
HAL Id: insu-00788726
https://insu.hal.science/insu-00788726

Submitted on 15 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hypermixing in linear shear flow
Diogo Bolster, Marco Dentz, Tanguy Le Borgne

To cite this version:
Diogo Bolster, Marco Dentz, Tanguy Le Borgne. Hypermixing in linear shear flow. Water Resources
Research, 2011, 47 (9), pp.W09602. �10.1029/2011WR010737�. �insu-00788726�

https://insu.hal.science/insu-00788726
https://hal.archives-ouvertes.fr


Hypermixing in linear shear flow

Diogo Bolster,1 Marco Dentz,2 and Tanguy Le Borgne3

Received 31 March 2011; revised 26 July 2011; accepted 27 July 2011; published 10 September 2011.

[1] In this technical note we study mixing in a two‐dimensional linear shear flow. We
derive analytical expressions for the concentration field for an arbitrary initial condition in
an unbounded two‐dimensional shear flow. We focus on the solution for a point initial
condition and study the evolution of (1) the second centered moments as a measure
for the plume dispersion, (2) the dilution index as a measure of the mixing state, and
(3) the scalar dissipation rate as a measure for the rate of mixing. It has previously been
shown that the solute spreading grows with the cube of time and thus is hyperdispersive.
Herein we demonstrate that the dilution index increases quadratically with time in
contrast to a homogeneous medium, for which it increases linearly. Similarly, the
scalar dissipation rate decays as t−3, while for a homogeneous medium it decreases
more slowly as t−2. Mixing is much stronger than in a homogeneous medium, and therefore
we term the observed behavior hypermixing.

Citation: Bolster, D., M. Dentz, and T. Le Borgne (2011), Hypermixing in linear shear flow, Water Resour. Res., 47, W09602,
doi:10.1029/2011WR010737.

1. Introduction

[2] Mixing is a fundamental process in many fluid flows.
Understanding and predicting mixing is a critical first step
to understanding and predicting chemical reactions. Mixing
drives many chemical reactions by physically bringing
reactants into contact [e.g., Rezaei et al., 2005; Cirpka and
Valocchi, 2007; Tartakovsky et al., 2008; de Simoni et al.,
2005]. As such it is a topic that has attracted attention
across a wide range of disciplines. In the context of geo-
physical flows with application to water resources it has
been an important topic of research in porous media flows
[e.g., Kapoor and Kitanidis, 1998; Tartakovsky et al., 2008]
as well as higher Reynolds number turbulent flows associ-
ated with surface water flows [e.g., Ghisalberti and Nepf,
2002] and geophysical flows in the atmosphere and the
ocean [e.g., Weiss and Provenzale, 2008; Rees, 2006].
[3] In this study we quantify the mixing properties of

linear shear flow in terms of global measures of mixing.
Mixing can be characterized in a variety of ways. Second
centered moments of the solute distribution measure the
plume extent. Entropy‐based measures such as the dilution
index [Kitanidis, 1994] characterize the volume occupied by
the solute and thus quantify the mixing state. Mechanical
mixing measures such as the scalar dissipation rate [Pope,
2000] describe the degradation of concentration contrasts
and quantify the mixing dynamics. These measures are
commonly used to study mixing in porous media [e.g., Rolle
et al., 2009; Luo et al., 2008; Le Borgne et al., 2010].

[4] For transport in a uniform flow field, mixing pro-
cesses are driven by local diffusion. However, many geo-
physical flows are not truly uniform and the velocity field
varies in space. Spatial heterogeneity can significantly
change mixing patterns observed for homogeneous media
[e.g., Kapoor and Kitanidis, 1998; Le Borgne et al., 2010].
In heterogeneous flows, local shear action of the flow field
(stirring) leads to the creation of concentration gradients,
which are smoothed out by local dispersion and diffusion,
and thus enhances mixing.
[5] In this technical note, we study these mechanisms for

the particular case of linear shear flow (i.e., a velocity field
that varies linearly with distance normal to the direction of
flow; see Figure 1). It is often deemed representative in the
context of turbulent vortical flows [e.g., Zhiang and Glimm,
1992] and has previously been used as a simple represen-
tation for a heterogeneous velocity field in a porous medium
[e.g., Carleton and Montas, 2009]. Linear shear flow may
be considered a simple subset of flows through stratified
media [e.g., Matheron and de Marsily, 1980; Bolster et al.,
2011]. For horizontal miscible displacement of freshwater
by saltwater, a linear shear regime can develop for diffusion
dominated scenarios [e.g., Dentz et al., 2006; Bolster et al.,
2007]. Enhanced contaminant mixing under such conditions
has been observed by Dror et al. [2003a, 2003b].
[6] In the following, we present a derivation of the

