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[1] The relationship between the physical properties and
the effective electrical conductivity of porous structures is
studied using three-dimensional (3-D) models of random
porosity. Synthetic electric (DC) and electromagnetic (EM)
field data are calculated for a 3-D electrical conductivity
model with a random porosity p ( p = 2� 70%) embedded in
a homogeneous half-space. The effective conductivity of the
random porosity model is obtained from inversion of the
synthetic data and agrees with a modified Archie’s law. We
applied percolation theory to our random porosity model to
explain the variation of effective conductivity with p. We
found that EM and DC data do not provide the same
effective conductivity at a particular porosity but they do
provide the same volume fraction of interconnected
conductive elements. This volume fraction depends on the
percolation threshold pc. It follows a law of the form �p
above pc and �p2.2 below pc. INDEX TERMS: 5109 Physical

Properties of Rock: Magnetic and electrical properties; 5114

Physical Properties of Rock: Permeability and porosity; 3914

Mineral Physics: Electrical properties; 0925 Exploration

Geophysics: Magnetic and electrical methods; 0644 Electro-

magnetics: Numerical methods

1. Introduction

[2] Determination of fundamental properties such as
porosity, connectivity or permeability of underground
porous material from geophysical investigations at the
earth’s surface relies upon laboratory measurements of
small samples (0.01�0.1 m), and analogic and theoretical
studies of rock properties. However, scaling the results from
these studies to macroscopic bulk parameters obtained from
geophysical data interpretation is problematic. There have
been numerous attempts to reconcile laboratory measure-
ments, field observations, and theoretical representation of
heterogeneous structures using either effective medium
theory or percolation theory [e.g., David et al., 1990;
Haslund and Nøst, 1998; Mainprice, 2000].
[3] Electrical conductivity is one of the most studied

physical property of heterogeneous porous media. Relation-
ships relating effective electrical conductivity seff to phys-
ical properties of isotropic homogeneous rocks have been
obtained for simple geometries [e.g., Archie, 1942; Hashin
and Shtrikman, 1962; Waff, 1974]. Most theoretical studies
of porous media have focussed on random networks proper-
ties in the case of extreme heterogeneities [e.g., Shankland
and Waff, 1974;Madden, 1976; Balberg et al., 1991]. While
laboratory measurements of seff of porous rock samples are

in general adequately modeled with Archie’s law [e.g.,
Brace et al., 1965], statistical rock models fail to reproduce
this relationship unless interconnection is assumed at all
scales, from � mm to � cm [Madden, 1976; Wong et al.,
1984].
[4] The modeling of electric (DC) or electromagnetic

(EM) soundings data provides subsurface conductivity
structures that can be interpreted in terms of seff of the
medium. Physical properties are then obtained from rela-
tionships derived from Archie’s law or Hashin and Shtrik-
man’s model [e.g., Shankland and Waff, 1974; Flóvenz et
al., 1985]. An improved model should include realistic
porous structures in the three-dimensional (3-D) DC or
EM algorithms used to model the field data in order to
better describe the transport properties. Bigalke [1999,
2000] has recently used a 3-D forward DC solver [Spitzer,
1995] to model electric properties of heterogeneous media
at the sample scale.
[5] In this study, we used percolation theory and 3-D DC

and EM modeling to demonstrate that seff of simple porous
models is controlled by an effective interconnected volume
fraction (EIVF) that depends on the percolation threshold
pc. First, we generated random porosity models at the meter
scale. The models were converted into an electrical con-
ductivity structure embedded into a conductive half-space.
We then obtained seff from DC and EM data modeled at the
surface of the half-space. We found that while seff obtained
from EM and DC data are different at a given porosity, they
are controlled by the same EIVF.

2. Conductivity Model and Properties of the
Porous Medium

[6] The porosity model is a 2 � 2 � 2 meter cube
comprised of 8000 cubic 0.1 m side cells. Each cell is either
electrically resistive with conductivity ss (ss = 6.25 � 10�4

