
[Brezzi and Fortin, 1991; Raviart and Thomas, 1977]. The
networks considered have a very specific geometry: it is a
3D intricate structure of 2D domains. Since the matrix is
impervious, the mesh is 2D inside each fracture, 1D at the
intersections between fractures, and a 3D set of 2D inter-
secting domains at the network scale. A first difficulty is to
generate this mesh, since it cannot be handled directly by a
mesh generator. A second difficulty is to ensure head and

flow continuity at the intersections of the fractures and a third
challenge is to solve the resulting linear system.
[32] To generate the mesh, a first approach is to first dis-

cretize the boundaries and the intersections, then the 2D
fractures. However, this method induces very small angles
because of the intricate geometry and may fail for some net-
works [Mustapha, 2005]. Therefore, we designed a new
method, introducing a pre-processing step where intersec-
tions are discretized with a regular grid. Moreover, local
adjustments are necessary to guarantee geometrical proper-
ties. We developed this approach in both a conforming and a
non-conforming setting [Erhel et al., 2009a; Pichot et al.,
2010, 2012]. Local modifications and a non conforming
method are also used in Vohralik et al. [2007]. With a hybrid
method and a conforming mesh, it is finally quite easy to
ensure the continuity conditions at the intersections, because
of the choice of the main unknowns (the head at each edge
of the mesh) [Erhel et al., 2009a]. With a non-conforming
mesh, we used the Mortar framework to write the discrete
problem [Pichot et al., 2010]. However, the pre-processing
step induces particular cases where some parts of intersec-
tions are common to three fractures or more. Thus, we had to
generalize the Mortar method to deal with these configura-
tions [Pichot et al., 2012]. The conforming mesh method
has been validated with the non-conforming mesh method
[de Dreuzy et al., 2012] and is used throughout this paper.
[33] Linear equations written at each edge of the mesh

express local mass conservation. The resulting linear system
Ax = b, where x is the trace of hydraulic unknowns on edges
and b accounts for boundary conditions, is large. It has as
many unknowns as edges in the mesh but is sparse, with
roughly five nonzero coefficients per line for a mesh with tri-
angles [Erhel et al., 2009a]. The matrix A of the system is SPD
(symmetric positive definite), also for the non-conforming
case. Thus several solving algorithms can be used: a direct
method, based on the Cholesky factorization; an algebraic
multigrid method; a preconditioned conjugate gradientmethod,
with various preconditioners; a domain decomposition method
[Poirriez, 2011]. High performance computing is required to
handle very large systems. Once the system is solved, it is easy
to compute the head inside each triangle and the transverse flux
at each edge, using the RT0 scheme.
[34] An example of the resulting flows is shown in Figure 3.

It addresses the sparse DIST network of Figure 1 for the two
configurations of smooth (parallel plate) and rough fractures,
and for a fracture closure cfrac of 1. The two configurations
exhibit a strong channeling both at the network scale and at the
fracture scale and a wide variety of flow values. Comparison
between the two demonstrates the strong influence of the
fracture aperture distribution on the volume occupied by the
flow: it is heavily channelized within the fracture planes in
the rough fracture configuration, appearing more 1D than 2D.
The focus of the present article is to determine to which extent
these differences in flow structures impact the equivalent
permeability of the medium.

3.3. Network Connection and Equivalent Permeability

[35] Local closure of fractures may induce network dis-
connection at larger scales. It occurs when closed areas pre-
vent flow through a fracture plane that the network structure
would otherwise (i.e., at moderate fracture closure) direct a
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significant volumetric flow to. A particular case occurs when
an intersection between two fractures that is an essential
hydraulic link at moderate fracture closures falls entirely
inside a closed zone of one of these fractures. In the most
critical configuration, one particular fracture acts as a global
bottleneck, focusing all the flow through the network; it is
sufficient that the closure of that fracture create a closed zone
that renders its transmissivity null for the full network to be
hydraulically disconnected. Less radical configurations fea-
ture the closure of more than one bottleneck on several par-
allel major flow paths. The identification of the disconnected
networks is performed during flow simulation using the fol-
lowing method. Closed zones within a given fracture are
allocated an aperture four orders of magnitude smaller than
the mean aperture of the fracture in question. According to
the cubic law (12), their local transmissivity is then twelve
orders of magnitude smaller than the mean fracture trans-
missivity. By imposing that the precision for the numerical
flow resolution be much larger (10�9 in practice) than the
latter local transmissivity ratio, we ensure that the flow solver
fails to solve the linear system for disconnected networks. In
consistency with the percolation theory, the probability for a
network to be connected (or connection probability) is
denoted P. The disconnection probability 1-P is expected to
increase with fracture closure.
[36] For connected networks, we compute the equivalent

network permeability according to equation (16) where L is
the medium linear size. As we focus here on the influence of
fracture scale heterogeneities on the hydraulics at the net-
work scale, we compare the behaviors of two networks with
the same topology: one with rough fractures, the other one

with parallel plate fractures. More precisely: for each studied
network topology, we first simulate the flow in a configura-
tion where heterogeneities of the local fracture apertures are
taken into account, and compute the DFN’s equivalent per-
meability KN+F (the lower subscript “N+F” stands for
“Network+Fracture” meaning that complexities are
accounted both at the network and at the fracture scales).
Equivalent permeability using Darcy’s law at the network
scale is computed according to:

