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Abstract

This paper analyzes simultaneous self-potential and gas temperature variations recorded at Merapi

volcano in spring 2001, the dry season shortly after the volcanic crisis 2001. Temporal variations of

fumarole gas temperature show characteristic quasi periodic signals at scales 1-8 hours and ampli-

tudes up to ten degrees. We propose a simple graphical technique combining a wavelet scalogram

and a cross-correlation analysis to demonstrate that the variations of gas temperature are system-

atically preceded by self-potential variations at the same scales. The influence of meteorological

variations on these correlated signals can be ruled out. Rather, we suggest them to be related to

the magma degassing in the upper conduits of the volcano. We discuss a semi-qualitative model

to explain this correlation and the observed phase shift of about two hours.

Keywords: self-potential monitoring, hydrothermal system, gas monitoring, Merapi

1. Introduction1

Merapi is one of the most active volcanoes in Indonesia, located on the Java Arc (Figure 1),2

where the Indo-Australian Plate is subducted beneath the Java Trench. Its characteristic activity3

consists of sequences of growth and gravitational collapse of a viscous andesitic dome (Voight et al.,4

2000) producing pyroclastic flows. In addition to this regular activity, Voight et al. (2000) describe5
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Rücker), martin.zimmer@gfz-potsdam.de (M. Zimmer), sven.friedel@comsol.com (S. Friedel),
serfling@ggl-gmbh.de (U. Serfling)

Preprint submitted to Journal of Volcanology and Geothermal Research February 8, 2013



several major eruptions with VEI> 2 since 1768, like the explosion in 1822 which created a circular6

crater with 600m diameter; the 1872 explosion completely destroyed the dome and created an7

oval crater 500m deep; the eruption in 1930 with dome destruction and pyroclastic flows traveling8

up to 12 km. The time interval studied in the current paper was precedeed by few months by9

a partial dome collapse, occurred in early 2001. This minor event was typical for the activity10

of Merapi volcano in twentieth century. Two months before the first dome collapse an increase11

in frequency of volcano-tectonic and multi-phase earthquakes was observed, thereafter numerous12

pyroclastic flows were encountered which accompanied the growth of the new lava dome. The new13

dome reached a total volume of about 1.4 × 106 m3 before it partially collapsed in two stages on14

January 28 and February 10.15

The latest to date explosive crisis which happened in October-November 2010 was probably the16

most violent eruption since 1872. During this eruption with VEI≈ 4, a new summit crater with a17

diameter of 400 m was created, released ≈ 0.44 Tg of SO2, caused evacuation in a 20 km radius from18

the volcano and more than 350 fatalities (Surono et al., 2011). This dangerous eruption behavior19

with possible influence of external factors like rainfall or tectonic activity (e.g. Voight et al., 2000;20

Friedel et al., 2004; Harris and Ripepe, 2007; Surono et al., 2011) motivates further studies aimed21

to improve multi-parameter monitoring techniques.22

Traditional Merapi monitoring techniques include seismology, deformation, in-situ sampling23

of gas emissions, and petrology (e.g. Surono et al., 2011, and references there) by the Indonesian24

Center of Volcanology and Geological Hazard Mitigation and its observatory and technology center25

in Yogyakarta, BPPTK. Continuous monitoring of geochemical parameters at the summit of Merapi26

was conducted during few weeks in 1998 and in 2000, when an automatic gas monitoring unit27

comprising gas chromatograph, an alpha scintillometer and temperature sensor was installed at28

Solfatara field Woro (Zimmer and Erzinger, 2003). The authors observed cyclic variations in the29

chemical composition of the gas associated with variations of its temperature. The gas temperature30

was found to increase when the concentration of the CO2 increased and the concentration of H2O31

decreased (Figure 2).32

The self-potential method is often used to characterize the extension of hydrothermal system,33

complimentary to geochemical data (Lénat et al., 2000; Finizola et al., 2004; Revil et al., 2008;34

Byrdina et al., 2009). The major contributions of self-potential are created by the flow of the35
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pore water dragging an excess of electrical charges existing in the vicinity of the mineral/water36

interface, the so-called streaming potential (e.g. Nourbehecht, 1963; Ishido and Mizutani, 1981;37

Revil et al., 1999, 2003; Crespy et al., 2008). At Merapi volcano, a continuous monitoring of38

self-potential and ground temperatures was coducted from August, 2000 to July, 2001, in order to39

retrieve information on subsurface water flow variations related to the volcanic activity (Friedel40

et al., 2004). A clear correlation between self-potential, and seismic signals in ultra low frequency41

band was observed before the volcanic crisis in the early 2001, mostly during the rain season in42

