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Abstract 
The continuous measurement of molecular hydrogen (H2) emissions from passively 
degassing volcanoes has recently been made possible using a new generation of 
low-cost electrochemical sensors. We have used such sensors to measure H2, along 
with SO2, H2O and CO2, in the gas and aerosol plume emitted from the phonolite lava 
lake at Erebus volcano, Antarctica. The measurements were made at the crater rim 
between December 2010 and January 2011. Combined with measurements of the 
long-term SO2 emission rate for Erebus, they indicate a characteristic H2 flux of 
0.03 kg s–1 (2.8 Mg  day–1). The observed H2 content in the plume is consistent with 
previous estimates of redox conditions in the lava lake inferred from mineral 

compositions and the observed CO2/CO ratio in the gas plume (∼0.9 log units below 
the quartz–fayalite–magnetite buffer). These measurements suggest that H2 does not 
combust at the surface of the lake, and that H2 is kinetically inert in the gas/aerosol 
plume, retaining the signature of the high-temperature chemical equilibrium reached 
in the lava lake. We also observe a cyclical variation in the H2/SO2 ratio with a period 

of ∼10 min. These cycles correspond to oscillatory patterns of surface motion of the 
lava lake that have been interpreted as signs of a pulsatory magma supply at the top 
of the magmatic conduit. 
 
Keywords : Erebus volcano Hydrogen Magma redox conditions Lava lake Volcanic 
degassing  

http://link.springer.com.biblioplanets.gate.inist.fr/article/10.1007/s00445-012-0649-2/fulltext.html#ContactOfAuthor1
http://link.springer.com.biblioplanets.gate.inist.fr/article/10.1007/s00445-012-0649-2/fulltext.html#ContactOfAuthor2


 

 

Introduction 

Hydrogen is one of the most abundant trace species in volcanic emissions (e.g. Giggenbach 

1987; Oppenheimer et al. 2012) and is an essential participant in key redox reactions that 

take place in magmatic gases, e.g.  

H2+12O2=H2O 

and  

H2S+2H2O=SO2+3H2. 

At Erebus volcano, Antarctica, emissions to the atmosphere result from the sustained supply 

of gas via the persistently active lava lake and surrounding fumaroles. The gas composition 

of the plume provides valuable insights into redox conditions of the lava lake, assuming 

thermodynamic equilibrium is achieved between the gas phase and the melt. At Erebus 

volcano, the volcanic plume is mainly the result of passive degassing of the magma within 

the lava lake. Contrary to the conventional consideration that the redox state of a magma is 

buffered during decompression, recent chemical modelling of the gas phase in ascending 

magmas (Burgisser and Scaillet 2007; Burgisser et al. 2008) has suggested an evolution of 

the magma redox state during ascent, partly reflecting initial volatile contents. Measurement 

of redox-sensitive magmatic gas species such as molecular hydrogen will enable such 

models to provide better constrained “inversions” of surface geochemical signatures. 

The recent development of highly portable and readily deployed multi-species gas sensing 

systems (Shinohara 2005; Aiuppa et al. 2005, 2006; De Vito et al. 2007) has enabled 

measurements of volcanic gas ratios for extended periods and in some cases operationally 

(Aiuppa et al. 2010a, b). Such multi-species approaches complement ultraviolet and infrared 

spectroscopic applications (Oppenheimer 2010) to enable measurement of abundances and 

fluxes of a range of gas species. Until very recently, there has not been a practical means for 

extended surveillance of hydrogen (H2) abundance in dilute volcanic plumes (Aiuppa et al. 

2011; Shinohara et al. 2011). Here, we use a “multi-gas” instrument incorporating a sensor to 

measure H2 in the plume emitted from the lava lake of Erebus volcano. Erebus is of particular 

interest because of the emerging evidence for redox change associated with magma ascent, 

with the most reducing conditions found in the lava lake itself (Oppenheimer et al. 2011). 