KNþF ¼ Q

LDh
ð17Þ

where Q is the total volumetric flow through the inlet face of
the domain, Dh is the head difference between the domain
inlet and outlet, and L is the characteristic network size. We
then simulate the flow through a network with the same
topology and using the same computational mesh, but where
each (rough) fracture has been replaced by a parallel plate
fracture with the same (arithmetic) mean aperture. We denote
KN the corresponding equivalent permeability (the subscript
“N” stands for “Network” meaning that complexity only
comes from the network scale while apertures are uniform
within fractures). Let us underline here that, while in the latter
case the fracture local aperture fields are uniform within each
fracture, so that one can assign one scalar aperture for each
of them, they are not homogeneous over the population of
fractures. Indeed, the fracture aperture standard deviation at
scale Lc, G, is uniform over the medium, and so is the fracture
closure cfrac = sa(Lf)/am, where the overall standard deviation
of a fracture’s local aperture field sa(Lf) depends on the
fracture size distribution according to equation (4); thus, the

Figure 3. Flow field within the sparse DIST network shown in Figure 1 (top middle), (left) when hetero-
geneities of the fracture local apertures are taken into account (cfrac = 1) and (right) when fractures are mod-
eled as parallel plates. Scale on the right displays the logarithm of the mean flow value within a mesh cell.
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relation am = sa(Lf)/cfrac imposes the variability of the
mechanical apertures am among fractures in the DFN.
[37] We then compute the ratio of the permeabilities KN+F

and KN for each DFN realization and investigate how this
ratio is distributed over a large population of statistically
equivalent DFNs. In this manner we filter as much as pos-
sible the first order influence of the network topology on the
medium permeability, and account for the interaction
between that topology and the flow localization within
fracture planes. In what follows we determine the mean
value for the permeability ratio over NSC connected Monte-
Carlo simulations as

KNþF

KN

� �
¼ 1

NSC

XNSC

t¼1

KNþF

KN

� �
i

ð18Þ

Note that we study the effect of fracture closure on (i) net-
work connectivity and (ii) equivalent permeability for
connected networks separately, excluding the non-connected
fracture networks from the statistics of the equivalent per-
meability, in a manner similar to what was done in the study
at the fracture scale (see section 3.1). In this study, we limit
our investigations to the mean permeability ratios to obtain
the general tendencies of the coupling between the fracture-
and network-scale flow complexities. The variability of the
permeability ratios is also of interest and deserves in itself a
full study that should account for the dependence of the
variability on the different fracture sizes. This could be done
for example by fixing the larger fractures to focus solely on
the variability of the fracture-to-network flow correlations.

3.4. Model Parameters

[38] Table 1 summarizes the model assumptions and para-
meters. We have chosen to normalize all dimensions by the
minimal fracture size Lfmin. The normalization by Lfmin takes
different meanings depending on the nature of the fracture
size distribution. For networks of “infinite” fractures (LONG),
the sole characteristic scale is the system size (Lfmin ≫ L and
Lfmax ≫ L). In the other cases (DIST and SHORT), the sig-
nificant parameter is L/Lfmin. For fracture networks having
a non-trivial fracture size distribution (DIST), enlarging the
system is exactly equivalent to enhancing the fracture resolu-
tion, that is keeping L constant and lowering Lfmin.
[39] The choice of the size range L/Lfmin and of the num-

ber of Monte-Carlo simulations NSC derives from a balance
between the two necessities of (i) describing a reasonably
large network topological complexity and (ii) sampling the
permeability variability over a sufficiently large number of
DFN realizations. A large number of Monte-Carlo simula-
tions is mandatory due to the strong variability of the network
topology over different realizations, especially for large dis-
tributions of the fracture sizes (DIST). The topological vari-
ability fundamentally arises from the numerous respective
positions of the middle-sized fractures, which are found in
limited numbers because of the power law size distribution
and because the number of fractures in the network that can
be handled by the simulation is also limited. To ease off this
necessary trade-off between, on the one side, the number of
fractures in the DFNs and the range of the described length
scales, and on the other side, the number of DFN realization
that are computed, we have looked for the most adapted flow

numerical solvers to make it possible to solve systems of
the order of 105 to 106 mesh cells in a few seconds to a few
minutes at most [Erhel et al., 2009a]. For these sizes of sys-
tems, the most efficient system solvers are based on the
multifrontal method [Davis and Duff, 1999]. Thanks to this
optimization, we fix L/Lfmin = 10 for LONG and DIST net-
works, and L/Lfmin = 5 for SHORT networks. The reason
why we can afford less realizations and smaller systems in the
SHORT case is that the cumulated fracture surface is much
larger withmore dead ends and fractures that do not effectively
take part to connectivity. Thus, SHORT systems require more
CPU time for the same relative density measured with respect
to the percolation threshold. Let us here underline that the
model studied is quite complex as it involves structures at the
fracture and at the network scale that are both handled sto-
chastically. The number of Monte-Carlo simulations ranges
from 102 to 103 simulations for the denser and the sparser
networks, respectively. The smaller number of simulations for
the denser structures is justified by the less critical nature of the
flow structure in those cases. The number of simulations was
fixed by a preliminary convergence analysis that showed that
results were not changed by more than 5% when doubling the
number of simulations. We explore the parameter space
densely and report in what follows the characteristic tenden-
cies obtained for a subset of the simulations performed.
Overall the numerical simulations performed for this study
amounts to around 2 106.