Green’s function for transport in a linear shear flow using
the method of characteristics. Other forms equivalent to this
solution have been presented previously by Okubo [1968],
Okubo and Karweit [1969], and Monin and Yaglom [1971].
On the basis of this explicit analytical solution, we study the
mixing dynamics caused by the interaction of shear action
and local dispersion.

2. Mixing in Linear Shear Flow

[7] We consider transport in a (d = 2)‐dimensional linear
shear flow far from domain boundaries. Transport is given
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by the advection‐dispersion equation

@c x; tð Þ
@t

þ qþ �x2½ � @c x; tð Þ
@x1

�r � Drc x; tð Þ½ � ¼ 0: ð1Þ

for initial condition c(x, t = 0) = r(x) with natural boundary
conditions at infinity. The x1 axis of the coordinate system is
aligned with the flow direction. The dispersion tensor is
diagonal with Dij = Didij. The flow velocity is composed of
the constant contribution q and the shear contribution ax2, in
which a is the shear rate.
[8] The solution c(x, t) of equation (1) reads in terms of

the associated Green function g(x, t) as

c x; tð Þ ¼
Z ∞

�∞
dx′� x′ð Þg x; tjx′ð Þ: ð2Þ

The Green function g(x, t∣x′) satisfies equation (1) with
initial condition g(x, t = 0∣x′) = d(x − x′). In Fourier space,
~g(k, t∣x′) satisfies

@~g k; tjx′ð Þ
@t

� �k1
@~g k; tjx′ð Þ

@k2
� k � Dkð Þ � iqk1½ �~g k; tjx′ð Þ ¼ 0;

ð3Þ

with initial condition ~g(k, t = 0∣x′) = exp(ik · x). This
equation can be solved by integration along the character-
istics k2(t) = k2(0) − ak1t. Thus, we obtain

~g k; tjx′ð Þ ¼ exp ik1 x1′þ qt � �tx2′ð Þ þ ik2x2′½ � exp � k � k tð Þk
2

� �
ð4Þ

where k(t) is the variance matrix

�11 tð Þ ¼ 2D1t þ 2

3
D2�

2t3; �21 tð Þ ¼ D2�t2;

�12 tð Þ ¼ D2�t2; �22 tð Þ ¼ 2D2t:

ð5Þ

The principal axes of the variance matrix in equation (5) are
not aligned with the axes of the coordinate system but rotate
clockwise because of the shear action of velocity field as
quantified by the shear rate a. The typical timescale asso-
ciated to the shear rate is denoted by ts = a−1. The inverse

Fourier transform of equation (4) and thus the Green func-
tion is given by the Gaussian

g x; tjx′ð Þ ¼
exp � x x; x′; tð Þ � k�1 tð Þx x; x′; tð Þ

2

� �
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det k tð Þ½ �p ; ð6Þ

with x(x, x′, t) = x − x′ + (atx′2 − qt)e1.
[9] In the following, we consider a solute plume evolving

from a point‐like initial distribution at x = 0, r(x) = d(x).
Furthermore, we set q = 0. Note that a nonzero q merely
translates the center of mass of the plume and does not affect
spreading or mixing, which are the focus of this work. The
plume extends in the direction transverse to the flow
because of dispersion. The shear action then leads to an
enhanced horizontal spreading and mixing of the solute. The
main axes of the plume rotate in clockwise direction with
increasing time. The concentration distribution is obtained
from equation (6) by setting x′ = 0 and q = 0,

c x; tð Þ ¼ exp � 1
2 x

Tk�1 tð Þx� �
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det k tð Þ½ �p : ð7Þ

Figure 2 illustrates the concentration distribution of
equation (7) for D1 = D2 = D = 1 at t = 10−1 ts and t = 10ts.
For t � ts, the main axes of the variance tensor are aligned
with (1, 1)t and (1, ‐ 1)t, where the superscript t denotes the
transpose. With increasing time, the axes rotate and for times
t � ts, they are in leading order aligned with [1, 3/(2at)]t

and [−3/(2at), 1]t.