Despite challenging conditions at the summit crater, measurements were possible for several 

hours per day spanning a week. Our initial aims were to assess implications of the 

measurements for lava lake redox conditions and to identify any rapid variability in gas 

composition of the plume that would corroborate previous observation of cyclical behaviour 

of the lava lake (Oppenheimer et al. 2009). 

Methodology 

The measurements were made between 6 December 2010 and 3 January 2011 using a 

purpose-built multi-gas instrument and a LI-COR® LI-840 CO2 and H2O infrared analyser. 

The multi-gas instrument incorporated H2, H2S and SO2 electrochemical sensors, a 

nondispersive infrared (NDIR) sensor for CO2, and a sensor for temperature and humidity 



measurements. The sampled gas is circulated via a miniature 12-V rotary pump through the 

sensors (Aiuppa et al. 2011). The H2, H2S and SO2 sensors produce an electrical current in 

response to the target gas entering the electrolyte and oxidizing or reducing the electrode. 

This current is proportional to the concentration of the target gas in the total gas volume. The 

electrochemical sensor for SO2 (City Technology, sensor type 3ST/F) has a calibration range 

of 0–30 ppmv, an accuracy of ±2 %, a repeatability of 1 % and a resolution of 0.5 ppmv. The 

electrochemical sensor for H2 (City Technology, sensor type 3HYT) has a calibration range of 

0–500 ppmv, an accuracy of ±5 %, a repeatability of 2 % and a resolution of 2 ppmv. The 

NDIR CO2 sensor (model Gascard II) is calibrated for 0–3,000 ppmv and has an accuracy 

±2 % and a resolution of 0.8 ppmv. In addition to the gas sensors, temperature and relative 

humidity (RH) sensors (Galltec) are mounted in the instrument, providing a measuring range 

of 0–100 % RH and an accuracy of ±2 %. All sensors were housed inside a weatherproof 

box, with the ambient air sampled via Teflon tubing connected to a HEPA filter fed through 

an opening in the box. The sampled gas was ejected via an outlet likewise fed through a hole 

in the case. The sampled gas was heated to ∼30 °C on its way through the first hose to 

prevent freezing and other problems related to the low ambient temperatures (below –25 °C). 

An on-board data-logger card in the multi-gas instrument captured measurements at a rate of 

0.5 Hz, while the LI 840 output was logged at 1 Hz via a netbook PC. Both instruments were 

always started simultaneously. The multi-gas instrument was recalibrated using standard gas 

mixtures in the laboratory (accurately measured by gas chromatography) before and after the 

campaign and showed very little drift (<5 %). 

The LI-COR® LI-840 instrument was operated for intercomparison with the Gascard II and 

humidity sensors in the multi-gas unit. The LI-840 is a non-dispersive infrared gas analyser 

equipped with a dual wavelength, infrared detection system allowing measurements of CO2 

and H2O in the gas phase in the range of 0–3,000 ppmv and 0–80 parts per thousand 

volume (pptv), respectively. The accuracy was better than 1.5 % for both species and cross-

sensitivity is <0.1 ppmv CO2/pptv H2O for H2O and <0.0001 pptv H2O/ppmv CO2 for CO2. 

Both instruments were deployed intermittently on the crater rim of Erebus with their inlet 

filters placed side-by-side directly sampling the plume (Fig. 1). Measurements were possible 

when the plume was grounded and most data were collected at the “pump site” situated on 

the northern rim of the crater ∼220 m vertically above and ∼150 m horizontally from the lava 

lake. This site has consistently proved to be suitable for in situ plume sampling and sensing 

owing to the prevailing wind direction (Zreda-Gostynska et al. 1997; Ilyinskaya et al. 2010). 

Both instruments were powered by a 12-V DC battery, which sustained 6–10 h of unattended 

operation. 



