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Abstract 

A set of experiments have been performed on volcanic materials from Etna, Stromboli and 

Vesuvius in order to evaluate how the exposure to thermal and redox conditions close to that 

of active craters affects the texture and composition of juvenile pyroclasts. Selected samples 

were placed within a quartz tube, in presence of air or under vacuum, and kept at T between 

700 and 1,130 °C, for variable time (40 min to 12 h). Results show that reheating reactivates 

the melt, which, through processes of chemical and thermal diffusion, reaches new 

equilibrium conditions. In all the experiments performed at T = 700–750 °C, a large number 

of crystal nuclei and spherulites grows in the groundmass, suggesting conditions of high 

undercooling. This process creates textural heterogeneities at the scale of few microns but 

only limited changes of groundmass composition, which remains clustered around that of the 

natural glasses. Reheating at T = 1,000–1,050 °C promotes massive groundmass 

crystallization, with a different mineral assemblage as a function of the redox conditions. 

Morphological modifications of clasts, from softening to sintering as temperature increases, 

occur under these conditions, accompanied by progressive smoothing of external surfaces, 

and a reduction in size and abundance of vesicles, until the complete obliteration of the pre-

existing vesicularity. The transition from sintering to welding, characteristic of high 

temperature, is influenced by redox conditions. Experiments at T = 1,100–1,130 °C and under 

vacuum produce groundmass textures and glass compositions similar to that of the respective 

starting material. Collapse and welding of the clasts cause significant densification of the 

whole charge. At the same temperature, but in presence of air, experimental products at least 

result sintered and show holocrystalline groundmass. In all experiments, sublimates grow on 

the external surfaces of the clasts or form a lining on the bubble walls. Their shape and 

composition is a function of temperature and fO2 and the abundance of sublimates shows a 

peak at 1,000 °C. The identification of the features recorded by pyroclasts during complex 

heating–cooling cycles allows reconstructing the complete clasts history before their final 

emplacement, during weakly explosive volcanic activity. This has a strong implication on the 

characterization of primary juvenile material and on the interpretation of eruption dynamics. 
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Introduction 

Weakly explosive eruptions produce a large range of volcanic products varying from bombs 

to fine ash (Cioni et al. 2010). Depending on the energy of each eruption, a large portion of 

these ejecta falls back into the vent or in the crater area where they are exposed to 

physicochemical conditions that are close to magmatic (Fig. 1). These products can be ejected 

by subsequent explosions until the final deposition outside the vent area occurs. 

 

Fig. 1  : Cartoon of an idealized intracrater environment 

 

Repeated cycles of cooling and reheating can induce substantial modifications of juvenile 

material, which superimpose on primary textural and compositional information. 

Several experimental works have focused in the past on the processes of melting and 

crystallization at different cooling rates and variable redox conditions (see review of Hammer 

2008 and references therein). Effects of reheating and alteration due to the superposition of 

lava lobes have also been successfully investigated through laboratory experiments by 

Burkhard (2001, 2002) on Hawaiian basalts. Mechanisms of oxidation of basaltic glass have 

been experimentally studied by Cooper et al. (1996). Laboratory reheating of pyroclasts have 

been carried out by Tait et al. (1998) and Moriizumi et al. (2008) to constrain cooling rate, 

and kinetics of iron oxidation processes by means of quantitative color measurements and 

magnetic mineralogy. Quane and Russell (2005), Quane et al. (2009) and Kennedy et al. 

(2010) performed high-T experiments on rhyolitic glass in order to study the processes, and 

the related timescales, of welding and compaction of porous volcanic materials. Their results 

proved useful for interpretation of the textures found in natural welded pyroclastic deposits 

(i.e., ignimbrites), and thus constraining the conditions for efficient compaction and sintering 

of pyroclastic materials (Grunder and Russell 2005). However with the exception of Spadaro 

et al. (2002) who exposed natural ash for variable time to low temperature fumaroles and gas 

on the Etna summit crater, little is known about the intracrater modifications of pyroclastic 

material at high temperature and variable oxygen fugacity. To fill this gap, we performed a 

series of experiments on juvenile glassy fragments with composition ranging from basalt to 



phonotephrite from three different Italian active volcanoes: Etna, Stromboli and Vesuvius. 

Although exposition to variable gas conditions, typical of the volcano conduit system can be 

hardly reproduced in a laboratory, reheating experiments of pyroclasts under different redox 

conditions can be easily performed in a vertical tube furnace. We report how external 

morphology, texture, color and composition of natural samples change as a consequence of 

variable times of exposition at different experimental temperatures and redox conditions, and 

discuss some general implications on processes that occur in crater area of active volcanoes. 

 

Starting rocks 

Glassy, medium (millimeter-sized) lapilli and scoriae from well-known eruptions of Etna, 

Stromboli and Vesuvius were selected as starting rocks (Table 1). Etna and Stromboli samples 

were collected immediately after (days/week) the eruption, in order to prevent post-

emplacement weathering. Vesuvius tephra represents the inner portion of a lapilli bed, not 

exposed to weathering agents. 

Table 1  

Bulk compositions of starting rocks 

Starting rocks wt% 

Piazzola* STPL2bis** (HP) ST305*** (LP) VSM5** 

Etna  Stromboli  Vesuvius  

SiO2  46.62 50.44 49.01 49.12 

TiO2  1.78 0.93 0.90 0.75 

Al2O3  17.32 17.06 17.53 15.66 

Fe2O3(tot)  12.16 8.97 8.76 6.69 

MnO 0.19 0.16 0.15 0.14 

MgO 5.24 6.09 6.34 4.84 

CaO 10.77 11.52 11.96 9.37 

Na2O 3.48 2.51 2.41 2.84 

K2O 1.91 2.12 1.86 7.12 

P2O5  0.43 0.56 0.55 0.62 

LOI 0.75 −0.19 0.40 1.54 

Tot. 100.65 100.17 99.87 98.69 



* Average of 3 analyses of distinct samples erupted during the fire fountain of January 5, 1990 (from 

Carveni et al. 1994), measured by XRF 

** Measured by ICP-OES at the Activation Laboratories Ltd, Ancaster, Canada 

*** Average of 6 analyses of distinct LP samples erupted during April 5, 2003, paroxysm (from 

Pompilio et al. 2012) measured by ICP-OES at the Centre de Recherches Petrographiques et 

Geochimiques (CRPG-SARM) in Nancy (France) following methods described in Carignan et al. 

(2001) 

Mt. Etna 

The sample (Piazzola) represents a proximal fallout deposit related to the January 5, 1990, fire 

fountain episode (Carveni et al. 1994). This tephra consists of scoriaceous highly vesicular, 

glassy lapilli with euhedral phenocrysts (≈20–30 vol %) of plagioclase (pl), clinopyroxene 

(cpx) and olivine (ol) and microphenocrysts of same minerals plus titano-magnetite (Ti-mag). 

Bulk rock composition is trachybasaltic, whereas groundmass glass attains phonotephritic 

composition (SiO2: 48.5–50.5 wt %; alkali: 8.1–8.9 wt%) (Fig. 2; Table 1). Groundmass glass 

is nearly anhydrous (H2O < 1 wt%) as estimated by the difference method from EPMA 

analyses (Devine et al. 1995; Table 2). NBO/T (non-bridging oxygen per tetrahedron) (Mysen 

1983) for the melt is 0.50 (Table 2) with a calculated (Giordano et al. 2005) glass transition 

temperature (T g) of 664 °C. 