4. Results for Individual Fractures Within a DFN

[40] The case of individual fractures needed to be revisited
in order to get a reference behavior at the fracture scale in the
exact conditions modeled in complete “N+F” systems. For-
mer studies have either handled different fracture aperture
models or the same model on a much more restricted range
of closures [Méheust and Schmittbuhl, 2003] or not
accounted for the distribution of fracture sizes. For poly
disperse systems (DIST), since the correlation length Lc is
identical for all fractures, the ratio Lf/Lc depends on a par-
ticular fracture’s length. This does modify the averaged
connectivity and hydraulic properties of the medium. We
examine the disconnection probability 1-P and permeability
ratio as defined by section 3.1 for 500 single fractures that
follow the length distribution of the three fracture network
types SHORT, DIST and LONG. Results are displayed in
Figure 4a for Lc = 1 and Lc = 3 in the DIST case.
[41] The disconnection probabilities 1-P (Figure 4a) log-

ically increases while increasing the fracture closure c and/or
the aperture correlation scale Lc, as both effects result in
extending the area of the closed regions of the fracture plane
1-P follows the average proportion of closed regions in a
fracture’s plane.
[42] Disconnection occurs preferentially in the fractures of

size smaller or around the correlation scale Lc because, for
these fractures, correlations exist in the aperture field up to
the scale of the fracture length, so that a single closed region
of the fracture plane extending throughout the fracture may
by itself disconnects it. Fracture disconnection might thus
occur either by reducing the fracture lengths (shift from
DIST to SHORT type of fracture length distribution) or by
enlarging Lc, which is in effect the cut-off length controlling
the size of the closed regions.
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[43] 〈KF/K0〉 varies consistently with 1-P (Figure 4b). It
goes to 1 at infinitely small closure cfrac (i.e., when the local
transmissivity distribution vanishes) and decreases monotoni-
cally with the fracture closure, while the variability steadily
increases. As 〈KF/K0〉 is always smaller than 1, distributed
apertures always reduce the equivalent permeability compared
to the parallel plate behavior. This effect results from the var-
iability of the flow channeling inside the fracture plane. It
is in particular controlled by the orientation toward the average
flow of the channels with the largest local transmissivities
[Méheust and Schmittbuhl, 2001]. Configurations detrimental
to flow being more numerous than those enhancing flow,
permeability is reduced on average. Flow reduction is
enhanced by larger Lc values. These results are consistent with
the ones previously acquired by Méheust and Schmittbuhl
[2001, 2003], complement them on a fuller range of closure
values. For the DIST case, they also quantitatively differ

because of the Lf/Lc variability induced by the fracture size
distribution.

5. Results for Full Fracture Networks

[44] We are reporting the effect of both fracture aperture
and fracture network properties by systematically varying
the fracture closure c, the cutoff length Lc, the type of frac-
ture size distribution (SHORT, DIST, LONG) and the den-
sity of fractures in the network, p/pc. Beyond the systematic
characterization of connectivity and effective permeability,
we seek a better understanding of the interactions between
fracture-scale heterogeneities and network-scale topology by
comparing the fracture-scale and network-scale results.

5.1. Disconnection Probability

[45] Disconnection at the network scale (Figure 5) follows
the same tendency as at the fracture scale (Figure 4a). Dis-
connection grows monotonously with the closure cfrac. The
disconnection probability is a more pronounced phenomenon
at the network scale, because closed areas do not have to
extend across whole fracture planes for the network to lose its
connectivity, but it is sufficient for them to just close the
bottle necks of the connectivity structure. Consequently, the
disconnection probability 1-P is significant for DFNs that are
close to the percolation threshold, and sharply decreases as
the density of fractures is increased (Figure 5, squares com-
pared to disks), since a larger number of potential paths are
then made available. For DFNs with a larger density, the
disconnection rate becomes even lower at the network scale
than at the fracture scale because of the existence of parallel
connected paths that cannot be all disconnected by closed
areas. This phenomenon is even more marked for SHORT
than for DIST networks (Figure 6b compared to Figure 6a) as
the number of connected paths increases faster with density
for smaller fractures (with the measure of density given by
equation (2)).
[46] Because of the finite size of the systems studied, the

latter analysis will likely hold for DIST networks but is
incomplete for SHORT networks at threshold. In fact, for
DIST networks, fractures forming the connected structures
range over a limited size interval [de Dreuzy et al., 2001c;
Wellman et al., 2009]. Increasing the system size or equiva-
lently enhancing the system resolution will not issue dramatic
changes in the system connectivity, but rather add smaller
fractures to the existing main connected paths. On the con-
trary, for SHORT networks at the percolation threshold,
increasing the system size results in enlarging the number of
fractures that are essential to network connectivity; indeed,
the number of these links scales as LdR with dR = 1.14 in 3D
systems [Stauffer and Aharony, 1992]. As the system size is
increased more and more, the probability that breaking just
one of these links might disconnect the whole network
increases to 1. For SHORT networks that are lying above the
percolation threshold, this situation is not to be encountered
as long as the typical distance between two independent
paths, also called the correlation length in the percolation
theory terminology (but not to be confused with the our
correlation length Lc), is smaller than the system size.

Figure 4. (a) Fracture-scale disconnection probability 1-P
and (b) average permeability ratio 〈KF/K0〉. When not indi-
cated, values are valid for all values of Lc larger than 1.
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5.2. Mean Permeability Ratio 〈KN+F/KN〉
[47] The behavior of the mean permeability ratio 〈KN+F/KN〉

as a function of the medium closure is illustrated in Figure 6.
Larger values close to 1 indicate a restricted effect of hetero-
geneous fracture aperture distributions, while values deviat-
ing from 1 indicate on the contrary that taking heterogeneities
below the fracture scale into account in the model changes
the DFN’s hydraulic behavior significantly. 〈KN+F/KN〉 is also
always smaller than 1, at least in the density range studied
here. It means that the local fracture aperture distribution
reduces the equivalent network permeability systematically. In
addition, 〈KN+F/KN〉 ranges between 0 and 1 covering almost
all possible values, and systematically decreases as a function
of the closure cfrac. This effect first comes from the influence of
the aperture distribution at the fracture scale itself, measured
by 〈KF/K0〉 (see section 4). 〈KN+F/KN〉 and 〈KF/K0〉 do in fact
display very similar tendencies as functions of the fracture
closure cfrac (Figure 6, thick lines compared to line and sym-
bols plots of the same color). However, they differ quantita-
tively, except in few cases like for the distributed fracture

length networks DIST with Lc = 1 at p/pc = 3, and the long
fracture networks LONG with Lc = 1 at p/pc = 1.05.
[48] These two specific cases occur at highly different

fracture densities. In the second case (long fractures), the
equality is expected because, networks that are close to the
percolation threshold consist of almost a unique fracture.