 

Fig. 1  
a Typical field operating conditions during deployment of the LI 840 and multi-gas sensor at the crater 
rim. Gases are pumped through both instruments via narrow hoses connected to particle filters. b View 
of Erebus (looking south) during ideal plume sampling conditions on 26 December 2010. Turbulent 
airflow resulted in grounding of the plume at the sampling site 

 

 

Data processing 

Mixing ratios of SO2, H2O, CO2 and H2 in the gas phase are retrieved (in parts per million 

volume) directly from the laboratory-calibrated sensors using the proprietary “840–500” 

software for the LI-840 and in-house software (developed at INGV Palermo) for the multi-gas 



instrument. The raw data collected by both instruments show a good correlation between all 

measured species. The good agreement between the CO2 measurements obtained by the 

multi-gas instrument and those obtained by the LI-840 provides a validation of the 

performance of the Gascard II sensor. Response times of the different sensors vary slightly 

but are all rapid, requiring a few seconds to approach maximum reading. Figure 2 shows an 

example of a typical dataset, recorded on 27 December 2010. All species' abundances are 

highly correlated, and there is little or no time lag between each sensor's response to 

increasing gas mixing ratios. Typical abundances measured at the crater rim range from 0.3 

to 1.3 ppmv for H2 and SO2, 400 to 500 ppmv for CO2 and 800 ppmv for H2O. 

 

Fig. 2  
Example of time series for gas mixing ratios obtained from both instruments (the multi-gas instrument 
and LI 840). This 1-h-long time series is an extract from a 10-h-long run acquired at the crater rim on 
27 December 2010. All gas abundances are reported in in parts per million volume 

 

 

In order to convert the raw abundance data into reliable measurements, several processing 

steps were applied. Firstly, the small difference in response times between sensors was 

corrected for. Secondly, the sensor signal resulting from cross-sensitivity with other gases, 

characterised by laboratory measurements, was subtracted. The differences in response 

time for the different sensors were corrected by finding the lag times from correlation analysis 

of the various time series. Laboratory tests were performed using a set of gas standards 

circulated through the multi-gas instrument in order to determine the cross-sensitivity of the 

hydrogen sensor to other species. Carbon monoxide was a particular concern because of its 

abundance in the Erebus gas/aerosol plume (Wardell et al. 2004; Oppenheimer and Kyle 

2008). Its effect was tested for a range of CO from 7 to 500 ppmv. Mixed CO and H2 gas 

calibrations were also carried out. These tests revealed a constant 4 % cross-sensitivity of 

the H2 sensor due to the presence of CO. The H2 sensor was found not to be sensitive to 

http://link.springer.com.biblioplanets.gate.inist.fr/article/10.1007/s00445-012-0649-2/fulltext.html#Fig2


H2O, CO2 or SO2. Although there was no CO sensor in the multi-gas instrument, an estimate 

of CO abundances can be made, point-by-point, from measured CO2 abundance and using a 

CO2/CO molar ratio of 13 ± 1 obtained from open-path FTIR spectroscopic measurements 

(Oppenheimer et al. 2009; Ilanko personal communication). At each point, 4 % of the 

estimated CO value was subtracted from the H2 signal to correct for the cross-sensitivity 

(Fig. 3). 

 

 

Fig. 3  
a Raw (red trace) and corrected (dashed trace) time series for H2. The corrected time series is 
obtained by estimating the signal that would be due to presence of CO in the plume (blue trace). The 
abundance of CO has been estimated from the corresponding Gascard II CO2 time series, from which 
a constant background atmospheric value of 387.5 ppmv has been subtracted, and a CO2/CO molar 
ratio of 13 (from Oppenheimer et al. 2009). b H2 and SO2 time series after correction for atmospheric 
background H2 and CO cross-sensitivity and after alignment of both times series using an offset 
calculated from the maximum correlation factor between the time series 



Results 

Useful data were only acquired during favourable winds that resulted in grounding of the 

plume at the crater rim (Fig. 1b). We obtained 25 h of good quality observations at a sample 

rate of 0.5 Hz over the 180 h of data collection. As well as the variable weather conditions, 

delays in stabilising the internal temperature of the multi-gas instrument were also 

responsible for the limited collection time. It is worth noting that Strombolian eruptions, which 

are occasionally observed at Erebus (Aster et al. 2003; Dibble et al. 2008), did not occur 

during the acquisition of this dataset; only the “passive” plume emitted from the lava lake was 

sampled. Figure 4 shows 12 scatter plots for measurements recorded during the last week of 