 

Fig. 2  : Average bulk rocks (black symbols) and matrix glasses (open symbols) compositions 

plotted in the total alkalis versus silica diagram (Le Bas et al. 1986). circle PZ; diamond 

STASH-LP; square STASH-HP; triangle VES 
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Table 2  

Average glass composition measured in the starting material 

Starting rock SiO2  TiO2  Al2O3  FeOtot  MnO MgO CaO Na2O K2O P2O5  Tot Fe2O3  FeO NBO/T 

Log 

η 

(Pa s) 

T g 

(°C) 

Piazzola 

Mean 49.46 1.97 16.53 10.07 0.23 3.74 8.08 5.12 3.31 0.93 99.45 2.64 7.70 0.50 3.3 664 

σ 

(n = 12) 
0.61 0.08 0.15 0.21 0.05 0.09 0.23 0.15 0.20 0.06             

ST305 

(LP) 

Mean 50.67 1.04 16.89 8.44 0.17 5.73 10.87 2.64 2.46 0.70 99.62 2.19 6.48 0.55 2.2 672 

σ 

(n = 21) 
0.49 0.08 0.23 0.26 0.06 0.22 0.39 0.11 0.18 0.06             

STPL2bis 

(HP) 

Mean 52.24 1.62 15.55 10.00 0.22 3.69 7.64 3.33 4.03 1.15 99.48 2.82 7.47 0.45 2.7 673 

σ 

(n = 10) 
0.38 0.11 0.28 0.38 0.03 0.11 0.30 0.22 0.51 0.08             

VSM5 

Mean 48.69 0.85 17.87 8.10 0.20 2.92 7.37 4.95 5.78 0.67 97.38 2.71 5.66 0.41 3.9 663 

σ 

(n = 28) 
0.69 0.08 0.30 0.28 0.04 0.21 0.33 0.25 0.37 0.09             

 

σ = standard deviation; n = number of analyses; FeO and Fe2O3 have been calculated on the basis of Sack et al. (1981) and considering the 

intrinsic fO2 (see text); NBO/T (non-bridging oxygen per tetrahedron) calculated following Mysen (1983) with Si, Ti, Al, Fe
3+

 and P as 

tetrahedrally coordinated cations; η = viscosity calculated following Eq. 1 of Giordano et al. (2008) at eruptive temperature of 1,090 °C for 

Piazzola and STPL2bis, 1,130 °C for ST305 and 1,050 °C for VSM5 (see text for details); T g = temperature of glass transition, calculated with 

the model of Giordano et al. (2005) 



Stromboli 

As starting rocks, we considered both a so-called “golden pumice” representing the deep-

seated and volatile-rich, low porphyricity (LP) magma and a dark scoria representing the 

shallow, degassed and high porphyricity magma (HP) (Bertagnini et al. 2008). LP pumice 

(ST305), erupted on April 5, 2003, paroxysm (Rosi et al. 2006), is glassy with 15–20 vol% of 

crystals, most of which are xenocrysts testifying for the syn-eruptive mingling with the HP 

magma, while the original crystal content of the LP magma is lower (≤5 vol% of cpx and ol) 

(Francalanci et al. 2008). On the contrary, HP scoria (STPL2bis) erupted in October 2006 

(Landi et al. 2011) contains 45–50 vol% of euhedral pl, cpx and ol phenocrysts (Bertagnini et 

al. 2008). 

The LP and HP bulk rocks are plotted in the field of basalt on the TAS diagram (Fig. 2; 

Table 1). Conversely, on the SiO2–K2O diagram (Peccerillo and Taylor 1976), LP rocks are 

plotted astride the boundary line between shoshonitic and HK basalts (SiO2: 48.4–49.8 wt%; 

K2O 1.8–1.9 wt%) while HP rocks are HK shoshonitic basalts (SiO2: 48.5–51.5 wt%; K2O 

1.9–2.5 wt%) (Bertagnini et al. 2008). Groundmass glass composition in LP clasts is close to 

the bulk rock (Fig. 2; Tables 1, 2), reflecting the low-crystal content of the magma, while HP 

glass strongly differs from the bulk rock, as a consequence of the high porphyricity of the 

products (Fig. 2; Table 2) (Francalanci et al. 2008; Métrich et al. 2005). LP glass has NBO/T 

values from 0.50 to 0.56, and a calculated T g between 672 and 677 °C. NBO/T of HP glass is 

between 0.41 and 0.45, while T g varies between 670 and 675 °C. The water content of LP 

pumice glass is ≤0.6 wt% (Métrich et al. 2010), while HP glass can be considered anhydrous. 

Vesuvius 

Selected juvenile material is from a lapilli bed of the violent strombolian activity occurred in 

the period between the AD 79 Pompeii eruption and the AD 472 Pollena eruption (Cioni et al. 

2008), and consists mainly of highly vesicular pumice, with minor dark, highly crystallized 

scoria. Lapilli (VSM5) are glassy with phenocrysts of cpx, leucite (lct) and rare phlogopite 

(phl), and microlites of cpx, lct and pl and rare oxides. Bulk rock has a phonotephritic 

composition (SiO2: 50.6 wt%, total alkali: 10.2 wt%), and matrix glass is fairly homogeneous 

(on average SiO2: 48.7 wt%, total alkali: 10.7 wt%) (Fig. 2; Tables 1, 2). Glass NBO/T ranges 

between 0.37 and 0.43, and the calculated T g is between 656 and 669 °C. Glass can be 

considered nearly anhydrous. 

 

Experimental rationale 

Starting pyroclasts were crushed in a nylon mortar in order to expose the inner pristine 

portions of the sample (Fig. 3). Natural samples, in fact, though fresh, could have suffered 

some alteration during and after eruption, with subsequent modification of their external 

surfaces. The mechanically fragmented material, a sort of artificial ash, was then sieved and 

the fraction from the size interval 1–0.71 mm selected. 

http://link.springer.com.biblioplanets.gate.inist.fr/article/10.1007/s00410-012-0839-0/fulltext.html#Fig2


 

Fig. 3  

Sample preparation, experimental set-upsetup and instrument. Natural scoria bomb (a) was 

crushed (b) and sieved (c) in the ash fraction size range. Two types of experiments were 

performed: (d) in OQT (open quartz tube) and (e) in SQT (sealed quartz tube) redox 

conditions. The charge was then suspended with Kanthal wires in the INGV-Pisa HTRV 

vertical furnace at 1 atm of pressure (f) 



Artificial ash was dried at 110 °C in an oven for more than 12 h. A few grams of dry ash were 

introduced in a vessel formed by a fused quartz tube segment (8–10 cm of length, 10 mm of 

diameter). Two different experimental setups were prepared: (a) OQT: open quartz tube to air 

from one side (Fig. 3d) and (b) SQT: sealed quartz tube at both sides, after air evacuation with 

a vacuum pump (Fig. 3e). The sample vessels were suspended with Kanthal wires in a Gero™ 

HTRV 70-250/16 vertical MoSi resistance furnace at atmospheric pressure (Fig. 3f). The 

extent of the hot zone in the furnace is about 10 cm, with a temperature gradient of less than 

9 °C at low temperatures and less than 3 °C at T > 1,000 °C. The effective temperature at the 

sample position was checked before and after each run with a type S thermocouple (1.5 °C 

standard error). Accuracy of thermocouple was checked against the melting point of pure gold 

(1,069 °C). 

Three sets of experiments corresponding to three temperature intervals were performed: 700–

750, 1,000–1,100 and 1,094–1,130 °C (Table 3). The highest temperature range (1,000–

1,130 °C) used in the experiments compares with the eruptive temperature for the studied 

samples, as measured at Etna (Calvari et al. 1994; Pompilio et al. 1998) or estimated for 

Vesuvius (Cioni et al. 1999). For Stromboli, an eruptive temperature of 1,091 °C was 

measured on an active lava flow during the 2002–2003 eruption (Coltelli, personal 

communication), but we extended the experiments up to 1,130 °C, which corresponds to the 

temperature of homogenization determined on melt inclusions hosted in olivines (Métrich et 

al. 2001). The lower range of reference temperatures (700–750 °C) for the experiments 

roughly corresponds to the thermal conditions induced by passive degassing through a porous 

crater infilling, as measured for the Stromboli crater by Allard et al. (2008). These 

temperatures are higher than T g of the melt calculated on the basis of the composition of 

glasses used in the experiments (Dingwell and Webb 1990; Giordano et al. 2005), allowing 

the investigation of late stages of groundmass crystallization, vesiculation due to second 

boiling and sintering of clasts. 