Figure 1. Schematic of the shear flow considered in this
paper.

Figure 2. Concentration fields for D1 = 1, D2 = 1, a = 1 at
(top) t = 0.1ts and (bottom) t = 10ts. The initial condition is
a point‐like distribution at the origin, and the mean flow is
q = 0.
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2.1. Dispersion

[10] Dispersion in the x1 and x2 directions is quantified by
�11(t) and �22(t), respectively. Plume spreading in the lon-
gitudinal direction is hyperdispersive and for times at � 1
scales as �11(t) ∼ t3, while spreading in the transverse
direction is dispersive and scales as �22(t) ∼ t, see
equation (5).
[11] As noted above, the main axes of the variance tensor

rotate with time and are in general not aligned with the axes
of the coordinate system. The plume dispersion along the
main axes of the variance matrix in equation (5) is quanti-
fied by the eigenvalues of k(t), which are given by

L1=2 tð Þ ¼ D1 þ D2ð Þt þ �2t2

3
D2t

� t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1 � D2ð Þ2þ�2t2

3
2D1D2 þ D2

2 1þ �2t2

3

� �� �s
:

ð8Þ

[12] For illustration we show in Figure 3 the dispersion
behavior along the main axis of the variance tensor in the
limit of D1 = 0. In this case the eigenvalues for at � 1
behave as

L1 tð Þ ¼ 2D2t; L2 tð Þ ¼ D2t �tð Þ2=6: ð9Þ

For late times, at � 1, the eigenvalues to leading order are

L1 tð Þ ¼ 2D2t �tð Þ2=3þ 3D2t=2; L2 tð Þ ¼ D2t=2: ð10Þ

The crossover between the early and late time regimes is
marked by the shear scale ts = a−1.
[13] In this analysis we consider the approximation of an

infinite domain. It is worth noting that for a vertically
bounded domain, the spreading behavior is asymptotically
given by Taylor‐Aris dispersion, which is characterized by a
constant effective dispersion coefficient in the flow direc-
tion [e.g., Taylor, 1953; Aris, 1956; Brenner and Edwards,

1993; Young and Jones, 1991; Bolster et al., 2009; Porter
et al., 2010].
[14] Next, we consider the impact of the interaction of

shear and transverse dispersion on the mixing within the
plume.

2.2. Dilution Index

[15] The dilution index [Kitanidis, 1994] is a measure of
the volume that is occupied by a solute. Thus, it char-
acterizes the mixing state of the system. The dilution index
for an unbounded system is defined as

E tð Þ ¼ exp �H tð Þ½ �; H tð Þ ¼
Z

dxc x; tð Þ ln c x; tð Þ½ �; ð11Þ

in which H(t) is the entropy of the system under consider-
ation. For the point‐like injection considered here it can be
shown that [Kitanidis, 1994]

E tð Þ ¼ 2�e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detk tð Þ

p
: ð12Þ

Using equation (5), the dilution index for linear shear flow is

E tð Þ ¼ 2�e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D1D2t2 þ 1

3
D2

2�
2t4

r
: ð13Þ

[16] For diffusion only, a = 0, the dilution index evolves
linearly with time, E(t) / t as pointed out by Kitanidis
[1994]. In the presence of shear, its long‐time behavior is
E(t) / t2, that is, the volume occupied by the solute
increases quadratically with time. For D1 = 0 the dilution
index E(t) ∼ t2 scales hyperdispersively at all times. This
demonstrates that a pure shear flow causes a dramatic
increase of the mixing state relative to the pure diffusion
case. From Kitanidis [1994] we know that for a homoge-
neous system the dilution index scales as E(t) ∼ t d/2 where d
is the number of spatial dimensions. Here we see that the
dilution index in a two‐dimensional system with a pure
shear scales even faster than for a (d = 3)‐dimensional
homogeneous case. The actual long‐time scaling of t2 would
be equivalent to a homogenous system in d = 4 spatial
dimensions. This means, in order to obtain such a rapid rate
of increase in the dilution index for a homogeneous envi-
ronment one would require four spatial dimensions. It is also
noteworthy that for large shear rates a, the dilution index
increases linearly with a.