December 2010, which offered the best conditions for plume sampling. Results from 6 days 

of data yield a daily mean H2/SO2 molar ratio between 1.38 and 1.52 (Fig. 4a); the average 

ratio for the whole week being 1.44. Scatter plots for the CO2 and SO2 measurements yield 

CO2/SO2 molar ratios varying between 36 and 45 (Fig. 4b), with the week's average being 

40. We neglect the CO2/SO2 ratio obtained for 3 January which shows much higher 

variability, which we ascribe to contamination from nearby fumaroles. The intercept of first 

order linear regression through the scatter plots of H2 vs. SO2 and CO2 vs. SO2 should 

correspond to the atmospheric background H2 and CO2 abundances, respectively (since 

ambient SO2 is very low, less than 10 pptv). In fact, we find values for ambient H2 between 

1.06 and 0.42 ppmv and background CO2 values between 433 and 385 ppmv. These are 

both good approximations to expected atmospheric background abundances for the two 

gases. For instance, measurements from December 2010 at the South Pole weather station 

(available at http://www.esrl.noaa.gov/) indicate a mixing ratio of 387.5 ppmv for CO2 and 

0.54 ppmv for H2. This station is the closest Antarctic research station routinely measuring 

atmospheric gas abundances at altitude (2,900 m a.s.l, c.f. the altitude of the pump site of 

∼3,700 m). A test run using the multi-gas instrument on 7 December carried out near Lower 

Erebus hut (2 km from the crater) also yielded stable H2 readings of ∼0.5 ppmv, though CO2 

readings fluctuated between 400 and 350 ppmv with temperature drift during acquisition. 

These estimates of the ambient mixing ratios of the two gases give further confidence in the 

performance of the multi-gas instrument sensors. While H2O was being recorded 

simultaneously by both the LICOR and multi-gas instruments, changes in the ambient 

atmospheric humidity, the influence of nearby low-temperature fumaroles and conceivably 

absorption of H2O on tubing and filters precluded reliable retrieval of water content of the 

plume. 

 



 

Fig. 4  
a H2–SO2 and b CO2–SO2 scatter plots from 6 days of sampling of the Erebus plume under favourable 
conditions. a 11:20 to 16:33, 26 December 2010, UTC. b 02:16 to 10:01, 28 December 2010, UTC. c 
11:07 to 13:58, 29 December 2010, UTC. d 06:25 to 11:45, 30 December 2010, UTC. e 04:10 to 
06:12, 31 December 2010, UTC. f 22:42 to 01:32, 3 January 2011, UTC. Regression lines are shown 
in red and corresponding parameters are displayed on the lower right corner of each plot 

 

 



Further inspection of our dataset reveals small but clear variations in the retrieved gas ratios 

which appear cyclical. Figure 5 shows the evolution of the H2/SO2 and SO2/CO2 ratios for 

23 min on 26 December. Three complete cycles of about 7 to 8 min length can clearly be 

identified in both time series. The H2/SO2 ratio for ∼3 h on 3 January 2011 is also reported on 

this figure and shows 15 cycles of about 10 min. Figure 5 also presents the corresponding 

pseudo-periodogram obtained for these ∼3 h using a continuous Morlet wavelet transform 

analysis (Goupillaud et al. 1984) of the time series. The pseudo-periodogram shows a strong 

transform modulus with a cycle of 8 to 12 min. Similar pseudo-periodograms have been 

produced for all the time series for which data are presented in Fig. 4, and all reveal cycles 

with periods of 7 to 14 min. In addition, some pseudo-periodograms show weaker signal 

strength at a shorter period of 3 to 5 min. 