Figure 5. Network-scale disconnection probability for
SHORT and DIST networks. LONG networks never become
disconnected. Note that the vertical scale has been chosen to
be equal in both graphs.

Figure 6. Network- and fracture-scale permeability ratios.
Each point represents an average over 102 and 103 simula-
tions for the denser and sparser cases respectively.
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A small difference between the network scale and the frac-
ture scale occurs because of the possible connection by 2 to
3 diagonal fractures in series rather than 1 fracture in some
configurations. These differences are negligible for system
sizes L much larger than the cut-off length Lc.
[49] In most cases, the fracture and network scale perme-

ability ratios differ significantly. There exists both config-
urations for which the network scale permeability ratio is
smaller than its fracture scale counterpart, and configurations
for which it is larger. When 〈KN+F/KN〉 > 〈KF/K0〉, two effects
compete: aperture heterogeneities below the fracture scale
tend to decrease the medium permeability, while the network
topology tends to increase it by allowing the fluid to select a
path through the most transmissive fractures. For example in
the LONG case above percolation threshold (Figure 6a),
networks are made up of a superposition of long fractures,
each of them almost extending through the whole domain.
Taken individually, they would lead to a permeability ratio
identical to that at the fracture scale. Taken together, they
intersect themselves and offer additional larger transmissiv-
ity shortcuts and deviations, enhancing thus the equivalent
network permeability.
[50] On the contrary, for the SHORT networks made up of

small fractures (Figure 6c), the effect of the network is to
reduce the equivalent permeability (〈KN+F/KN〉 < 〈KF/K0〉) in
complete consistency with the previously reported effect on
the disconnection rate (see section 5.1). These connected
networks made up of small fractures have the most complex
topology. Close to the percolation threshold, they display a
large number of bottle necks, which are expected to be
highly sensitive to local apertures within fracture planes.
A small reduction of the aperture around these bottle necks
will strongly reduce the full network permeability, while a
large enhancement of the permeability of the same zones will
only slightly increase the network permeability. The perme-
ability ratio reduction can be quite large around the percola-
tion threshold where 〈KF/K0〉 tends to 0.5 while 〈KN+F/KN〉
tends to 0. If that reduction is less marked above the thresh-
old, for which bottle necks are rarer, it is still very well
marked and can be explained within the framework of critical
path analysis [Ambegaokar et al., 1971; Charlaix et al.,
1987; Hunt and Gee, 2002]. Above the percolation thresh-
old, small apertures acting as bottle necks lower the perme-
ability of the whole path to which they belong. Increasing the
fracture density means increasing the number of alternative
paths and progressively removing the limitations induced by
smaller fracture apertures by allowing them to be bypassed.
[51] The length-distributed configurations (DIST) display

a richer range of behaviors, with network-scale permeability
ratios smaller than their fracture-scale counterpart around the
percolation threshold (p/pc = 1.05), as for the SHORT case
(Figure 6b, squares), but of same magnitude for higher
densities p/pc = 3 and Lc = 1, as for the LONG case
(Figure 6b, red circles). Around the percolation threshold,
〈KN+F/KN〉 is not affected by Lc and tends to be controlled
essentially by the fracture network topology and the fracture
closure cfrac and not by the repartition of apertures within the
fractures (Lc), once the network has proven to be connected.
In other words, for DFNs at the percolation threshold, Lc
mostly influences the disconnection rate 1-P but not the
permeability ratio of the connected networks. If closed areas
do not cover the network bottle necks, their relative extension

within the fracture does not influence the network transmis-
sivity. Flow equally bypasses these closed zones whatever
their extension as long as they do not disconnect the network.
While the equivalent permeability is not much altered, flow
structures within the network vary consequently as shown
by Figure 3. These variations concern both the fracture scale
and the network scale. Aperture-scale heterogeneity tend to
modify the circulation pattern within the fracture because
of constraints imposed by the neighboring fractures. This is
shown in Figure 7, which compares flows in a given fracture
at two different fracture closures cfrac equal to 0.25 (Figure 7,
left) and 1 (Figure 7, right) within the network displayed in
Figure 3. The thick black segments identify the intersections
of the fracture plane with the neighboring fractures. The
comparison of the flow and head fields (Figures 7 (middle)
and 7 (bottom)) shows that when aperture heterogeneity is
present in the fracture, the flow is partly re-directed to the top
left side of the fracture (from left to right in Figure 7) and that
this re-direction cannot be explained by the local transmis-
sivity structure (Figure 7, top). In fact the right side of the
fracture remains hydraulically well connected.
[52] Above the percolation threshold, percolation is less

critical, and the effective permeability becomes sensitive to
the mean medium permeability, and consequently to the cut-
off scale of the aperture correlation pattern (Figure 6b, red
circles compared to black disks).