S/m) or conductive with conductivity sf (sf = 0.2 S/m)
(Figure 1). The pores are the conductive cells. The porosity
p is the number of conductive cells over the total number of
cells. The number of conductive cells selected randomly is
increased until a given porosity is reached. Five porosity
models are randomly generated for each p. p ranges between
2 and 70%. The cube is embedded in a homogeneous half-
space with conductivity shs (shs = 0.01 S/m).
[7] Percolation theory is applied to the random porosity

model to describe the network structure. Percolation theory
indicates that at pc the properties of the network change
abruptly [e.g., Stauffer and Aharony, 1992]. As the volume
fraction p of conductive elements increases, they form
clusters of interconnected elements. The value pc is the
volume fraction of elements at which the largest cluster
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spans the medium. In principle percolation theory applies to
infinite systems. For finite-size systems, the results may be
applied although p is no longer a step function at pc
[Stauffer and Aharony, 1992]. For our random porosity
model pc = 0.33, in good agreement with the theoretical
value (0.31) for a 3-D cubic array in the site percolation
case [Stauffer and Aharony, 1992].
[8] The size of individual clusters (excluding the perco-

lating cluster above pc) is given by the radius of gyration Rs

as Rs
2 = �|ri � r0|

2/s [Stauffer and Aharony, 1992], where ri
is the position of each element of the cluster, r0 is the center
of mass of the cluster (r0 = � ri/s), and s is the number of
elements in the cluster. All dimensions are normalized and
are in the range 0–1. The connectivity (or correlation)
length x is the average distance between any two conductive
elements in a cluster, averaged over all clusters except the
percolating one. In percolation theory the value x corre-
sponds to an average cluster diameter [Stauffer and Ahar-
ony, 1992]. For 3-D networks x follows a power law / | p �
pc |

�0.875 [Berkowitz and Ewing, 1998]. Figure 2 presents x
for the random model at 10 porosity values, compared to the
theoretical value. Our results fit the law predicted by
percolation theory reasonably well. We use x as a connec-
tivity threshold at a given p. Clusters with 2Rs � x form
fully interconnected networks while clusters with 2Rs < x
are isolated pockets.

3. Effective Conductivity

[9] The simulation of EM and DC surface data was
carried out with 3-D DC and EM solvers [Spitzer, 1995;
Mackie et al., 1993] at the surface of the host-medium
(Figure 1). The DC results were obtained for a Schlum-
berger electrode array configuration centered above the
buried cube. The EM results were obtained for a plane
wave inducing field at the VLF (very low frequency) radio
transmitter frequency 20 kHz along a profile above the cube
(Figure 1). To get the value seff we set the cube homoge-
neous with a constant conductivity. The conductivity for
which the DC or EM response of this new model fits the
data obtained for the heterogeneous cube is seff. This

conductivity was obtained by inverting the surface data
modeled from the heterogeneous cube. The rest of the
model parameters (the size and depth of the cube and the
half-space conductivity) are unchanged. The inversion
scheme is described in Hautot et al. [2000; 2002].
[10] The scheme used to obtain seff is validated for exact

geometrical models [Waff, 1974]. These models have regu-
larly spaced resistive and conductive cells to form homoge-
neous fully-connected (HFC) or fully-disconnected (HFD)
networks. The HFD model is comprised of regularly dis-
tributed isolated conductive cells while the HFC model is
comprised of regularly distributed isolated resistive cells.
We generated seven HFD and HFC models with different
isolated cells densities. For these models p varies from 2.7–
97%. Figure 3 compares the seff obtained with the theoret-
ical values. The agreement is good for HFC models (from
EM and DC results) and the HFD model (from EM results).
The values seff for the HFD model (from DC results) is
slightly more conductive than the theoretical model and
corresponds to Waff’s HFD formula when ss = 8.3 � 10�4

S/m instead of the real value (6.25 � 10�4 S/m).
[11] The random porosity model seff (seff

dc from DC
results and seff

em from EM results) is also presented in
Figure 3. The values seff

dc and seff
em are different and vary

between HFC and HFD values. In the random porosity
model with p = 70% there is one single cluster spanning all
the edges of the cube and both seff

dc and seff
em coincide with

the HFC values. At p = 2% the clusters are isolated pockets
and have a small volume (maximum of 3 conductive
elements per cluster) and, both seff

dc and seff
em coincide with

the HFD values.
[12] Theoretically, for p between 2% and 70%, seff

dc and
seff
em should be identical because similar effects control the

distortion of the EM and DC fields by the heterogeneous
cube. The distortion of the DC field is the result of electric
charges on the conductivity contrasts within, and at the
surface of the cube [Telford et al., 1990]. At the scale of the
conductivity model and, for an EM inducing field at 20
kHz, self induction is negligible [Le Mouël and Menvielle,
1982], hence the perturbation of the induced electric field

Figure 1. Heterogeneous porous medium embedded in a
homogeneous half-space (hs) host-medium (shs = 0.01 S/m).