 



 

Fig. 5  
Morlet wavelet transform pseudo-periodogram computed from a 3-h time series of the H2/SO2 ratio 
obtained from a 10-h-long run of the multi-gas instrument on 3 January 2011. Note the strong 

transform modulus emerging steadily at a period of ∼10 min. The central panel shows the same 3-h 
time series of the evolution of the H2/SO2 ratio in which ∼10-min cycles can be observed. Black arrows 
indicate the peak in H2/SO2 ratio of each cycle. The lower diagram shows the evolution of the SO2/H2 

and SO2/CO2 ratios for the first 1,400 s (∼23 min) of a time series obtained from an 8-h-long run of the 
multi-gas instrument on 26 December 2010. This lower diagram shows three complete cycles of 

∼8 min each and shows reasonably clearly that SO2/H2 follows SO2/CO2. Black arrows indicate peak 
in H2/SO2 ratio of each cycle 



Pseudo-periodograms were produced for the CO2/SO2 and CO2/H2 ratio time series and 

reveal similar periodicities. The CO2/H2 ratios vary mostly between 20 and 35. Lower and 

upper extremes are approximately 15 and 50, respectively. The periodicity is noteworthy 

since it suggests preservation of a source signature despite the passage of the plume within 

the crater (and the possibility for mixing and homogenization of the time-varying signal), from 

the lava lake to the pump site. Time series of the SO2/H2 and SO2/CO2 ratios were 

constructed using background H2 and CO2 atmospheric values determined by the 

intersection of the linear regression with the H2 or CO2-axis for each day (Fig. 4) except when 

that intercept was higher than the lowest measured H2 or CO2 value, in which case this 

lowest H2 or CO2 value was used as the background. 

 

Discussion 

H2 contribution to the Antarctic atmosphere from Erebus 

We have estimated the H2 flux from Erebus volcano using the time-averaged (over 

approximately a decade of observations) SO2 flux of 0.71 ± 0.3 kg  s–1 (Sweeney et al. 2008) 

and the measured H2/SO2 ratio. Using our mean H2/SO2 molar ratio of 1.44 (equivalent to a 

H2/SO2 mass ratio of 0.045), we estimate the mean H2 flux at Erebus volcano as 0.03 kg  s–1 

(2.8 Mg day–1). Note, however, that the SO2 emission rate itself fluctuates cyclically (from 

0.17 to 0.89 ± 0.20 kg  s–1 in December 2005; Boichu et al. 2010). This estimated H2 flux from 

Erebus is the largest recorded point source of H2 to the Antarctic atmosphere. The Erebus 

source amounts to ∼1 Gg  a–1 of H2 corresponding to 0.004 to 0.02 % of the total global 

anthropogenic emission (the global anthropogenic emission of H2 from the use of fossil fuels 

is estimated at 5 to 25 Tg a–1) (Novelli et al. 1999). For comparison, the hydrogen flux at Mt. 

Etna has been estimated at ∼0.00065 Tg a–1 (Aiuppa et al. 2011). 

Oxidation state of the Erebus lava lake 

Based on a mean bulk plume SO2/H2O molar ratio of 0.023 obtained by FTIR spectroscopy 

(Oppenheimer et al. 2009), we can convert the mean multi-gas-measured H2/SO2 ratio to an 

H2/H2O molar ratio of 0.033. From this ratio, we can calculate the corresponding oxygen 

fugacity based on the redox reaction in Eq. (1). 

The equilibrium constant, K, for this reaction is given by: 

K=fH2×(fO2)12fH2O 

where fH2=γH2×PH2;fO2=γO2×PO2;fH2O=γH2O×PH2O  

with Pi=xi×P  

and where f i is the fugacity of the ith species, γ i is the fugacity coefficient of the ith species, 

P i is the partial pressure of the ith species, x i is the mole fraction of the ith species and P is 

the total gas pressure. 

This yields: 

(fO2)12=K×fH2OfH2=KγH2O×xH2O ×PγH2×xH2×P 



and therefore 

fO2=(KγH2O×xH2O γH2×xH2)2. 