5.3. Permeability Correction Factor

[53] As shown in the previous section, 〈KN+F/KN〉 and 〈KF/
K0〉 display similar tendencies as a function of fracture clo-
sure cfrac. The same kind of similarity is displayed both for
aperture cutoff scales Lc and network topologies (density and
length distribution). Based on this similarity, and depending
on whether the network permeability is reduced or enhanced
by the fracture aperture distribution, we define the correction
factor a:

if

KNþF

KN

� �
KF

K0

� � > 1 then a ¼
KNþF

KN

� �
KF

K0

� � � 1

otherwise a ¼ 1�
KF

K0

� �
KNþF

KN

� �
: ð19Þ

The absolute value of a is a measure of how much the typ-
ical ratio of the permeability of the full fracture network to
that of the corresponding parallel plate fracture network differs
from the typical permeability ratio of a single rough fracture
within the network to the corresponding parallel plate fracture;
a < 0 when the network structure induces a reduction of the
permeability compared to the equivalent fracture transmissiv-
ity. Conversely a > 0 when permeability is enhanced. Note
that equation (19) defines 〈KN+F/KN〉/〈KF/K0〉 as continuous
for 〈KN+F/KN〉 = 〈KF/K0〉. The correction factor a can take all
possible negative values as 〈KN+F/KN〉 can tend to zero for
hardly connected networks. a is however bounded above by
the ratio of the maximum local transmissivity to the minimum
one, minus 1. Although not providing any new information
with respect to 〈KN+F/KN〉 and 〈KF/K0〉, a demonstrates
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several essential features of the effect of the network structure
on the upscaling of local transmissivity distributions. First, a
ranges over a wide interval between �31 and +2 (Figure 8).
Except for networks of long fractures or very dense networks,
the network topology generally induces a reduction of per-
meability rather than an increase. Second, a is monotonic as
a function of the fracture closure cfrac. For given assumptions
for the fracture and network structures (fixed length distri-
bution, Lc and p/pc), a is either monotonically increasing,

monotonically decreasing or steadily zero. Third, the varia-
tions of a are rather quadratic than linear, which implies a
strong impact of fracture closure on the reduction and
enhancement factors. The systematic similarity between frac-
ture- and network-scales variations previously evoked

Figure 7. (top) Log-permeability fields, (middle) logarithm
of the flow fields, and (bottom) head fields in one of the
large fractures of the DIST network shown in Figure 1 at
fracture closures (left) cfrac = 0.25 and (right) cfrac = 1; the
correlation length is Lc = 1. The traces of the intersections
with the other fractures are represented as black linear seg-
ments superimposed on the permeability and flow fields.
Color scales are all relative to the minimum (xmin) and max-
imum (xmax) of the quantity (x) represented. Colors are
matched to the corresponding quantity on a continuous
scale where the discrete values xmin + k/6 (xmax � xmin), for
0 ≤ k ≤ 6, correspond respectively to the following colors:
navy (k = 0), blue (k = 1), cyan (k = 2), green (k = 3), orange
(k = 4), red (k = 5), and purple (k = 6), shown at the very
bottom of the figure. Note that the small-scale color variabil-
ity of the flow field (Figure 7, middle) comes from the repre-
sentation of the norm of the flow field averaged over the
edges of each mesh cell.

Figure 8. Permeability enhancement and reduction factors
a+ and a� as functions of fracture closure c for different
values of fracture density p/pc and cut-off scale Lc. The
dashed line next to the data plot represents the closest power
law tendency: cfrac

1.75.
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translates to the variations of a as a function of the fracture
closure cfrac. Moreover the scaling tendency appears to be very
close to cfrac

1.75 (dashed line compared to data point). Deviations
are generally less than 5% and do not go over 10%, which is
quite remarkable given the simplicity of the power law model.
The case relevant to percolation theory at threshold should be
set aside as already discussed in section 5.1. Thus a may be
approximated by:

a cfracð Þ ≈ a2
cfrac
2

� �1:75
ð20Þ

where we have chosen to relate the characteristic amplitude of
a to its value a2 = a(cfrac = 2).

6. Discussion

[54] The correction factor a may be interpreted as the
correction that should be applied to the network permeability
by using equations (19) and (20), to account for aperture
distributions within fracture planes, without modeling them
explicitly:

if a > 0 then KNþFh i ¼ KNh i KF

K0

� �
1þ a2 cfrac=2ð Þ1:75
� �

otherwise KNþFh i ¼ KNh i KF

K0

� �
1

1� a2 cfrac=2ð Þ1:75
� � :

ð21Þ

a2 can be considered to fully characterize the interaction
between fracture and network scale heterogeneities. When
a2 = 0, the full medium permeability can be directly written
as the network permeability times the mean equivalent
fracture permeability ratio 〈KN+F〉 = 〈KN〉〈KF/K0〉. In other
word, fracture-scale and network-scale effects on the
equivalent permeability are completely decoupled in this
case. Such a situation occurs for example when networks are
made up of a small number of long fractures (LONG) with a
cut-off scale sufficiently small compared to the system scale.