Table 3  

Experimental conditions, groundmass texture and composition and related rheological parameters 

RUN#  
Starting 

material 

Duration 

(min) 

Experimental T 

(°C) 

Type of 

experiment 

Groundmass 

texture 

Groundmass 

composition (wt%) 
SiO2  TiO2  Al2O3  FeOtot  

PZ15 Piazzola 70 736 OQT Glassy Mean 50.23 2.16 16.80 10.29 

            σ (n = 6) 0.16 0.07 0.11 0.28 

PZ29 
Piazzola 978 761 SQT Glassy Mean 50.55 2.18 16.98 10.44 

          σ (n = 7) 0.39 0.19 0.19 0.38 

PZ1 Piazzola 41 1,013 OQT Holocrystalline n.m.          

PZ2 Piazzola 81 1,014 OQT Holocrystalline n.m.          

PZ3 Piazzola 175 1,012 OQT Holocrystalline n.m.          

PZ16 Piazzola 180 1,007 SQT Holocrystalline n.m.          

PZ10 
Piazzola 229 1,101 OQT Hypocrystalline Mean exposed to air 56.02 1.45 17.63 4.46 

          σ (n = 10) 1.21 0.16 0.53 0.19 

  
          Mean inner tube 54.58 2.34 16.51 5.38 

          σ (n = 6) 0.48 0.04 0.17 0.21 

PZ13 
Piazzola 180 1,102 SQT Glassy Mean 49.09 2.09 15.11 10.30 

          σ (n = 66) 1.55 0.09 0.65 0.39 

STASH3 
ST305 1,140 716 SQT Glassy Mean 50.58 0.96 17.03 8.87 

          σ (n = 6) 0.72 0.09 0.24 0.62 

STASH1 
ST305 660 752 OQT Glassy Mean 51.36 0.94 17.42 8.05 

          σ (n = 6) 0.54 0.10 0.17 0.34 

STASH9 
ST305 120 1,007 SQT Hypocrystalline Mean 49.53 1.04 17.72 8.71 

          σ (n = 8) 0.72 0.15 0.36 0.83 

STASH2 ST305 80 1,000 OQT Holocrystalline n.m.          



RUN#  
Starting 

material 

Duration 

(min) 

Experimental T 

(°C) 

Type of 

experiment 

Groundmass 

texture 

Groundmass 

composition (wt%) 
SiO2  TiO2  Al2O3  FeOtot  

STASH4 
St305 210 1,050 SQT Hypocrystalline Mean 56.39 1.52 14.67 5.45 

          σ (n = 38) 0.59 0.15 0.51 0.29 

STASH11 St305 100 1,050 OQT Holocrystalline n.m.          

STASH10 
St305 240 1,120 SQT Hypocrystalline Mean 56.03 0.93 16.64 4.47 

          σ (n = 14) 1.50 0.19 2.08 0.58 

STASH7 St305 210 1,130 SQT Hypocrystalline n.a.          

STASH8 
STPL2bis 160 1,113 SQT Glassy Mean 51.71 1.59 15.28 10.07 

          σ (n = 7) 0.69 0.11 0.09 0.29 

VES1 
VSM5 1,260 713 OQT Glassy Mean 50.20 0.96 18.81 7.72 

          σ (n = 7) 0.56 0.08 0.42 0.49 

VES3 
VSM5 120 700 SQT Glassy Mean 49.94 1.00 19.02 7.82 

          σ (n = 7) 0.56 0.13 0.17 0.39 

VES2 VSM5 180 1,009 OQT Holocrystalline n.m.          

VES8 VSM5 105 1,008 SQT Holocrystalline n.m.          

VES10 
VSM5 100 1,094 SQT Glassy Mean 50.08 0.85 17.95 7.32 

          σ (n = 32) 0.41 0.11 0.33 0.38 

VES11 
VSM5 140 1,095 OQT Glassy Mean 51.44 0.84 18.19 5.27 

          σ (n = 11) 0.73 0.08 0.15 0.50 

MnO MgO CaO Na2O K2O P2O5  Tot Fe2O3  FeO NBO/T Log η (Pa s) T g (°C) 

0.28 3.73 8.09 4.45 3.72 nd 99.75 11.40 0.03 0.17 9.7 675 

0.05 0.11 0.45 0.42 0.34               

0.24 3.60 6.62 4.99 4.13 nd 99.73 2.77 7.94 0.42 8.9 670 



MnO MgO CaO Na2O K2O P2O5  Tot Fe2O3  FeO NBO/T Log η (Pa s) T g (°C) 

0.11 0.09 0.35 0.45 0.23               

0.16 2.67 4.45 6.65 4.96 1.24 99.70 4.62 0.31 0.17 4.1 660 

0.05 0.32 0.46 0.46 0.19 0.16             

0.15 3.20 5.68 5.70 4.34 1.38 99.25 1.38 4.13 0.34 4.1 673 

0.04 0.12 0.20 0.15 0.08 0.07             

0.24 3.40 7.82 3.90 3.25 0.79 95.98 2.55 8.01 0.47 3.3 674 

0.05 0.28 0.32 0.44 0.15 0.08             

0.19 6.49 11.23 2.79 1.52 0.56 100.21 2.30 6.80 0.56 10.0 670 

0.03 0.27 0.59 0.14 0.31 0.05             

0.18 6.36 10.80 1.81 2.09 0.59 99.59 8.91 0.03 0.27 9.1 679 

0.04 0.06 0.90 0.80 0.36 0.06             

0.17 5.60 11.14 2.94 1.60 0.66 99.11 2.23 6.70 0.52 3.8 674 

0.05 0.69 0.96 0.23 0.60 0.18             

0.19 4.74 7.21 3.11 4.52 1.45 99.24 1.47 4.12 0.41 4.5 681 

0.04 0.40 0.47 0.25 0.42 0.12             

0.16 3.76 6.74 3.30 4.35 1.32 97.69 1.17 3.41 0.31 4.0 688 

0.04 0.63 0.95 0.22 0.61 0.26             

0.21 3.77 7.56 3.23 4.00 1.08 98.50 2.84 7.51 0.44 3.3 672 

0.03 0.05 0.13 0.19 0.17 0.04             

0.29 3.21 7.08 5.12 5.69 nd 99.08 8.57 0.01 0.17 10.4 669 

0.06 0.09 0.55 0.14 1.27               

0.23 2.99 7.35 5.33 5.28 nd 98.96 2.60 5.48 0.36 10.5 671 

0.10 0.04 0.61 0.36 1.02               



MnO MgO CaO Na2O K2O P2O5  Tot Fe2O3  FeO NBO/T Log η (Pa s) T g (°C) 

0.20 3.25 7.74 4.36 6.04 0.70 98.49 2.36 5.20 0.39 3.6 669 

0.03 0.16 0.24 0.14 0.21 0.07             

0.18 2.84 7.04 4.79 6.66 0.78 98.02 5.48 0.33 0.22 3.9 671 

0.05 0.23 0.39 0.20 0.35 0.05             

SQT sealed quartz tube, OQT open quartz tube, n.m. not measurable, n.a. not analyzed, σ standard deviation, n number of analyses; FeO and 

Fe2O3 have been calculated on the basis of Sack et al. (1981) and considering the intrinsic fO2 (SQT) or that of the air (OQT); NBO/T and Tg 

have been calculated as in Table 2: Log η is referred to the experimental temperature using an anhydrous glass composition 





For each temperature range, experiments were carried out in sealed (SQT) or open quartz 

tubes (OQT) in order to prevent or to allow for atmospheric oxidation (Table 3). Experimental 

samples were quenched in air and the measured rate of quenching (cooling) varies from 

13 °C/s (in the interval 1,130–750 °C) to 3 °C/s (in the interval 750–400 °C). 