At atmospheric pressure, the fugacity of a gas is equal to its partial pressure (assuming ideal 

behaviour), therefore γH2O/γH2=1. The equilibrium constant was calculated using Maier–

Kelly coefficients specific for each species and obtained here from the Supcrt92 software 

(Johnson et al. 1992). At T = 1,273 K (the most widely accepted temperature of the lava 

lake), K = 3.72 × 10–8, the logfO2 is equivalent to ΔQFM = −0.92 (using a H2/SO2 ratio of 1.44, 

where QFM refers to the quartz–fayalite–magnetite buffer, and where 

ΔQFM = logfO2 − logfO2 of QFM). Using the obtained oxygen fugacity and prior 

measurements (Oppenheimer et al. 2009), we can recalculate the composition of the Erebus 

plume to include H2 and the expected abundance of H2S (Table 1, first column). Note that, in 

the table, H2S is estimated based on the gas redox properties calculated using the 

“Dcompress” software from Burgisser et al. (2008) though it has not been detected at Erebus 

despite multiple attempts (Oppenheimer and Kyle 2008). 

Table 1  
Estimated composition of the Erebus plume in mole percent and molecular ratios for given species 
pairs 

  Mean Top of cycle Bottom of cycle 

  mol% 

CO2  44.00 34.86 47.25 

H2O 47.84 57.62 43.37 

SO2  1.10 1.39 0.94 

CO 3.30 2.61 3.54 

HCl 0.46 0.56 0.42 

HF 1.16 1.39 1.05 

H2  1.58 1.39 1.89 

OCS 0.01 0.01 0.01 

H2S 0.55 0.16 1.53 

  mol/mol 

CO2/CO 13.33 13.33 13.33 

SO2/H2O 0.02 0.02 0.02 

H2/SO2  1.44 1.00 2.00 

CO2/SO2  40.00 25.00 50.00 

SO2/H2S 2.01 8.72 0.62 

log(fO2) at 1,000 °C −11.90 −11.63 −12.14 

Delta QFM −0.92 −0.65 −1.16 

 
The CO2/CO and SO2/H2O molar ratios are obtained from Oppenheimer et al. (2009) as HCl/CO, 
HF/CO and OCS/CO ratios are used to estimate the plume composition in mole percent. The H2/SO2 
and CO2/SO2 molar ratios are obtained from the multi-gas instrument measurements and the SO2/H2S 
molar ratio is calculated using the Dcompress software (Burgisser et al. 2008). The top of cycle 



composition corresponds to the mixed plume composition of Oppenheimer et al. (2009), while the 
bottom of cycle composition corresponds to the conduit gas composition of Oppenheimer et al. (2009) 

 

The oxidation state of the phonolite magma in the persistent lava lake of Erebus volcano has 

been estimated by several techniques. Kelly et al. (2008) used mineral chemistry to estimate 

an oxidation state of ΔQFM = −0.9 using the QUILF program (Andersen et al. 1993) and a 

temperature of 1,000 °C. Oppenheimer and Kyle (2008) and Oppenheimer et al. (2011) used 

the CO2/CO ratio obtained using FTIR spectroscopy (and the same temperature) to estimate 

the oxidation state at ΔQFM = −0.9 to −0.88. Both of these estimates are essentially identical 

to our mean ΔQFM  = −0.92. It should be noted however that our new estimate of the 

oxidation state is not entirely independent as we used the SO2/H2O ratio previously 

measured by FTIR spectroscopy in our calculation. 

The presence of H2 in the volcanic plume suggests that H2 is not burning at the interface 

between the lava lake and the atmosphere as has been observed, for instance, at Kīlauea's 

lava lake (Cruikshank et al. 1973). The correspondence of computed redox conditions for the 

lava lake also indicates that the H2 abundance at the crater rim corresponds to the high-

temperature equilibrium with the lava lake as hypothesized by Martin et al. (2009) and 

experimentally verified at Etna by Aiuppa et al. (2011). If any H2 is oxidizing in the plume 

(e.g. to form HO x radicals), it is only in minor amounts. 