This is typically a situation where homogenization is
expected to be closely verified. When density increases, a2

becomes positive as the network structure can offer bypasses
to some of the smallest permeability areas. In most cases, the
correction (21) should be applied to the simple decomposi-
tion into network-scale and fracture-scale permeabilities.
[55] We interpret a2 as the upscaling parameter character-

izing the effect of the network topology on the upscaling of
permeability, from its fracture scale measure and up to the
DFN’s equivalent permeability in the same spirit as the power-
averaging exponent w [de Dreuzy et al., 2010; Desbarats,
1992; Renard and de Marsily, 1997; Ronayne and Gorelick,
2006]. w was initially defined to describe in a compact way
the upscaling law for a lognormal distribution of local per-
meabilities as a function of the Euclidean dimension of the
embedding space [Desbarats, 1992; Matheron, 1967]. w ran-
ges between �1 (harmonic average) and 1 (arithmetic aver-
age), corresponding respectively to a purely system in series
and a purely parallel system. Upscaling in 1D is performed by
the harmonic mean (w = �1), in 2D by the geometrical mean
(w = 0), and in 3D it is very close to w = 1/3. A non integer
value like 1/3 indicates that the organization of the flow paths
occurs more in parallel than in series and that the upscaling
can be straightforwardly expressed as a well-defined com-
position of the arithmetic and geometric average. a2 and w
operate on different types of local permeability distributions,
which are the lognormal distribution for w and a truncated
Gaussian for a2, as well as by their range of variations: while
w is limited in the interval [�1, 1], a2 can take a much larger
range of values. But one can draw a formal analogy between
them along the two following lines: (i) They both express
upscaling laws in a compact way. When w and a2 are nega-
tive, upscaling results in permeability decrease, and con-
versely when w and a2 are positive. (ii) Most importantly,
they do not depend on the magnitude of the local perme-
ability distribution (cfrac here, for a2), but only on the struc-
tural properties of the system such as the Euclidean
dimension for w and the topological structure of the fracture
network for a2. (iii) When 〈KN+F/KN〉 > 〈KF/K0〉, a2 is pos-
itive and the organization of fluxes among various fractures is
more in parallel than in series, as when w is positive, so that
on the one hand the network structure enhances the effective
permeability from fracture to network scale, and on the other
hand the system permeability will typically be sensitive to the
mean medium properties (fracture density, cut-off scale).
Conversely, when 〈KN+F/KN〉 < 〈KF/K0〉, a2 is negative and
the organization of fluxes is more in series than in parallel, as
is the case when w is negative. Consequently, the network
structure then reduces the effective permeability from the
fracture scale to the network scale, and the system perme-
ability will be more sensitive to local values of permeabilities
and especially to those around connectivity constrictions. In
summary, a2 is a quantitative measure of how the two com-
peting effects previously observed in section 5.2 balance each
other; it offers an alternative to w for these types of local
permeability distributions that are properly described neither
by harmonic averages, nor by geometric averages.
[56] Going more into details, we relate the variations of a2

to key geometrical characteristics of the fracture and network
structures. First, when a2 is positive, it increases monotoni-
cally with the fracture density whatever the type of fracture
length distribution (Figure 9). Higher fracture densities offer

Figure 9. Characteristic permeability correction factor a2

as a function of the fracture density relative to the percola-
tion threshold.
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more parallel paths that can act as alternatives to paths that
necessarily contain small local permeabilities. At the fracture
scale, high transmissive areas of typical size Lc may fully
bridge the characteristic flow distance within the fracture. We
shall denote this scale dI. On the flow structure presented in
the right middle row of Figure 7, dI would be taken as the
mean distance between fracture intersections (thick black
segments) along the main flow channels. If this definition is
conceptually intuitive, a proper derivation of dI would be
difficult. It is however straightforward that dI is inversely
proportional to the fracture density and that the bridging
effect previously described depends on the ratio Lc/dI. The
increase of Lc/dI promotes the development of highly per-
meable paths that exploit only the high permeability zones of
the fractures. This is a typically a positive correlation effect
on the global flow between the fracture- and network-scales.
[57] Sections 5.1 and 5.2 have revealed the existence of

another effect linked to the lengths of the fracture intersection.
Fracture intersections falling into closed areas have a major
effect on the connection probability at the percolation thresh-
old. If this effect is minor on the permeability of DFNs that
are at the percolation threshold, it becomes more important
for those that are above threshold, because it induces hydraulic
disconnection of otherwise geometrically connected paths.
The induced permeability reduction depends on the ratio of the
mean fracture intersection length lI to the cutoff-scale Lc. Both
effects cumulate in the DIST case while only the second one is
active in the LONG case, which explains the stronger impact
of the fracture density on a2 in the DIST case (Figure 9).
[58] Both effects may however lead to different sensi-

tivity of the correction factor a2 to the cutoff length Lc, as
evidenced in Figure 10. For DFNs of type SHORT (blue
triangles), the sharp reduction of permeability when the frac-
ture length becomes larger than the cut-off length Lc comes
from the second disconnecting effect (decrease of lI/Lc). It also
dominates in DFNs of type DIST for Lc < 2 = L/5 (Figure 10,
red disks). In this case, which is the most realistic with respect
to modeling a geological medium, a2 decreases regularly to
nearly 0 as Lc is decreased to 0.5 = L/20. This means that if
the medium size is 20 times larger than the correlation length,

the coupling between fracture-scale and network-scale flow
heterogeneities is weak. For these DIST configurations and
for Lc > 2, in contrast, variations are reversed with a slight but
genuine increase of a2 that is likely to be due to the first
bridging gap effect controlled by Lc/dI. For DFNs of type
LONG, a2 mostly increases, also as a consequence of the
“bridging gap” effect (Figure 10, black squares).
[59] The disconnecting effect highlights the importance of

the correlation between the aperture field and the position of
the fracture intersections within the corresponding fracture
plane. Larger apertures at fracture intersections might sharply
enhance network permeability and should be investigated
using the available experimental means [e.g., Detwiler et al.,
1999; Pyrak-Nolte and Morris, 2000]. The bridging gap
effect highlights the importance of the fracture network
structure, and in particular of its correlation pattern. The spatial
distribution of the fracture centers is not Poissonian [Bour
and Davy, 1999; Darcel et al., 2003a]. The mechanical con-
straints imposed externally on and induced internally by frac-
ture intersections generatemore complex correlation structures
that result in relatively dense but poorly connected networks
[Davy et al., 2010]. Under those assumptions, which are more
complex than the ones upon which we have based the present
study, the flow distribution is expected to be broader and
the hydraulically active scale between fracture intersections,
dI, to be strongly influenced accordingly.