November 2000 - January 2001 (Byrdina et al., 2003). Because of the strong influence of rainfall on43

self-potential and temperature, only repetitive or high-amplitude signals could be studied during44

the rain season. The present work deals with analysis of gas flow characteristics in Woro fumarole45

in dry season and during the period of relative quiescence following the 2001 volcanic crisis. The46

aim of the present work is to detect the common gas temperature and the self-potential signals47

reflecting the variations in magmatic degassing during an inter-eruptive period.48

2. Experiment and Instruments49

A continuous monitoring station for electrical field and ground temperatures was installed in50

August 2000, in 200m distance from the dome and several meters away from the fumarolic vents51

of Woro (Figure 1 b). The station included three electrode pairs, two in North-South direction52

with lengths of 50 and 75m and one in East-West direction of 50m length. We called them in the53

following the SP dipoles U21, U43, and U65. Two electrodes, E2 and E5, were placed in a direct54

vicinity of fumarole vents, E5 was only few meters away from the fumarole temperature sensor55

GC. We used non-polarizable Ag/AgCl electrodes designed by the Geophysical Instrument Pool56

Potsdam. Voltage differences were sampled at 20 sps with a resolution of 0.2 µV. Each electrode was57

equipped with a PT1000 temperature sensor at the depth of installation 0.7-0.8m. The temperature58

data were sampled at 4 sps with a resolution of 0.1 ◦C using a Guralp CMG 24 digitizer with GPS59

clock synchronization. We refer to Friedel et al. (2004) for a more detailed description of the60

setup. In the following, analogous to the notation of Friedel et al. (2004), the self-potential data61

are referred to as U21 = U2 −U1, the potential difference measured between the electrodes E2 and62

E1 etc. Similarly, the difference of the ground temperature at the electrode positions (called in63

the following electrode temperature difference) T21 = T2 − T1 etc. Ground temperatures varied64
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between 40 and 70 ◦C except for sensor T4 whose maximal temperature reached 100 ◦C. In order65

to obtain the same sampling as for gas temperature, all data were down-sampled to 1 sample per66

minute using median filtering. The median was preferred to simple moving averages or low-pass67

filters in the frequency domain because of its robustness against outliers.68

The fumarole gas temperature sensor, a Ni-Cr/Ni thermocouple at 30 cm depth, replaced a gas69

chromatograph installed in 1998 at a location indicated as GC in Figure 1 c (for more details see70

Zimmer and Erzinger, 2003). During the main dome collapse of February 10, 2001, the station was71

partially destroyed and was be reactivated 2 months later starting on April 6, 2001.72

3. Data analysis73

The classical measure of the correlation between two time series with a time shift between them74

is given by a cross-correlation function. Its Fourier transform, the cross power spectral density,75

gives the frequency range of correlation. This analysis is best suited for stationary signals with good76

signal-to-noise ratio, otherwise the maximum of the cross-correlation function is not pronounced77

enough to identify a correlation between the time series (Figure 3 a, b).78

To find the correlation of intermittent and noisy signals, we propose a technique based on79

wavelet analysis and cross correlation analysis which allows to detect both the time scale with80

maximal signal correlation and a possible time-shift. The idea is to use the time-frequency rep-81

resentation offered by the wavelet analysis; and to use as an advantage a compact support of the82

wavelet basis in order to focus the cross-correlation analysis on the significant time scales of the83

signal.84

3.1. Wavelet transform. Time-frequency representation.85

The complex wavelet transforms the signal x(t) using the dilated and time shifted versions of86

a basis function called basis wavelet ψ Mallat (1999):87

W (a, b) = a−1/2

∫

∞

−∞

x(t)ψ∗

(

t− b

a

)

dt (1)88

89

where the wavelet coefficients W(a,b) give the transformed signal as a function of the translation90

parameter b, and the dilatation parameter a (scale). We used the Morlet wavelet which is a complex91

sinus wave with a Gaussian envelope92

ψ(t) = π−1/4 eiω0t e−t2/2. (2)93

94
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We used logarithmically equidistant values for a (dyadic grid). In this notation, the time is unit-95

less. This wavelet was used to plot the time-frequency wavelet spectrum – the scalogram given by96

| W (a, b) |2. The Fourier transform of the Morlet wavelet is a Gaussian with positive frequencies97

for ω0 ≥ 5 (we used ω0 = 5.): The scale - frequency relationship of the Morlet wavelet is given by98

ω =
ω0

a
(3)99

100

The wavelet coefficients at every scale are the Hilbert transformed original data (analytic signal)101

bandpass filtered by the Gaussian envelope with center frequency ω given by equation 3.102