Figure 2. Connectivity length x vs. p�pc. Mean values
and error bars are calculated from five porosity models.
Solid line: power law |p�pc|

�0.875.
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by the cube is also controlled by the quasi-static charges on
the conductivity contrasts.
[13] Both DC and EM algorithms are based on finite-

difference equations. They differ in the gridding of the
conductivity model and in the calculation of the field at
each grid point. In the DC algorithm [Spitzer, 1995], an
equivalent parallel circuit is used at each grid point to
approximate the conductivity contrasts (by averaging the
conductivity and its gradients over the 8 neighbor cells). In
the EM algorithm [Mackie et al., 1993], an equivalent serial
circuit is used with averaging the resistivity (the reciprocal
of conductivity) between two adjacent cells to insure the
continuity of the electric current normal to the cells’ faces.
In both cases, contrasts in the conductivity model are
smoothed by the averaging process at the scale of the grid
point distance. When this distance is much smaller than the
size of the smallest heterogeneity in the conductivity model,
the approximations are equivalent and the conductivity
contrast is accurately modeled. In our conductivity models
the minimum grid-point distance was set to 0.05 m for
computational reasons. The distance is not small compared
to the smallest heterogeneity (0.1 m), so the averaging
affects the results. The conductivity model is smoother than
the input model (with sharp conductivity contrasts) and is
more resistive in EM calculations than in DC. The models
run with this grid result in seff

dc slightly larger than seff
em for

the HFD models and in different seff
dc and seff

em for the
random porosity model (Figure 3). The latter is more
resistive than the former because of the difference in the
numerical approximation (parallel and serial).

4. Effective Conductivity and Percolation
Threshold

[14] Neither the seff
dc nor the seff

em curve from the
random porosity model presents a percolation threshold
at pc = 0.33 (Figure 3). Both seff approximatively follow

Archie’s law for p > 0.1–0.2. Archie’s law is on the form
seff = sf p

m (m is an empirical factor with a value �1.3–4
[e.g., Sen et al., 1981]). Both seff curve at lower p due to
ss 6¼ 0. Hermance [1979] has proposed a modified
Archie’s law to account for ss 6¼ 0 of the form seff =
(sf � ss) pm + ss. Both seff fit well this model with
exponents m = 1.9 for DC models and m = 3.3 for EM
models, in the range of observed m values in laboratory
studies [Sen et al., 1981]. Models with ss = 6.25 � 10�5

� 6.25 � 10�6 (for which the modified Archie’s law is
very close to Archie’s law) were run and seff fitted
Archie’s law with the same exponents m as before.
[15] Discrepancies between percolation theory applied to

conductivity models and experimental data have been
previously reported [e.g., Madden, 1976; Wong et al.,
1984; Pham, 2000]. On one hand, the theory for random
electric networks predicts that, slightly above pc, seff varies
according to | p � pc|

m (m is a critical exponent �2 in 3-D
[Stauffer and Aharony, 1992]), in disagreement with our
results since seff follows the modified Archie’s law. On the
other hand, in percolation theory Archie’s law (for the
limiting case ss = 0) implies pc = 0 which is not a
characteristic of our models. As suggested by Shankland
and Waff [1974] and Madden [1976], Archie’s law here
seems to be a description of the electric signature of the
statistical properties of the porous medium rather than an
intrinsic characteristic of the models.

5. Effective Interconnected Volume

[16] The examination of the structure of the clusters in the
random porosity model shows that below pc, there are fully
connected (FC) and fully disconnected (FD) clusters at all
porosities except the smallest, while above pc the structure
is dominated by the percolating FC cluster. At a given p, an
effective interconnected volume fraction (EIVF) px is
defined as follows. At p < pc, px is the sum over the
volumes of the clusters of conductive elements with a
diameter of gyration 2Rs � x. At p > pc, px is the difference
between p and the sum of all isolated pockets that forms a

Figure 4. Effective interconnected volume fraction (EIVF )
vs. p. Symbols: px diamond; pa circle; pa0 square. Above pc,
the slope of the thin line is 1, beneath pc, the slope is 2.2.