Run times vary from 40 to 976 min (Table 3) reasonably approaching the duration of the 

interaction between pyroclasts and the environmental atmosphere during the course of low-

intensity, pulsating eruptions. 

While we did not measure the fO2 within the SQT vessel during the experiments, we assume 

that this parameter is close to the intrinsic oxygen fugacity of the three investigated natural 

magmas, estimated, respectively, to be NNO (nickel–nickel oxide) buffer for Etna (Métrich 

and Rutherford 1998) and 1 log fO2 units above (NNO + 1) for Stromboli and Vesuvius (Di 

Carlo et al. 2006; Scaillet et al. 2008); in the OQT vessel, the oxygen fugacity can be 

considered close to that of air (fO2 = 10
−0.7

). 

 

Analytical methods 

Macroscopic, morphological, textural and compositional information on individual clasts, 

following the methods of Cioni et al. (2008) was collected on fragments before and after 

experimental runs. Macroscopic characterization of fragments includes observation of 

external color, overall shape, and vesicularity under an optical stereomicroscope. A set of 10 

randomly selected ash fragments for each sample was considered for in-depth inspection of 

microscopic features. Clast 3D external shape was characterized by using a scanning electron 

microscope (SEM) working in secondary electron mode (at INGV of Pisa, Rome and 

Catania). Beside the overall shape, parameters used for the description of external 

morphology are the occurrence and extent of glass sintering (local disappearance of clast–

clast contacts), the shape and size of vesicles, the occurrence of secondary vesiculation, the 

presence of vapor-phase condensates, the crystallization of new microlites and the occurrence 

of surface cracks. The same fragments were then embedded in epoxy resin and polished until 

a surface approximately containing the maximum diameter of the fragments was exposed. 

These mounts were used for SEM inspection, backscattered electrons (BSE) imaging of the 

textural features (crystals and vesicles shapes and contents) and for analysis of the individual 

clasts. Major elements concentrations in glasses were determined at INGV-Roma with a Jeol-

JXA8200 electron microprobe (EMP) equipped with five wavelength-dispersive 

spectrometers, using 15-kV accelerating voltage and 10-nA beam current. Analyses were 

performed with a defocused electron beam of 5–10 μm, depending on available area, and a 

counting time of 5 s on background and 15 s on peak. Analyses of matrix glasses were 

performed on several clasts from each experiment. 

 

Results 

Morphological and textural features 

Starting material 

Fragments obtained after crushing have distinctive morphology and color depending on the 

volcano they came from (Fig. 4). Piazzola has bright black, smooth and fluidal external 

surfaces and moderately vesicular groundmass. LP portions of ST305 have a bright, light 



color and a highly vesicular, spongy aspect while the HP portions (ST305 and STPL2bis) are 

dark, with smooth, fluidal and vesicular surfaces and poorly vesicular groundmass. VSM5 

mainly consists of dark brown, fluidal, moderately vesicular fragments. 

 

 

 

Fig. 4 : Color, morphological and textural features of artificial ash used as starting material 

for experiments. Very fine (<32 micron) particles adhering to the clast surfaces are related to 

mechanical crushing during sample preparation. LP and HP are low and high porphyritic 

magmas, respectively; gl glass, cpx clinopyroxene, ox oxide, pl plagioclase, lct leucite 

In all samples, the external surfaces are glassy and virtually free of vapor-phase condensates 

or secondary minerals (Fig. 4). Thin section inspection reveals that matrix glass is hyaline, 

and contains mainly rounded bubbles; some vesicles have a polylobate shape, resulting from 

coalescence. Variable contents of microphenocrysts/microlites of different types are present in 

groundmass: pl, cpx, minor ol and Ti-mag in Piazzola; rare pl in ST305 and STPL2bis; lct, 

subordinate cpx and pl and rare oxides in VSM5. 



Experimental ash 

For each sample, Figs. 5, 6 and 7 report details of the morphological and textural 

modifications after experiments. We describe here the main features taking into account the 

experimental conditions (T and OQT versus SQT). 

 

Fig. 5  : Color, external morphology, groundmass texture and description of the main 

modifications shown by Etnean samples (PZ) after reheating in different ranges of 

temperature and redox conditions (OQT and SQT) 
 



 

Fig. 6  

Color, external morphology, groundmass texture and description of the main modifications 

shown by Stromboli (STASH) samples after reheating in different ranges of temperature and 

redox conditions (OQT and SQT) 
 



 

Fig. 7  

Color, external morphology, groundmass texture and description of the main modifications 

shown by samples from Vesuvius (VES) after reheating in different ranges of temperature and 

redox conditions (OQT and SQT) 
 



We use hereafter the term devitrification with the same meaning as in the glass and ceramic 

literature to indicate nucleation and growth of crystallites following glass reheating. 

OQT experiments 

700–750°C: Reheating at low temperature induces a modification of the external surface of 

the clast, confined in few microns of thickness. All clasts change in color, which turn toward 

tones of orange-red (Figs 5a, 6a, 7a). In particular, in the run #PZ15 fragments show an 

overall metallic luster of the external surface, with reddening confined to the bubbles walls 

(Fig. 5a). 

In the charge #STASH1, the HP and LP portions take on different shades of orange-red, with 

the former turning more to brown than the latter (Fig. 6a). Modification of the external 

surface of the clasts is related to the formation of a network made of lath-shaped (less than 

5 μm in length, probably pl and oxides) and globular crystallites (less than 1 μm in size, 

possibly cpx) (Fig. 6b, c). In the groundmass, the nucleation of crystallites is associated with 

the growth of swallowtail microlites of pl (Fig. 6d). The abundance of newly formed 

microlites is clearly higher in HP than in LP groundmasses. 

In charge #PZ15, the overall shape of the clasts appears slightly smoothed, as well as the 

external glass starts to soften (wrinkled or smoothed surface) and new bubbles grow on the 

surfaces (Fig. 5b). Tiny fractures propagate on the external surface of the clasts, not 

associated with microlite crystallization. Matrix glass shows evidence of devitrification, as 

suggested by the inhomogeneous distribution of crystallites within the groundmass (Fig. 5c). 

In addition, pre-existing microlites of plagioclase act as sites for the heterogeneous nucleation 

of bladed and fan-shaped plumose spherulites, interpenetrating plagioclase microlites. Oxides 

form anhedral, dendritic microlites. Pre-existing crystals of Ti-mag show typical “trellis” 

texture, consisting in lamellae of ilmenite in magnetite (Haggerty 1991). In charge #VES1, 

modifications of external morphology of the clasts are not visible (Fig. 7b), while groundmass 

glass shows evidence of incipient devitrification (Fig. 7c). 

1,000–1,050°C: The color of all the ash clasts changes, turning red-brown (Figs. 5d, 6e, 7d). 

External surfaces are smoothed as a consequence of the glass softening (Figs. 5e, 6f, 7e). The 

extent of sintering depends on the duration of the experiments: in short runs (<40 min, for 

example, #PZ1) clasts do not adhere to each other, while in longer experiments, the sintering 

increases inducing a moderate welding for #PZ1 and #VES2. This process corresponds to the 

clast densification and pore reduction described by Grunder and Russell (2005). In #STASH2, 

the LP portion shows incipient sintering at 1,000 °C and moderate sintering at 1,050 °C. 

Conversely, HP portions are moderately sintered already at 1,000 °C. In all samples, pre-

existing bubbles collapse and new micrometer-sized vesicles grow on the external surfaces. A 

similar feature has also been observed in heating experiments of Kennedy et al. (2010) 

(regime 2 and 3) though their charges refer to a rhyolitic composition. New microlites (likely 

cpx, oxides and pl) precipitate and grow on the external surface of clasts as vapor-phase 

products, generally forming clusters around bubbles and fractures. Small grains of oxides 

form within the glass on the internal rim of clasts and on bubble walls. Tiny fractures are 

visible on the external surfaces. 