7. Conclusions

[60] We have developed a model to study the combined
effect of fracture scale heterogeneity and network topology
on the equivalent permeability of a fractured medium. At the
fracture scale, local apertures are distributed according to a
truncated Gaussian distribution and spatially correlated
according to a self-affine pattern with an upper cutoff scale
Lc. The ratio of the local aperture variance to its mean,
denoted as the fracture closure cfrac, is the key parameter that
controls the heterogeneity of local permeabilities at the
fracture scale. At the network scale, the network topology is
described both by a fracture length distribution and by a
fracture density. We have considered a wide range of densi-
ties, ranging from sparse networks close to the percolation
threshold to dense networks well above the threshold, and
various networks with highly differing topologies, consist-
ing either of fractures much smaller than the network scale
L, much longer than L or of a full distribution of fracture
sizes between L/10 and L. Flow simulations were performed
first on single fractures to obtain a reference for permeability
upscaling and second at the network scale using numer-
ical methods that account for complex three-dimensional
network geometries. Because of the numerous sources of
complexity, we performed an extensive sampling of the
parameter space with 100 to 1000 Monte-Carlo replicas for
each parameter set, which amounts to around two million
simulations altogether. We have also set up a methodology
that optimizes the analysis of the combined effect of the
fracture- and network-scale complexity by systematically
comparing the same network structures with and without
heterogeneity in the local fracture apertures (i.e., fracture wall
roughness).
[61] At the fracture scale, we have shown that the distri-

bution of local apertures systematically induces a reduction

Figure 10. Characteristic permeability modification factor
a2 as a function of the cutoff scale Lc.
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of the mean equivalent permeability because of the higher
probability of generating obstacles than channels, in full
consistency with previous studies performed for narrower
ranges of heterogeneities [Méheust and Schmittbuhl, 2000,
2003]. The maximum reduction of the mean equivalent
permeability remains limited to a factor of 2 to 6, depending
mostly on the ratio of the fracture scale to the self-affinity
cutoff scale, while the local transmissivity distribution spans
several orders of magnitude. The restricted range covered by
the reduction of equivalent permeability compared to the
widely distributed local transmissivities is a remarkable
property of the fracture transmissivity field.
[62] At the network scale, the equivalent permeability was

found to be either larger or smaller than its fracture scale
counterpart. By systematically studying the network-scale
permeability with reference to the permeability of the
corresponding network of parallel plate fractures, we inves-
tigated the cumulative effect of fracture heterogeneity and
network topology. For most of the configurations studied, the
permeability of a network consisting of rough fractures can-
not be simply obtained as the product of (i) the permeability
of a network consisting of the same fractures but without any
wall roughness and (ii) a correction factor accounting for the
typical permeability reduction of a single fracture when tak-
ing its local aperture heterogeneities into account. In other
words, there is a significant coupling between flow hetero-
geneities at the fracture scale and flow heterogeneities at the
network scales. A consequence of that coupling is that for a
given network topology, in many cases, the DFN’s equiva-
lent permeability will not be properly predicted by a simu-
lation where each fracture is modeled as a parallel plate with
a given permeability. However, when the system size is
larger than about 20 times the correlation length Lc, this
coupling is found to be weak; for a correlation length given as
a property of the rough fractures, this fixes the range of sys-
tem sizes for which it is important to take fracture scale het-
erogeneities into account: at very large scales, DFNs of
parallel plates with the proper hydraulic aperture distribution
are a proper hydraulic description of the fractured medium.

[63] The enhancement or reduction of the impact of frac-
ture wall roughness on permeability when upscaling from the
fracture scale toward the network scale is measured by the
correction factor a, which means that a quantifies the above
mentioned coupling. Enhancement is found to occur for
dense systems and for network of long fractures. Reduction
occurs for networks that are closer to the percolation thresh-
old and for network of small fractures. The correction (either
enhancement or reduction) factor a appears to depend on the
fracture closure cfrac according to a power law dependence of
exponent close to 1.75. Thanks to this simple dependence,
flow upscaling from the fracture-scale up to the network scale
can be fully characterized by the correction factor a2, defined
as the enhancement or reduction factor a at cfrac = 2. a2 is a
quantitative measure that is analogous to the more classical
power-averaging exponent w in this case, for which the local
transmissivity distribution neither has a harmonic average
nor a geometric average. A systematic analysis of a2 as a
function of the model parameters showed that the flow
upscaling is governed by two competing effects. On the one
hand, the network permeability is lowered by the discon-
nection effect that consists in fracture intersections falling
inside closed or low transmissive areas. The permeability
reduction increases with the ratio of the characteristic dis-
tance between intersections within the flow structure to the
aperture cutoff scale. On the other hand, the network per-
meability is enhanced by the existence of high permeability
zones within the fractures that can bridge the portion of a
fracture plane between intersections with hydraulically active
fractures. The permeability enhancement then increases with
the ratio of the cutoff scale Lc to the characteristic distance
between fracture intersections.
[64] In further studies, we plan to extend our investiga-

tions to other controlling factors including shear displacement
of the fractures, which results in a fracture-scale perme-
ability anisotropy that is potentially correlated to the fracture
orientation; more generally we shall study how an aniso-
tropic mechanical load impacts the permeability of the entire
medium through its effect on fracture-scale heterogeneity.