Figure 3. seff /sf vs. porosity p. Symbols are for numerical
seff and lines for analytical expressions. Mean values and
error bars are calculated from five porosity models. Green
line: Waff ’s [1974] HFC bound. Blues lines: HFD bound
(solid: ss = 6.25 � 10�4 S/m, dashed: ss = 8.4 � 10�4 S/m).
Orange lines: modified Archie’s law.
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fully disconnected volume fraction pFD, px = p�pFD. The
values of px versus p are presented in Figure 4. Above pc, px
’ p and indicates that almost all the conductors are fully
interconnected while at p < pc, px ’ p2.2 which accounts for
the balance between FC and FD volume fractions.
[17] The FC and FD volume fractions in a random

porosity model at p are electrically connected through a
circuit characterized by seff equal to either seff

dc or seff
em,

depending on the nature of the approximation used in the
numerical solutions (serial for EM and parallel for DC). The
two end-members of seff are HFC (s+) and HFD (s�)
values. The relationship between either seff

dc or seff
em and s+

and s� is different for serial or parallel circuits:

s
eff
dc ¼ fas

þ þ ð1� faÞs
�; ð1Þ

seffem ¼ ð fa0=s
þð1� fa0Þ=s

�Þ�1: ð2Þ

The terms fa and fa0 are the volume fractions of
interconnected conducting elements at p for DC and EM,
respectively. The volume fractions pa and pa0 are obtained
from pa = p � fa and pa0 = p � fa0 and should be equal to px.
These volume fractions are calculated for each seff at all p
and are also presented in Figure 4. For p > 5%, pa and pa0
are nearly identical and are a very good fit to px above as
well as below pc except at the smallest p values. This result
demonstrates that despite the fact that pc was not evident in
seff (Figure 3), it controls the variation of seff with p for our
random porosity model.

6. Conclusion

[18] Percolation theory seems a useful tool to explain
some characteristics of the distortion of observed EM fields
[e.g., Bahr, 2000]. However, it is difficult to relate directly
transport properties in highly heterogeneous media to field
observations because 3-D DC and EM algorithms cannot
describe the finest scale structures. While our random
conductivity models are the simplest because of this limi-
tation, they reproduce reasonably well the scale independent
properties predicted by percolation theory. As a result, it
was possible to interpret synthetic EM and DC data in terms
of percolation models. We defined a new parameter, the
EIVF which is closely related to transport properties. We
found that pc may be derived from the EIVF. In practice, the
EIVF could be obtained from observed seff as a function of
porosity, either at laboratory or field scales. The EIVF
would provide a better description of the transport proper-
ties than the classical effective medium parameters such as
Archie’s law. For real rocks the heterogeneous conductivity
models should account for fracture porosity and surface
conductivity.

[19] Acknowledgments. Sophie Hautot was at the Department of
Geology and Geophysics, University of Edinburgh (UK), while part of
this work was undertaken. S.H. was supported by the Region Bretagne and
Pays de la Loire. We are grateful to Cara Wilson for careful reading of the
manuscript, and to Karsten Bahr and one anonymous referee for construc-
tive criticism.

References
Archie, G. E., The electrical resistivity log as an aid in determining some
reservoir characteristics, Trans. Am. Inst. Mech. Eng., 146, 54–61, 1942.

Bahr, K., Percolation in the crust derived from distortion of electric fields,
Geophys. Res. Lett., 27, 1049–1052, 2000.

Balberg, I., B. Berkowitz, and G. E. Drachsler, Application of a percolation
model to flow in fractured hard rocks, J. Geophys. Res., 96, 10,015–
10,021, 1991.

Berkowitz, B., and R. P. Ewing, Percolation theory and network model-
ing — Applications in soil physics, Surv. Geophys., 19, 23–72, 1998.

Bigalke, J., Investigation of the conductivity of random networks, Physica
A, 272, 281–293, 1999.

Bigalke, J., A study concerning the conductivity of porous rocks, Phys.
Chem. Earth A, 25, 189–194, 2000.

Brace, W. F., A. S. Orange, and T. R. Madden, The effect of pressure on the
electrical resistivity of water-saturated crystalline rocks, J. Geophys. Res.,
70, 5669–5678, 1965.

David, C., Y. Gueguen, and G. Pampoukis, Effective medium theory and
network theory applied to the transport properties of rock, J. Geophys. Res.,
95, 6993–7005, 1990.
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