In all samples, the groundmass is nearly totally crystallized, with a predominant nucleation 

and growth of oxides, mainly along the rim of pre-existing plagioclase (Fig. 5f), leucite 

together with euhedral/swallowtail cpx (Fig. 7f) or intergrown with either feathery dendritic 

pyroxene (Fig. 6g) or elongate swallowtail plagioclase (Fig. 5f). In all samples, crystals of Ti-

mag show “trellis” texture. 

1,090–1,100°C: All the experiments carried out at these conditions produce material with 

contrasting features, depending on the position within the quartz tube and sample composition 

(Fig. 8). In all samples, the topmost part of the charge, directly exposed to the air (about 1 cm 

thick), develops a red-yellow color (Figs. 5g, 6h, 7g). Here, new bubbles nucleate and 

coalesce on the external surface of the clasts, which appears “frothy.” The thickness of this 

upper portion remains constant irrespective of the duration of the experiments. SEM 

inspection indicates that the external surfaces of the clasts are smoothed and pre-existing 

vesicles results to be completely collapsed (Figs. 5h, 7h). Clasts sintering is highly variable 

within this portion, ranging between absent and moderate. Modification of groundmass 

vesicularity is also largely variable, with quite unaltered clasts occurring together with clasts 

carrying large, ameboid-shaped, collapsed bubbles. In all the samples, however, new, 

micrometer-sized, rounded bubbles nucleate (Fig. 7i). Fe–Ti oxides, cpx and pl form in the 

groundmass. Two oxides population can be distinguished on the basis of their habits and size. 

We observe: (1) a very fine-grained population of crystallites, growing along the external 

clast rim and, forming 1-μm thick, almost continuous film and (2) a small (<50 μm), 

dendritic, hopper population, variably distributed in the groundmass (Figs. 5i, 6i, j, k, 7i). 

Similarly, we observe cpx microlites that nucleate and grow within the groundmass, and a 

significant quantity of cpx microlites that nucleate heterogeneously on pre-existing 

phenocrysts and on the internal rims of the clasts. Plagioclase is mostly euhedral and 

nucleates and grows as acicular laths. 



 

Fig. 8 : Example of OQT charge at high temperature (#PZ10) showing the sharp textural 

variations within the experimental cell from top to bottom; a whole capsule; b epoxy 

embedded thick section of the capsule; c mosaic of BSE–SEM images of the whole capsule; d 

BSE–SEM close-up image of the topmost part of the capsule; e BSE–SEM image of an 

olivine phenocryst substituted by the graphic intergrowth of magnetite and forsterite; f BSE–

SEM close-up image of the middle part of the capsule 

 

 

The middle/lower part of the capsule is characterized by a complete sintering and welding of 

the clasts (Fig. 8a, b). Boundaries of single clasts are no more recognizable and this portion of 

the charge forms a single mass, containing crystals and large vesicles (Fig. 8b, c) deriving 

from migration and coalescence of intraclasts air. In this portion of the capsule (Fig. 8f), the 

groundmass is less crystallized relative to clasts directly exposed to the air, and features a 

random distribution of microlites (Fig. 8d). Microlites include cpx, pl (plus lct in #VES11) 

and minor oxide. Microlites nucleate and grow both from pre-existing glass and (mainly cpx 

and oxides) on the internal surface of the clast as well as along the contact with pre-existing 

minerals. Inherited microphenocrysts of Ti-mag show typical “trellis” texture, while olivine 

phenocrysts are substituted by the graphic intergrowth of magnetite and forsterite (Fig. 8e) 

(Haggerty and Baker 1967). Small glassy, microlite-free zone are present. 

http://link.springer.com.biblioplanets.gate.inist.fr/article/10.1007/s00410-012-0839-0/fulltext.html#Fig8
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SQT experiments 

700–750°C: The color of the clasts remains quite unaltered in run #PZ29 (Fig. 5j), the 

external surfaces being still bright and dark, while in charges #STASH3 and #VES3, the 

external surfaces are dull and darkened (Figs. 6l, 7j). Angularity of external surfaces 

decreases due to an incipient softening, and the overall shape of the clasts and the external 

vesicularity are unmodified (Figs. 5k, 6m, n, 7k). In all samples, sublimates of micrometer-

sized, euhedral, equidimensional cpx and magnesioferrite (Mfr) spinel grow on the external 

surface of the clasts and in particular on the bubble walls. Experiment #VES3 results in 

precipitation of apatite on the external surfaces. In addition, surfaces of #STASH3 and #PZ29 

are characterized by the occurrence of micrometer-sized euhedral crystals of Cu–Fe sulfides 

(Raghavan 2006). 

Groundmass is incipiently devitrified (Figs. 5l, 7l). In #VES3, the concentrically arranged 

contraction fractures which border the leucite crystals are sealed by a very fine population of 

possibly cpx crystallites. LP and HP portions of #STASH3 share the same microlite 

assemblage although with different abundances. As a general rule, HP glasses have lower 

crystal content with respect to LP ones. Crystal-free zones of glass are abundant, and the 

modification seems to be confined to the periphery of the clasts. 

1,000–1,050°C: The ash color turns gray-brown and dull (Figs. 5m, 6p, 7m). Some clasts 

show a weak sintering (Figs. 6q, 7n). Generally, the extent of sintering increases with 

temperature. Surfaces of the clasts are smoothed, and a reduction in size and abundance of 

bubbles occurs. The pre-existing vesicularity is completely obliterated in runs #PZ2, #VES8 

and #STASH9 (HP portion), while in #STASH9 (LP; Fig. 6q), the rims of original bubbles 

become irregular as a consequence of bubble collapse and groundmass crystallization. New, 

rounded, micrometer-sized bubbles grow in the groundmass. All the samples are 

characterized by a holocrystalline groundmass made by micron-sized cpx, oxides, ol and pl in 

different proportions (Figs. 5o, 7o). Very small microlite-free portions of glass are 

heterogeneously distributed within each single clast. In charge #STASH9 (Fig. 6r), HP zones 

preserve large areas of glass with euhedral microlites, while LP zones are nearly 

holocrystalline, with spherulitic intergrowths of pl and cpx. 

1,090–1,130°C: Runs #PZ13, #STASH8 and #VES10 (Table 3) result in the welding of the 

sample (Figs. 5p, 6s, 7p). The original boundaries of clasts are completely obliterated and the 

sample appears as a single glassy mass embedding crystals. Intergrain air, trapped in the glass 

during the compaction and welding, forms spherical bubbles ranging in diameter from a few 

to hundreds of microns. The pre-existing crystals (pl in #PZ13 and #STASH8, cpx and lct in 

#VES10) are partially resorbed. New, abundant microlites grow in the groundmass (Figs. 5q, 

6u, 7q). In #STASH8, pl shows a newly formed micron-thick rim, with a composition similar 

to that of pl microlites grown in the groundmass (Fig. 6u). Subordinate interstitial glass is still 

present. 

Differently from the above described runs, #STASH7 only results in a moderate softening and 

sintering of the clasts. External surfaces of clasts are smooth and rounded, and the pre-

existing vesicularity is completely resorbed (Fig. 6t). Abundant spherulites of cpx, pl and 

http://link.springer.com.biblioplanets.gate.inist.fr/article/10.1007/s00410-012-0839-0/fulltext.html#Tab3


subordinate ol and oxides grow in the groundmass. Interstitial glass between spherulites of pl 

and cpx is present. Groundmass is partially glassy and contains spherulites of pl and cpx. 

Phenocrysts of ol inherited from HP magma show exsolution texture. 

Compositional features 

Groundmass glass was analyzed in all starting materials and run products obtained under SQT 

conditions. These samples are suitable for EPM analysis, because large glass patches are 

preserved in the groundmass (Table 3). Conversely, OQT experimental charges are more 

difficult to analyze since the groundmass is crystal-rich and glass is only locally preserved. In 

the latter case, the only available glass compositions correspond to experiments performed at 

700–750 and 1,090–1,120 °C. Contamination of the clasts by the quartz tube is limited and 

concentrated to a few-micron-wide belt close to the contact with the capsule. 