2.3. Scalar Dissipation Rate

[17] Here we study the impact of linear shear action on
the mixing dynamics as quantified by the scalar dissipation
rate

� tð Þ ¼
Z
W
dxrc x; tð Þ � Drc x; tð Þ: ð14Þ

It measures the degradation of concentration variability
within the plume [e.g., Pope, 2000; Kapoor and Kitanidis,
1998]. It quantifies the basic mixing mechanisms, which
are the creation of concentration contrasts by shear action
and their dissipation by local dispersion. Similar expressions
can be identified in equilibrium reaction rates for mixing

Figure 3. Spatial variance along the main axes of the var-
iance tensor for D1 = 0 in equation (8). The behavior of L1(t)
is shown by the solid blue line, while the behavior of L2(t) is
shown by the dashed red line. The dash‐dotted black lines
illustrate slopes of t and t3.
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limited reactions [e.g., de Simoni et al., 2005; Luo et al.,
2008; Donado et al., 2009; Le Borgne et al., 2010]. A
concentration weighted form of the dissipation rate is
closely linked to the growth rate of the entropy in an
advection‐dispersion transport system [Kitanidis, 1994].
Using equation (7) in equation (14), the scalar dissipation
rate is

� tð Þ ¼
ffiffiffi
3

p

2�
ffiffiffiffiffiffi
D2

p
t2

�2D2t2 þ 6D1

12D1 þ �2D2t2ð Þ32
: ð15Þ

For asymptotically large times we obtain the scaling c(t) ∼
t−3. For a homogenous velocity field it can be shown that the
scalar dissipation rate depends on the dimensionality of
space as expressed by the scaling c(t) ∼ t−d/2−1. The t−3

behavior observed for linear shear flow corresponds to a
d = 4 dimensional homogeneous flow, which is consistent
with the dilution index calculation. This is unsurprising
since as noted above a concentration weighted form of the
scalar dissipation rate can be related to the growth rate of
entropy H(t).
[18] Observations for the scalar dissipation rate in (d = 2)‐

dimensional heterogeneous velocity fields from simulations
[Le Borgne et al., 2010] and theory [Bolster et al., 2011], as
well as from effective nonlocal models [Bolster et al., 2010]
scale somewhere in between values associated with d = 2
and d = 3 spatial dimensions, suggesting that the hetero-
geneity causes the system to behave as if it had a dimension
between these two limits, but not as high as for the pure
shear flow. In a real heterogeneous flow field shearing
occurs at the small scale. However, the shearing can be
interrupted or altered, resulting in the fact that the hyper-
dispersive regime may be interrupted too. As for the case of
the dilution index, setting D1 = 0 results in the hyperdis-
persive scaling c(t) ∼ t−3 from t = 0 onward at all times.

3. Conclusions

[19] Linear shear flow is a very efficient driver of mixing
that greatly enhances mixing relative to a homogeneous
flow. The origin of such hypermixing is the hyperdispersive
growth of longitudinal dispersion that creates a rapidly
growing interface for diffusion to act. The temporal scaling
of the mixing measures are in this case directly related to the
temporal scaling of dispersion. In fact, both the solutions for
the dilution index and scalar dissipation rate predict that the
late time scaling for these measures corresponds to an
equivalent homogeneous system in d = 4 spatial dimensions.
Previous studies in two dimensions predict that mixing in
heterogeneous velocity fields may scale like a system
between d = 2 and d = 3 dimensions. Linear shear flow acts
as an efficient mixer, which can for example explain the
enhanced mixing observed in variable density flows at low
Péclet numbers [e.g., Dror et al., 2003a, 2003b; Dentz et al.,
2006; Bolster et al., 2007].
[20] Stretching of the plume in heterogeneous flow fields

can be linked to shear regions because of the correlation of
the flow field in both longitudinal and transverse directions
[e.g., Le Borgne et al., 2008]. This phenomenon is expected
to occur at small scales, at which the heterogeneous flow
fields can be approximated as a linear shear flow [Tennekes
and Lumley, 1972]. The behavior observed for linear shear
cannot persist at large times because the shear rate varies

spatially and thus the plume is in general exposed to dif-
ferent shear regimes as it travels through the heterogeneous
medium. How one can link small‐scale hypermixing to
large‐scale mixing is an area of active research.
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