3.2. Linear cross-correlation function of the wavelet coefficients103

The next step is the calculation of the linear cross-correlation function P (X,Y ) where the data104

X and Y are replaced by their complex wavelet coefficients Wx =Wx(a, b) and Wy =Wy(a, b)105

PWxy(a, b) =

∑N−b
i

(

Wxi+b −Wx
) (

Wyi −Wy
)

√

(

∑N
i (Wxi −Wx)2

)

√

(

∑N
i (Wyi −Wy)2

)

(4)106

107

for each scale a and for reasonable time shifts b. The cross-correlation function of the wavelet108

coefficients PWx,Wy(a, b) is then plotted as a function of scale a and time delay b between both109

time series. If the value of PWx,Wy(a, b) is close to unity at a scale ad and at a time shift bd,110

there is a correlation between signals with dominant frequency corresponding to the scale ad and111

a time delay bd. Figure 3 shows an example of synthetic time series containing intermittent signals112

superimposed with random noise. The cross-correlation plot of wavelet coefficients in Figure 3 c113

possesses a clear maximum. Its ordinate indicates the scales at which the data contain correlated114

signals, and its abscissa indicates the time shift between them.115

4. Data basis and Observations116

Figure 4 shows gas temperature data, self-potential and ground temperature data after the end117

of the rain season and re-installation of the sensor in April and till June 2001. Ground temperatures118

T4 and T6 are not presented here. Sensor T4 was placed in a permeable erosive channel with much119

higher temperatures (up to 100◦C) and larger temporal variations than the other temperature120

sensors, and sensor T6 was damaged all through the period of observation.121
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Though no rain data in this time interval are available, we suggest that no rainfall happened122

between Julian days 110 and 137 (from April 19th to May 16th). As detailed by Friedel et al. (2004),123

both self-potential and electrode temperature difference data at this station respond similarly to124

the rainfall with typical high amplitudes (up to 300◦C in gas temperature and 50mV in self-125

potential data), sharp onset and exponential decay; moreover, a high linear correlation between126

the self-potential and electrode temperatures is usually observed during the rainfall. The absence127

of such correlated self-potential and electrode temperature signals, as well as the small amplitudes128

of variations in all observables suggest that no rainfall happened in this time interval, which was129

therefore chosen for a closer study. Amplitude spectra of the time series presented in Figure 4130

can be seen in Figure 5. Daily and semi-diurnal variations dominate the ground temperature and131

self-potential spectra but are less spectacular in the spectrum of gas temperature where a large part132

of the signal energy is distributed between 2 and 8 hour periods. Interestingly, the self potential133

spectra also contain some signal energy at these periods, in contrast to ground temperature data.134

To explore the correlation between self-potential and gas temperature, cross-correlation plots135

of wavelet coefficients were calculated as described in section 3; they are shown in Figure 6 a, b and136

c. The scale range of correlation between 1 and 8 hours corresponds roughly to the typical signal137

durations observed by Zimmer and Erzinger (2003) in gas concentration and gas temperature data.138

These periods are hardly visible in the Fourier spectra of the gas temperature in Figure 5 a. The139

broad maximum of the correlation is located at scales 1.5-8 hours and a time shift of 130min at140

all three dipoles; self-potential signals precede gas temperature variations. Interestingly, contrary141

to the rain season (see discussion in Friedel et al., 2004), no correlation at all is found between142

gas temperature and ground temperature (d,e), and no correlation is observed between the self-143

potential and ground temperature difference (f). The time frequency representation in Figure 7 a,144

b shows striking similarity between the variations of gas temperature and self-potential. Wavelet145

coefficients at one scale (2.2 hours) are displayed in c. Gas temperature variations (red curve) are146

clearly delayed with respect to the self-potential at both dipoles shown with blue and black lines.147

Figure 8 plots fumarole temperature data versus self-potential U21. Both gas and self-potential148

data were high-pass filtered with 2.9 h corner period. This choice of the corner period allows149

to exclude the 6- and 3 h harmonics of the barometric pressure variations. Furthermore, gas150

temperature data were time shifted with respect to the self-potential in order to align the correlating151
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signals.152

5. Discussion153

We observed a correlation between the cyclic variations in gas temperature and self-potential154

which we attribute to the variations of the magma degassing for the following reasons. Firstly,155

we can exclude meteorological influence. As discussed by Friedel et al. (2004), rainfall induced156