Appendix A: Illustration of Local Aperture
and Transmissivity Distributions

[65] Figure A1 displays the distribution of aperture nor-
malized by its mechanical aperture, am = sa/cfrac, and the
distribution of local transmissivities T, normalized by its
characteristic value 〈T〉 = bam = b(sa/cfrac)

3. It appears that
the relative transmissivity distribution (solid lines) is much
wider than the aperture distribution (dashed lines) for not too
small values of c. For c approximately larger than 1, the
transmissivity distribution is a power law of exponent �2/3
truncated by a fast decreasing exponential as shown by
equation (8). Because the power law exponent is larger than
�1, the mean and standard deviation of the relative positive
permeability values m(T/〈T〉) and s(T/〈T〉) are dominated by
the larger normalized permeability values (Figure A2), where
〈T〉 is the average value of the truncated transmissivity dis-
tribution. It explains the strong increase of the transmissivity
distribution’s width with cfrac (Figure A1). The standard
deviation of the aperture distribution becomes larger than its
mean when cfrac becomes larger than about 0.35. The mean

Figure A1. Aperture- and transmissivity- distributions
within a fracture shown as dashed and solid lines, respec-
tively, for various levels of fracture closure.
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and standard deviation increase by one and a half to two
orders of magnitude for cfrac ranging from 0.35 to 2.5.

Appendix B: Fracture Network Generation

[66] In order to generate random DFNs, with various
probability laws modeling the geometry and the physical
properties, we developed a specific tool [Erhel et al., 2009b,
2011], with streams of random numbers generated by the
RngStream package [L’Ecuyer et al., 2002], and input and
output parameters described in XML files. This generic tool
allows also running multiparametric simulations with a large
number of samples. It provides simulation results for each
sample as well as statistical results. The software MP_FRAC

uses this tool extensively, whereas computational geometry
is handled by the CGAL package (CGAL, Computational
Geometry Algorithms Library, http://www.cgal.org). Cur-
rently, MP_FRAC can simulate steady state flow with vari-
ous types of boundary conditions.
[67] The simulation domain has been set to a cube of edge

length L. Fracture centers are generated within the domain
uniformly by imposing uniform distributions of their coor-
dinates in the three directions. The power law fracture length
distribution is sampled by the inverse probability integral
transform, which consists in sampling and then inverting the
cumulative probability distribution. The orientation distri-
bution of fracture normal vectors is generated by the rejection
sampling method. Points are uniformly generated in a unit
cube, accepted if within the unit sphere and then projected on
the sphere to give the direction normal to the fracture plane
[de Dreuzy et al., 2000].

Appendix C: Fracture Aperture Distributions

[68] The aperture field for each fracture is generated on a
square grid, in the Fourier domain: its Fourier transform is
defined as ã(k) =

ffiffiffiffiffiffiffiffiffi
S kð Þp

exp(i8(k)), where S(k) is a power
spectrum in the form expressed by equation (5) and 8(k) is a
phase that is drawn randomly from a uniform distribution on
the [0; 2p] interval for all wave vectors pertaining to one half
of the Fourier space, and set to 8(k) = �8(�k) on the other
half. The random phase definition ensures that the inverse
Fourier transform, a, of the complex function ã be real in the
space domain.
[69] At this point, the mean value of the aperture field is

subtracted from it, and the whole field is scaled so as to ensure
an overall standard deviation as defined by equation (4). It
is then added a constant shift corresponding to the desired
mechanical aperture am = sa/cfrac. Finally, all negative values
of the local apertures are set to a very small value. That very

Figure A2. Mean and standard deviation of the local trun-
cated fracture transmissivity distribution as a function of the
a priori fracture closure cfrac.

Figure C1. (a) Local aperture field within a large fracture for which the correlation length Lc is a fourth
of the fracture size Lf. The relative closure is cfrac = 1/4 so that no closed region exists in the fracture plane;
the aperture field has been normalized by its largest local maximum value. (b) Corresponding average
power spectral densities of horizontal (in blue) and vertical (in red) topographic profiles; the red plot
has been scaled by a factor 1/10 for clarity; the black solid line represents a power law behavior of expo-
nent �2.60, corresponding to a Hurst exponent H = 0.80.
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small value is chosen differently depending on the type of
simulations that are performed: in the study of the permeability
at the fracture scale (section 4 below) the aperture of the closed
zones is set to the mean aperture divided by 1010; for the flow
simulation in the full DFN network (section 5), it is set to the
mean aperture divided by 104. Figure C1a provides a repre-
sentation of such an aperture field (Lc = Lf /4 and am = 4sa), in
which the colormap is mapped to local apertures: there is
hardly any closed region in that case (cfrac = 0.25) of the
fracture plane appear in dark blue while the largest local
aperture appears in bright red. It appears clearly on the topo-
graphic map that correlated low- or high- aperture regions do
not extend along the fracture plane over lengths larger than Lc.
The corresponding spectral densities for horizontal and verti-
cal profiles of the topography, averaged over all profiles, are
shown in Figure C1b; they agree well with equation (5), which
validates the generation scheme.
[70] In the network simulations, the aperture field of a

given fracture is first generated on a fine square grid and then
interpolated on the triangular unstructured mesh of the frac-
ture within the network. The square grid step is chosen twice
finer than the triangle characteristic scale, and averaging of
apertures is performed over the grid cells of the regular grid
embedded within each triangle.
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