CaO/Al2O3 versus SiO2/alkali, FeO/MgO and K2O/TiO2 variations within glasses are reported 

(Figs. 9, 10, 11) for the different starting compositions. These diagrams allow to recognize the 

compositional effects of precipitation/dissolution of mineral phases induced by experiments. 

 



 

Fig. 9 : Compositional variability of matrix glasses in natural and experimental samples of 

Etna (PZ). The arrows show approximately the direction of shifts due to fractional 

crystallization of indicated mineral phases (pl plagioclase, Ti-mag Ti-magnetite, ol olivine, 

cpx clinopyroxene) 



 

Fig. 10 : Compositional variability of matrix glasses in natural and experimental samples of 

Stromboli (STASH). The arrows show approximately the direction of shifts due to fractional 

crystallization of indicated mineral phases (pl plagioclase, Ti-mag Ti-magnetite, ol olivine, 

cpx clinopyroxene) 

 



 

Fig. 11 : Compositional variability of matrix glasses in natural and experimental samples of 

Vesuvius (VES). The arrows show approximately the direction of shifts due to fractional 

crystallization of indicated mineral phases (pl plagioclase, Ti-mag Ti-magnetite, ol olivine, 

cpx clinopyroxene, lct leucite) 



PZ experiments 

The starting glass is homogeneous (CaO/Al2O3: 0.47–0.51 and FeO/MgO 2.6–2.78) and 

comparable with glass composition reported for the products of the recent explosive activity 

at Etna (Corsaro and Pompilio 2004; Corsaro et al. 2007). Glass compositions measured in 

experimental run products reflect the type and extent of crystallization/resorption paths 

occurring at different experimental conditions (Fig. 9). 

At low temperature, glass composition is only slightly modified, consistent with textural 

observations. The charge produced at low fO2 conditions (#PZ29) shows lower CaO/Al2O3, 

FeO/MgO, K2O/TiO2 and SiO2/Alk ratios than natural ones, as a consequence of minor cpx 

crystallization. 

In SQT conditions, the sample kept at 1,100 °C (#PZ13), displays an overall homogeneity and 

partially overlaps compositions of natural glasses, extending toward slightly higher values of 

CaO/Al2O3, SiO2/alkali and lower K2O/TiO2. This trend is possibly related to the 

crystallization of plagioclase in the groundmass during reheating. Conversely, the largest 

variations in glass composition is recorded by the 1,100 °C, OQT runs (#PZ10). Glass 

chemistry expands toward low CaO/Al2O3, FeO/MgO, SiO2/alkali values and high K2O/TiO2, 

related to an extensive Ti-mag crystallization. The vertical gradient of the clast texture 

observed along the capsule (Fig. 8a, b and c) is evident also in glass chemistry. In particular, 

clasts exposed to the air are characterized by the lowest CaO/Al2O3, FeO/MgO, K2O/TiO2 and 

SiO2/alkali, accounting for a significant precipitation of cpx, pl and Ti-mag. Clasts in the 

middle part of the quartz tube are characterized by a glass composition intermediate between 

the starting material and that of clasts exposed to the air, suggesting that they only underwent 

a limited crystallization of the same phases. 

STASH experiments 

Glass in LP starting material is homogeneous, showing a small range of K2O/TiO2 (1.4–2.5), 

FeO/MgO (1.2–1.5) and SiO2/alkali ratios (10–11.3). Glass in HP starting material has higher 

FeO/MgO, lower CaO/Al2O3 and SiO2/alkali than LP glass, but comparable K2O/TiO2 

(Fig. 10). 

Glass composition for low-T runs (T = 700–750 °C) is comparable with that measured on LP 

natural shards. However, in OQT experiments (#STASH1), glass composition is more 

scattered and some analyzed spots are recognizable for low Na2O content, following a minor 

effect of Na2O diffusion (see also Hammer 2006). Other clasts, instead, show low CaO/Al2O3 

ratio, due to local crystallization of pl and cpx. After reheating under SQT condition 

(#STASH3), glasses have slightly higher MgO, SiO2, FeO and Na2O and lower K2O than 

starting material, as a consequence of local diffusion of these elements during the 

devitrification process. 

Between 1,000 and 1,050 °C (#STASH4), glass compositions show significant variability. 

Experiments at 1,050 °C produce glass that partially overlaps those performed at 1,120 °C 

(#STASH7), as a consequence of significant pl crystallization. At 1,000 °C (#STASH9), the 

high crystal content of the groundmass precludes any analysis. However, the few analyzed 

http://link.springer.com.biblioplanets.gate.inist.fr/article/10.1007/s00410-012-0839-0/fulltext.html#Fig9
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glass pools show a large compositional range on the diagram CaO/Al2O3 versus FeO/MgO, 

extending from the natural glass composition toward HP magma compositions. This trend is 

consistent with crystallization of cpx, and minor amount of pl and ol. 

At high temperature (>1,100 °C), groundmass obtained in OQT runs is totally crystallized. On 

the other hand at comparable T but under SQT conditions (#STASH7-8), the glasses are 

strongly heterogeneous in composition. They span toward the lowest CaO/Al2O3 and 

SiO2/alkali ratios and attain the highest K2O/TiO2 values of the whole dataset. FeO/MgO ratio 

does not change with respect to that of the starting material. This is compatible with a 

crystallization of prevalent pl, starting from an LP natural glass. In the same experimental 

conditions, the only experiment carried out on pure HP scoria at 1,113 °C (#STASH8) results 

in a glass which is compositionally indistinguishable from the HP starting material, indicating 

a lack of significant crystallization after reheating. 

VES experiments 

The starting glasses have highly variable composition (Fig. 11), typical of the products of ash-

dominated eruptions at Vesuvius (Cioni et al. 2008; D’Oriano et al. 2011). 

Glass in experiments carried out at low temperature (≈700 °C) differs from the natural ones 

only for the lower FeO/MgO ratio. This feature is more evident for experiments carried out 

under OQT conditions (#VES1) and it is mainly related to Ti-mag and cpx crystallization. 

At high temperature (≈1,090 °C) and under SQT conditions (#VES10), glass composition 

almost overlaps the composition of the natural glassy fragments, although experimental 

glasses show a FeO/MgO ratio slightly lower than the starting material, possibly related to the 

crystallization of Ti-mag. CaO/Al2O3 and SiO2/alkali ratios instead shift toward slightly 

higher values, likely associated with minor dissolution of plagioclase crystals. 

At the same temperature but under OQT conditions (#VES11), fragments from the topmost 

part of the capsule have a completely crystallized groundmass, in which the glass cannot be 

analyzed. In Fig. 11, we report glass compositions analyzed in fragments of the middle and 

lower parts of this charge. Measured ratios are quite similar to those of natural glasses even if 

they shift toward slightly lower FeO/MgO and higher K2O/TiO2 values. This indicates that the 

central portion of the capsule experienced only a slight crystallization of oxides and minor 

cpx. 

 

Discussion 

The experimental data show that the most important physical and chemical effects resulting 

from reheating of natural pyroclasts at different temperatures and redox conditions are: (1) 

groundmass crystallization and subsequent compositional changes of matrix glass; (2) 

softening, sintering and welding of clasts; (3) vapor-phase mineral precipitation on external 

surfaces; (4) surface color change; (5) subsolidus transformation of some mineral phases (e.g., 

development of symplectic texture in olivine or oxide exsolution). 