SP signals can be recognized even without reference precipitation data because they have a very157

typical shape, extremely large amplitudes and correlate positively with the ground temperature158

data (with the linear correlation coefficient up to R2 = 9.8 !) Quasi-periodic signals observed in159

self-potential and gas temperature data can not be attributed to atmospheric pressure neither, as160

typical signal durations vary from 1 to 8 hours and do not generally coincide with the harmonics161

of barometric pressure.162

Secondly, the isotopic studies of Toutain et al. (2009) reveal the magmatic origin of CO2 in163

fumarole Woro. Clear correlation gas concentrations and temperature analyzed by Zimmer and164

Erzinger (2003) and presented in Figure 2 suggest that these regularly oscillations of gas parameters165

are directly related to magma degassing and are generated by regular oscillations of pressure, which166

generate also the related self-potential variations. The whole area is characterized by intense167

diffuse degassing, with carbon dioxide concentrations as high as 500 000 ppm in September 2002,168

as reported by Toutain et al. (2009). Nevertheless, the ground temperatures at the electrode169

locations did not record any temperature changes, related to variations in gas temperature. These170

observations indicate that self-potential oscillations are generated by a mechanism other than171

diffuse soil degassing or pure temperature effects at the electrode locations. In addition, oscillations172

in gas temperature are preceded by self-potential signals with a time shift of more than two hours173

indicating a relatively deep source of self-potential. Interestingly, these common oscillations of174

self-potential and gas temperature have signatures very different from earlier observations related175

to the rain season preceding the eruption in February 2001 (Byrdina et al., 2003; Richter et al.,176

2004). These authors observed that ultra-long period (ULP) seismic events were systematically177

accompanied by variations of both fumarole temperature (Richter et al., 2004) and self-potential178

(Byrdina et al., 2003) without any significant time shift between them. Returning to oscillations179

of self-potential and gas temperature during the dry season, we suppose them to be generated180
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by a deeper source than the source of ULP seismicity because of a larger time shift between the181

self-potential and gas temperature. In this case, the time shift between gas temperature and self-182

potential might contain information about the properties of the magmatic conduits or about the183

depth where the pressure pulses are originated.184

For example, Cigolini et al. (2007) report radon emissions at Stromboli volcano related to185

Palermo earthquake of September 6th, 2002. The regional seismicity was found to be correlated186

with radon emissions and the rate of erupted magma volume. The time delay of radon emissions187

with respect to seismicity was interpreted by viscoelastic properties of the magma chamber. Fur-188

thermore, Olmos et al. (2007) observed a time delay of SO2 emissions with respect to real time189

seismic amplitude measurements at Santa Ana volcano.190

Physical models related to cyclic behavior of volcanic degassing in andesitic magmas are usually191

based on nonlinearities caused by the variable viscosity of magma. In these models, viscosity192

of magma depends on volatile content, temperature or pressure, and strongly decreases as the193

degassing rate increases (e.g. Melnik and Sparks, 1999; Lensky et al., 2008). An example is the194

stick-slip model of supersaturated magma degassing developed by Lensky et al. (2008). The gas195

diffuses into the magma, which cannot expand because of the presence of a sticking plug resulting196

in a build-up of pressure. When the pressure exceeds some critical value, the strength of the197

plug, the stick-slip motion occurs and the pressure is relieved. The magma sticks again when the198

pressure falls below the value of dynamic friction. Although the available data are not sufficient199

to attempt a numerical modeling, we can try to understand the information contained in the time200

shift between the gas temperature and the electric signals. In the logic of the stick-slip model we201

expect the electric potential to be generated during the phase where the pressure drop is maximal.202

The time shift would give the travel time of the gas from the source of pressure (e.g. the base of the203

plug) to the surface which would bring some constraints on the depth of the source of pressure as204

we will show in the following. The flow of a compressible ideal gas (P u =constant) in the porous205

conduit is described by a modification of Darcy equation (e.g. Scheidegger, 1974):206

u =
k

µ
·
P 2
d − P 2

s

L · Ps
(5)207

208

where u is the gas flux velocity in z-direction [m/s], k is the permeability in [m−2], µ is the dynamic209

viscosity of the gas in [Pa s]. Pd and Ps are the pressures at the source and at the surface in Pa,210

indices stay for ”depth” and ”surface”. L is the depth of the fumarole origin which can be expressed211
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as L = u · δt where δt is the time delay of the gas in relation with self-potential.212

Now we estimate the average gas pressure at the pressure source (Figure 9). The relationship213

between the gas pressure at magma temperature Td = 1000 ◦C and the gas pressure at the surface,214

at the temperature of Ts = 450◦C, follows from state equation of ideal gas:215

(

Pd

Ps

)(γ−1)/γ

=
Td
Ts
, (6)216

217

where γ is the ratio of specific heats at constant pressure and constant volume cp/cv ≈ 1.3. We218

obtain from equation (6) the Pd = 2MPa considering the atmospheric pressure at the surface.219