Periodicity and magma supply to the lake 

From the time series, the H2/SO2 molar ratio varies mostly between 1 and 2 for all 6 days 

while the CO2/SO2 molar ratio varies mostly between 25 and 50. These upper and lower 

values can be attributed to two end-member compositions associated with a cyclic dynamic 

behaviour of the lake (Table 1). This quasi-periodic behaviour has been recognised in the 

velocity field of the lava lake surface motion, the heat loss of the lava lake, the SO2/CO2 and 

HCl/CO gas ratios (Oppenheimer et al. 2009), the SO2 flux (Boichu et al. 2010) and lidar 

observation of the rising and falling lava lake surface (Jones et al. 2010, 2011). All these 

observations reveal cycles of between roughly 8 and 18 min. These have been interpreted as 

consequences of an episodic arrival of magma into the lava lake, which exsolves a water-rich 

end-member gas composition (Oppenheimer et al. 2009; Boichu et al. 2010). 

The terms “top” and “bottom” of the cycle are adopted here to echo the previous literature 

(Oppenheimer et al. 2009); the “top of cycle” refers to high SO2/CO2 ratio, faster lake motion 

and higher lake level, and, as shown in Fig. 5, corresponds to high SO2/H2. This composition 

is calculated using an H2/SO2 molar ratio of 1 and SO2/H2O molar ratio of 0.0242 from the 

“mixed plume” composition of Oppenheimer et al. (2009), which corresponds to 

measurements during vigorous convection of the lava lake, while the “bottom of cycle” 

composition is calculated using an H2/SO2 ratio of 2 and SO2/H2O gas ratios of 0.0218 from 

the “conduit gas” composition of Oppenheimer et al. (2009). The difference between the two 

end-member compositions is quite significant in terms of redox state, representing 

ΔQFM = −0.65 at the “top of the cycle” and ΔQFM = −1.16 at the “bottom of the cycle”, 

assuming no change in temperature. 

Considering that the “tops” of the cycles are marked by increases in lake level, surface 

motion and SO2 flux, Oppenheimer et al. (2009) and Boichu et al. (2010) suggested that they 

are associated with the arrival of foaming magma batches in the lava lake (still exsolving 

water at near atmospheric pressure). We now observe that the tops of the cycle are 



consistently associated with significantly more oxidized conditions (ΔQFM = −0.65) than the 

“bottoms” of the cycles (ΔQFM = −1.16). This differential pattern in oxidation state is also 

apparent in subtle cyclic variations in CO2/CO ratio reported in Burgisser et al. (2012). If the 

top of the cycles is indeed associated with the influx of rising magma batches, then these 

batches appear to be releasing gas whose composition is a relic of chemical equilibrium 

acquired at some depth. This signature may be preserved as a result of rapid ascent of the 

magma batch (i.e. fast with respect to the kinetics of redox reactions such as [1] and [2]). The 

dichotomy we identify between the oxidized top and reduced bottom of the cycles therefore 

provides further empirical evidence for redox stratification in the Erebus plumbing system as 

discussed in Oppenheimer et al. (2011) and Burgisser et al. (2012) and as hypothesized 

from a more general standpoint by Burgisser and Scaillet (2007). 

Conclusion 

In situ measurements of the gas plume emitted from the lava lake of Erebus volcano by 

means of a multi-gas sensing instrument indicate that the hydrogen abundance in the 

magmatic gas phase is around 1.6 mol%. These measurements constrain the oxidation state 

of the lava lake to ΔQFM  = −0.9 log units, consistent with previous estimates; provide strong 

evidence that hydrogen burning is not prevalent at the surface of the lake; and that hydrogen 

is at least largely kinetically inert in the gas/aerosol plume rising in the crater. The hydrogen 

flux to the atmosphere from the summit of Erebus is estimated at 2.8 Mg day–1. A strong 

∼10-min cyclicity in the proportions of H2 and other species in the plume infers corresponding 

redox state variations and points to a pulsatory supply of magma to the lava lake. The more 

oxidized signature of the magma episodically entering the lake provides strong empirical 

evidence of a redox stratification in the shallow plumbing system, as has been hypothesized 

by previous numerical models. 
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