Groundmass crystallization and change of glass composition 

In principle, the mineral assemblages, crystal contents and glass compositions of natural 

material are assumed to represent the state of the magmatic melt as quenched immediately 

after fragmentation. It is usually assumed that quenching after fragmentation is highly 

efficient and capable of interrupting reaction kinetics. This is thought to be especially true in 

the case of the fine-grained fragments considered in our experiments. Thus, erupted products 

can reflect the pre-eruptive equilibrium conditions attained by the magma or, most probably, 

they represent a metastable state which records the conditions reached by magma following 

syn-eruptive decompression-related degassing. In this case and because of degassing, a large 

undercooling (i.e., difference between liquidus temperature and the temperature of the 

magma) is recorded in the quenched system. Experimental reheating reactivates the melt 

allowing for new chemical and physical processes that will move the melt closer to 

equilibrium. In our case, the new conditions imposed by experiments can be either very close 

to (T = 1,000–1,100 °C, SQT) or very far from (T ≈ T g; OQT) the syn-eruptive thermal and 

redox conditions. After reheating, transport parameters such as chemical and thermal 

diffusion will control the response of the sample. Although we can neglect the effects of 

thermal diffusion (the whole charge attains thermal equilibrium in few minutes due to 

geometry of the experiments and size of the capsule), compositional diffusion is a more 

complex parameter strongly controlled by melt viscosity which is itself controlled by 

temperature, melt polymerization and composition. 

Redox conditions control liquidus temperature (T liq), mineral assemblage (e.g., oxide 

crystallization) and then the liquid line of descent (LLD) of a magma (e.g., Hamilton et al. 

1964). For example, thermodynamic modeling (by MELTS code of Asimow and Ghiorso 

1998; Ghiorso and Carmichael 1985) reveals an increase in the liquidus temperature (i.e., for 

Etna basalt) of 30–40 °C as the oxygen fugacity changes from QFM to that of the air. The 

lower is the Fe
2+

/Fe
3+

 ratio, the higher the T liq of a silicate melt. This is because ferric iron 

(Fe
3+

), generally occurring in tetrahedral coordination, acts as a network former (Mysen 1983; 

Dingwell and Virgo 1987), inducing a general increase in melt polymerization and promoting 

crystallization. In addition, an increasing proportion of Fe
3+

 favors the precipitation of a larger 

amount of oxides, so changing the ratio between mafic and salic minerals (Bouhifd et al. 

2004) and the composition of the residual melt. 

In our experiments, different redox conditions induce major changes in groundmass 

crystallization and glass composition (Figs. 5,6,7,8,9,10,11; Table 3). These effects are more 

or less significant depending on the operating temperature. In all the experiments performed 

at temperatures close to T g, groundmass crystallization is limited to the formation of a large 

number of crystal nuclei (crystallites or spherulites), suggesting an overall condition of high 

undercooling. This process creates textural heterogeneities at the scale of few microns, only 

partially recorded by changes in glass composition. Generally, the glass compositions remain 

clustered around that of the natural glasses. Minor differences are in some cases present, 

mainly related to local heterogeneities induced by diffusion of elements around spherulites. In 

this temperature range, glass resulting from heating experiments under highly oxidizing 



conditions is in general slightly more differentiated (Figs. 9,10,11) with respect to the natural 

glass. 

In the T range 1,000–1,050 °C, the groundmass is almost completely crystallized for all 

charges, except for STASH samples. New nucleated microlites or rim overgrowths on early 

formed microphenocrysts generally show acicular or dendritic shapes, indicating intermediate 

undercooling conditions (Lofgren 1974). In all charges, changes in fO2 control the mineral 

assemblage; crystallization of oxides over pyroxenes and feldspar/leucite are favored by high 

fO2 conditions (OQT). 

STASH experiments, at low redox conditions (SQT), produced different textures in HP and 

LP samples. HP zones show euhedral microlites (low undercooling), while LP zones exhibit 

spherulites of pl and cpx, suggesting high undercooling conditions. We argue that the evident 

disequilibrium conditions shown by LP clasts is inherited from the syn-eruptive fast ascent 

and degassing conditions recorded by this magma type during Stromboli paroxysms (Métrich 

et al. 2010). 

Close to the eruptive temperature (1,100–1,130 °C), redox conditions are crucial in 

controlling the crystal content of the groundmass. In all runs produced at SQT conditions, 

crystallinity and glass compositions for VES, PZ and STASH-HP samples match those 

observed in the respective starting material. This indirectly confirms that our experiments 

accurately reproduce the physicochemical conditions at quenching, and that the magmatic 

system was nearly relaxed. On the contrary, STASH-LP clasts undergo a nearly complete 

crystallization, resulting in highly differentiated glasses along a trend controlled by pl and cpx 

crystallization and possibly reflecting a highly unrelaxed (disequilibrium) state of the starting 

material. 

Under OQT conditions and the same high-T range, all charges are characterized by a largely 

crystallized groundmass, with Ti-mag as the predominant phase. The extent of crystallization 

within each clast strongly depends on the distance from the outermost portion of the clast, at 

the contact with the air (see also Burkhard 2001). Glass compositions (where analyzed) record 

oxide precipitation (lowering FeO/MgO ratio and increasing K2O/TiO2). A compositional 

zoning is evident in PZ sample, where glass from clasts exposed to the air has the lower 

FeO/MgO ratio. This indicates that redox conditions were not the same over the whole 

capsule, and the external portion acted as a barrier/buffer to the exchange with atmospheric 

oxygen. The thickness of this buffering layer is not related to the duration of the heating 

experiment, suggesting that this interface is not controlled by diffusion but only by physical 

parameters, such as the permeability of the material at sample–atmosphere interface and the 

geometry of the capsule. According to this, we can infer that deposition of clastic material on 

top of a hot zone, whether in intracrater area or on the surface of an active lava flow, will 

show important oxidation and crystallization only in the very superficial layers. 

Clasts softening–sintering–welding 

At a given pressure, the processes of sintering and welding depend on composition, water 

concentration and temperature of the glass, inasmuch as these govern viscosity (Giordano et 

al. 2008; Grunder and Russell 2005 and references therein). Natural glasses in our samples 



display similar chemical compositions and can be considered almost anhydrous. This suggests 

that the temperature range at which the most important rheological modifications are expected 

to occur will be similar for all samples. For example, T g calculated on the basis of anhydrous 

compositions (Giordano et al. 2005) is broadly the same for all samples, varying by less than 

ten degrees for the three starting materials (Table 2). Similarly, NBO/T values for starting 

natural glasses are comparable (Table 2). 

In our experiments, the transition from softening to sintering of the clasts appears strictly 

controlled by temperature. On the contrary, the transition from sintering to welding, 

characteristic of very high temperature, is also influenced by redox conditions. 

At temperatures above T g (T = 700–750 °C), glass starts to deform and a minor softening 

begins, as evidenced by micron-scale wrinkling of the external surface of the clasts. 

Crystallization and compositional changes resulting from heating in this temperature range 

are limited. Varying the redox state does not affect significantly the rheology of the clasts 

since no differences in softening are detectable. 

As temperature increases (1,000–1,050 °C), sintering of glass develops (local disappearance 

of clast–clast contacts), together with bubble nucleation on the external surface of the clasts. 

This process increases with temperature up to 1,050 °C. As observed for softening, sintering 

occurs irrespective of the redox conditions of the experiments. 

In high temperature (>1,090 °C) experiments, welding is an ubiquitous phenomenon in SQT 

experiments, while under OQT conditions, welding occurs only in the internal portions of the 

charges, not directly in contact with the air. In these charges, clasts close to the air interface 

appear only sintered, possibly related to the formation of sublimates and oxides on the 

external surface (Grunder and Russell 2005). 

These rheological differences can be related again to changes in redox conditions that control 

melt polymerization, liquidus temperature and crystal content (Bouhifd et al. 2004; Dingwell 

and Virgo 1987; Mysen 1983). At high temperatures, groundmass glass compositions reveal a 

variable crystal content between the different runs, suggesting that bulk viscosity of the clasts 

was strongly controlled by the extent of crystallization. In the low temperature runs, 

characterized by limited groundmass crystallization, an increase in melt polymerization 

related to iron oxidation cannot be excluded. 