Returning now to equation (5), we take k = 10−11 m2 for the unknown conduit permeability220

and µ = 2 · 10−5 Pa·s for the dynamic viscosity of the water vapor at 400 ◦C (e.g. Mende and221

Simon, 1969), and obtain finally the estimation of darcy velocity u ≈ 0.04 m/s and the depth of222

≈ 300m.223

It is premature to take uncritically any estimations on the basis of self-potential data from224

one single location. The present study gives a direct evidence that the pressure variations in the225

magma conduit create measurable self-potential variations. However, in order to obtain quantita-226

tive information on the pressure source from self-potential monitoring data, it is advantageous to227

know the geometry of the flow system from previous structural self-potential studies (e.g. Aizawa228

et al., 2009). In addition, it is necessary to use several monitoring stations in order to characterize229

the attenuation of the self-potential transients with distance and to obtain a reliable estimate on230

the time delay between the self-potential and gas temperature variations.231

6. Conclusion232

Gas fumarole data and self-potential data collected at Solfatara Woro show correlating events233

at scales 1-8 h with a time shift of approximately 130min. The correlation was observed at all three234

dipoles during a time interval of 40 days. The influence of different meteorological factors on both235

data sets could be excluded because 1) temperatures at electrode positions showed no correlation236

neither with self-potential nor with gas temperatures, 2) the typical signal durations do not coincide237

with the harmonics of atmospheric pressure, 3) the absence of response signals characteristic for238

rainfall in both self-potential and gas temperature data suggest that the correlation between self-239

potential and gas temperature can not be attributed to the rainfall. 4) geochemical data indicate240

the magmatic origin of several fumarolic gas components (Toutain et al., 2009).241
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Therefore, the correlated self-potential and gas temperature signals reflect directly the quasi-242

periodic variations in magma degassing. The dominant generation mechanism of electric signals243

is probably the electrokinetic and thermoelectric effects of gas flow. With higher spatial density244

of self-potential dipoles it could be possible to localize the source of the multi-parameter signals245

using the information about the amplitude of the self-potential signals as function of the distance246

and time delay between the correlated signals.247
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Figure 1: a) Simplified map of Java with location of Merapi volcano and Java trench. b) Summit area of Merapi

after Camus et al. (2000), with main lava flows until 2000, crater rims, active dome, and Woro fumarole field. c)

Location of our monitoring station at Woro with self-potential dipoles and gas temperature sensor. Gray circles

indicate fumaroles (modified from Byrdina et al. (2003)).
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Figure 2: An example of a) gas concentration recorded in 1998 and b) temperature variations recorded in 2000 at

Woro solfatara field of Merapi volcano (after Zimmer et al, 2004).
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Figure 3: a) Two synthetic data sets X and Y (black lines) were created by superimposing random noise with two

identical features A and B with time shift 20 and 15 hours. b) Cross-correlation function does not show any clear

maxima. c) Cross-correlation of wavelet coefficients of X and Y separates the scales of correlation and gives the time

shifts between both signals.
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Figure 4: Time series of fumarolic temperature, self-potential and ground temperature. See Figure 1 for location of

the sensors. Data from the time period between day 110 and 137 of year 2001 without any perturbations were taken

for a further study.
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Figure 5: Energy spectral density of the time series presented in Figure 4 in the time period between day 110 and

137 of year 2001.
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Figure 6: The cross-correlation of wavelet coefficients for a) Tfum and U21, b) Tfum and U43, c) Tfum and U65, d) Tfum

and T21, e) Tfum and T4, f) T21 and U21. High values of W (Tfum, U) are encountered at scales 1-8 hours indicating a

correlation between the fumarole gas temperature and SP. A time shift between the correlated signals is approximately

130minutes, the self-potential variations precede the corresponding variations of fumarole temperature. Interestingly,

there is no correlation between the gas and the ground temperature (d, e); there is no correlation between the electrode

temperature difference and the self-potential (f).
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Figure 7: Time-frequency representation of gas temperature (a) and self-potential dipole U21 (b). Time in Julian

days is represented in X and scales in Y axes. c) Wavelet coefficients at scale of maximal correlation (≈ 2.2 hours)

for the gas temperature, self-potential at two dipoles, and for electrode temperature difference T2 − T1.
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Figure 8: Gas temperature data versus self-potential U21 at period range from 2min to 170min. Both kinds of time

series were high-pass filtered, gas temperature data were time shifted to align the correlated signals.
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Figure 9: Parameters entering equations 5 and 6 which govern the flow of a compressible fluid in the fumarole conduit

(see text).
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