It is worth noting that in this temperature range, clast collapse and welding are signaled by a 

significant densification of the whole charge. Pre-existing bubbles collapse and interclast 

voids progressively coalesce and migrate toward the exterior (Figs. 5p, 7p). This transition 

has important consequences on the bubble distribution within the resulting material. Dense 

clasts and bubble collapse can be thus produced not only by an efficient bubbles (or gas) 

separation during syn-eruptive degassing but also by prolonged permanence at high 

temperature during intracrater recycling. This fully agree with conclusions of Kennedy et al. 

(2010) who showed that progressive heat transfer due to the magma ascent is able to reduce 

significantly the open porosity and permeability of the rocks forming the conduit walls and 

the overlying plug. 



Vapor-phase precipitation on external surfaces 

During experimental reheating of natural pyroclasts, secondary boiling related to groundmass 

crystallization or enhanced volatile diffusion promotes exsolution of a vapor phase and can be 

followed by precipitation of sublimates on clast surface (Stimac et al. 1996). 

In all our experiments, micron-sized crystals with variable shape grow on the external 

surfaces of the clasts or form a lining on the bubble walls. The nature of these minerals is not 

easily recognizable, but the presence of Na, Ca, K, Al, Fe and Si suggests they are a mixture 

of silicate (feldspars or pyroxene) and Fe-oxide phases. In the SQT experiments, there is 

evidence of a sulfide phase. Abundance, shape and composition of sublimates are apparently 

related to temperature and to either OQT or SQT conditions. The amount of vapor-phase 

crystallization is also strictly related to the heating temperature, with abundant sublimates 

formed in experiments carried at 1,000 °C. 

STASH samples behave differently, showing a high content of sublimates yet at 750 °C. This 

is in agreement with the higher volatile content of the LP portions that increases the amount 

of available vapor. 

Experiments carried out under OQT conditions result in the formation of a more or less 

continuous encrustation, consisting of anhedral or subhedral crystallites. SQT conditions 

favor sublimates with well-developed crystal faces, possibly related to the formation of a high 

fluid pressure. Redox conditions which characterize SQT experiments control the 

composition of sublimates, favoring the crystallization of sulfide instead of Ca-sulfates (e.g., 

anhydrite or gypsum). 

Similar crystallization of vapor phases is largely described in welded ignimbrite and occurs 

also in the welding experiments of Grunder and Russell (2005), especially in the presence of a 

high magmatic volatile content. 

Color change 

The color change of the external surfaces after reheating of the clasts is easily visible with the 

naked eye and includes both reddening and loss of luster. Both modifications occur 

throughout the whole range of investigated temperature, irrespective of redox conditions. This 

is in agreement with the experiments of reheating carried out by Tait et al. (1998), who for 

comparable run times documented a color change yet at T > 750 °C. 

We also agree with the interpretation provided by Tait et al. (1998) on the different external 

color of the ash. It can be related to the stability of Fe-bearing phases, which depends on the 

oxygen fugacity conditions and temperature. In particular, at high oxygen fugacity (OQT 

experiments), hematite (Fe2O3), typically red-yellow in color, becomes stable over the 

magnetite and maghemite which is present at intermediate oxygen fugacity (Mysen 1983) and 

low temperature. 

Development of exsolution textures in some mineral phases 

After reheating under OQT conditions, oxide and olivine undergo subsolidus transformations. 

In particular, titanomagnetite shows the typical lamellae texture (trellis texture) at 750 °C. 



High temperature oxidation of basaltic olivine is a well-known process (Haggerty and Baker 

1967). It results either in the exsolution of hematite associated with a more Mg-rich olivine, 

or in the formation of a symplectic intergrowth of magnetite and orthopyroxene. Continued 

oxidation of the metastable assemblage magnetite + orthopyroxene produces 

hematite + forsterite (Haggerty and Baker 1967). In our experiments, this texture forms at 

eruptive temperature, or at least at T > 1,000 °C, and is substantially absent in the low 

temperature range (700–750 °C). This apparently contrasts with experiments of Haggerty and 

Baker (1967), who observed olivine exsolution at 600 °C. We envisage that in our 

experiments, the run times are too short to allow the completion of this reaction confirming an 

obvious control of the kinetics and diffusivity on this process. 

General implications and conclusions 

Experiments have shown that the effects of reheating and exposure to variable redox 

conditions yield a number of diagnostic modifications strengthening the idea that the 

pyroclastic material, which resides in a crater area, can suffer significant changes to its 

primary features. 

In addition, modifications occur even in a short time interval (minutes–hour) which is 

comparable with the duration of heating–cooling cycles affecting pyroclasts within the crater 

during weakly explosive activity. 

Observed clast modifications are, on the whole, the same in all the investigated volcanic 

products, with only small differences related to the extent of undercooling/disequilibria that 

magmas experienced during ascent and before the eruption (e.g., LP magma at Stromboli). 

Our findings can be thus confidently extended to a large number of volcanoes with 

comparable mafic compositions. 

Taking this in mind, our observations have direct implications on the interpretations of some 

features observed in volcanic deposits and can contribute to the understanding of volcanic 

processes occurring in an ideal crater environment (Fig. 1), which include a: (I) vent/s area, 

(II) inner walls and crater filling, and (III) cone flanks. 

Vent area is a highly dynamic zone with the highest temperature and lowest atmospheric air 

entrainments (low redox). Experiments in the range 1,090–1,130 °C under SQT conditions 

evidence that in this environment effects of cycles of heating and cooling are hard to be 

recognized only on the basis of textural and compositional characterization. Vesicularity can 

eventually give some indications, but cannot be a reliable discriminating feature since bubble-

melt separation can also be the results of the normal dynamics of the top of the magma 

column. Similarly, those clasts that during the explosions are exposed to the external 

atmosphere, reaching conditions similar to those characteristics of the OQT experiments, once 

fallen back in the vent, are immediately engulfed by the hot magma residing in the conduit. In 

this case, any evidence of exposure to high fO2 can be obliterated. Thus, on the whole, effects 

of high temperature syn-eruptive recycling of clasts become similar to the properties of 

magma residing in the shallowest part of the conduit. 



In the inner walls of the crater, we expect conditions of lower but variable temperatures and 

variable redox atmosphere as those simulated in experiments carried between 700 and 

1,050 °C. Experiments indicate that under these conditions highly crystallized clasts, with 

discolored surfaces, can develop on glassy starting material. These pyroclasts can also display 

subsolidus transformation of some minerals (e.g., olivine and or magnetite) and the formation 

of vapor phase on the external surface. Similar features can be diagnostic to distinguish 

material recycled within the crater area from even primary juvenile fragments derived from 

highly crystallized magma portion within the conduit. 

Conditions expected along cone flanks strongly depend on the style of activity. In case of low 

energy activity (weak Strombolian activity), this area is characterized by low temperature 

(≪T g) and modifications of pyroclasts can be only related to exposure to volcanic gases 

(Spadaro et al. 2002). These conditions cannot be discussed on the basis of our experiments. 

In case of high energy eruptions (e.g., Violent Strombolian or Fire Fountains), fall and 

accumulation of hot ejecta can induce rapid heating of the substratum with associate sintering, 

agglutination and coalescence of pyroclasts (Sumner et al. 2005; Bertagnini et al. 2011). 

Experiments carried out at temperature >1,000 °C reproduce the thermal and redox conditions 

of these processes. Results indicate that reddening of the clast surface takes place 

accompanied by variable groundmass crystallization and significant change in glass 

composition. In the high temperature range (>1,050 °C), also welding of portions not exposed 

to the air can develop, until the complete remobilization and flowing of the heated material. 

The effects of the sintering and melt remobilization observed in our experiments partially 

reproduce mechanism of formation of agglutinated spatter deposit and rootless lava flows 

resulting from rapid accumulation of hot material on cone flanks. 

In conclusion, this paper may provide a tool with good potential for useful reconstructions of 

the complete clasts history before the final emplacement and of the whole eruption dynamics. 

Comparison of the textural and morphological features of natural samples from real deposits 

with the main features observed in experiments will help to identify a set of diagnostic 

elements useful to interpret nature and origin of different tephra components. 
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