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ABSTRACT 

Stream networks are considered important units in many environmental decision making processes. The extraction of 
streams using digital elevation models (DEMs) presents many advantages. However it is very sensitive to the uncer-
tainty of the elevation datasets used. The main aim of this paper is to implement geostatistical simulations and assess 
the propagated uncertainty and map the error of location streams. First, point sampled elevations are used to fit a 
variogram model. Next two hundred DEM realizations are generated using conditional sequential Gaussian simulation; 
the stream network map is extracted for each of these realizations, and the collection of stream networks is analyzed to 
quantify the error propagation. At each grid cell, the probability of the occurrence of a stream and the propagated error 
are estimated. The more probable stream network are delineated and compared with the digital stream network derived 
from topographic map. The method is illustrated using a small dataset (8742 sampled elevations) for Anaguid Saharan 
platform. All computations are run in two free softwares: R and SAGA. R is used to fit variogram and to run sequential 
Gaussian simulation. SAGA is used to extract streams via RSAGA library. 
 
Keywords: DEM; Stream Network; Uncertainty Modeling; R; SAGA 

1. Introduction 

A digital elevation model (DEM) is a representation of 
terrain elevation as a function of geographic location [1]. 
DEMs have been widely applied to efficiently derive 
topographic attributes used in hydrologic modelling [2], 
tectono-geomorphology [3,4], Hazard mapping [5,6] and 
other applications. DEMs, like other spatial data sets, are 
subject to error [7,8]. Since DEM error can be propa-
gated through GIS operations and affect the quality of 
final product. Several factors affect the quality of DEMs 
[9,10]. A significant source of error can be attributed to 
data collection. The accuracy of source data varies with 
collection techniques, such us map digitalization, active 
airborne sensors, photogrammetric method and field sur- 
veying. Other sources of error include the interpolation 
methods for DEM generation and the characteristics of 
the terrain surface [11,12]. 

Methods of errors investigation in DEMs have been 
widely explored [7,13,14]. The simplest methods are 
based on criteria such as: differences in elevations be-
tween adjacent points [15,16]; elevation histogram analyses 
[17,18]; systematic detection by inspection of anomalous 
values within a given moving window [9,19,20]. More 

complex methods introduce remote sensing and/or geo-
statistical process. [21,22] have investigated the value of 
Brownian processes in a fractal terrain simulation model 
for improving DEM accuracy. [23] used semi-variogram 
and fractal dimension to describe the pattern of system-
atic errors. [24] developed a method based on principal 
component analysis (PCA) to locate random errors in 
DEMs and to extract uncorrelated patterns. 

Techniques of error location and visualization have 
also been considered. [7] have reviewed research in this 
domain and noted that DEM contour maps could be a 
useful tool for error observation, with the possibility of 
detecting gross errors and blunders. The reliability of this 
method, however, is not proven. Other more sophisti-
cated methods have focused on error visualization by 
using RGB multi-band shading technique [25]. More 
recent attention have been paid to DEM interpolation 
method on elevation and their mathematical derivatives 
[25-30]. Techniques of DEM error propagation are com- 
monly classified into two main approaches: the analytical 
and the stochastic approach [31]. In the first case, the 
propagated error is derived using some mathematical 
technique such as via a Taylor series expansion; in the 
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second case, the simulation methods involve stochastic 
approaches such as Monte Carlo simulation. 

This article proposes a methodology to assess errors of 
stream networks extracted of digital elevation models. It 
uses a small case study to demonstrate how to implement 
geostatistical simulations and assess the propagated un-
certainty and map the error of location streams. Our sec-
ondary objective is to promote the geostatistical tools 
implemented in the open source environnement for com- 
puting (R), and geographical analysis tools implemented 
in the open source GIS (SAGA). To do so, we adopted an 
R based robust code written by Hengel, [32]. These scripts 
used in this article are available on-line via  
www.geomorphometry.org web site and can be adjusted 
to any similar case study. 

2. Methods and Materials 

2.1. Error Propagation: The Monte Carlo 
Approach 

Monte Carlo simulation methods have been used by 
many researchers to evaluate error in GIS data, including 
[33-35] and have been applied to specifically address 
DEM uncertainty. For example, [36] applied Monte Carlo 
simulation techniques to evaluate the impact of DEM 
error on viewshed analyses. [37] determined that small 
DEM errors significantly affected floodplain locations. 
[38] investigated the impact of DEM error on a forest 
harvesting model. [39] investigated the effect of simu-
lated changes in elevation at different levels of spatial au- 
tocorrelation on slope and aspect calculations. [18] simu- 
lated error in DEMs to evaluate slope failure prediction. 
[40] applied Monte Carlo simulation to assess the impact 
of DEM error on slope, aspect, and drainage basin de-
lineation. 

The basis for using the Monte Carlo method in error 
propagation analysis is that the original data is perturbed 
repeatedly by the realisation of the modeled error, and 
the GIS analysis is calculated from the perturbed data set. 
Finally, statistical summaries are drawn from the stack of 
analysis results based on the perturbed data sets [35-37, 
41]. In practice, the Monte Carlo method in error propa-
gation of stream networks developed in this study can be 
summarized in four steps. 
 Calculate an experimental variogram from the data 

and fit a variogram model to represent the variability 
of the input DEM. This step is achieved by using 
weighted least squares (WLS) algorithm as imple-
mented in the geoR package. 

 Generate multiple realizations of the DEM using con-
ditional simulation. The most common technique in 
geostatistics used to generate equiprobable realiza-
tions of a spatial feature is the Sequential Gaussian 
Simulation [41]. This step is also achieved by using 

Stochastic Conditional Gaussian Simulations algo-
rithm as implemented in the gstat package. 

 Derive stream network for each realization using the 
“Channel Network” function, which is available also 
via the command line “ta_channels” SAGA library, 
and save the temporary result. 

 Estimate probability of the occurrence of stream net-
work. To derive a probability of mapping stream, we 
need to import all gridded maps of stream, then count 
how many times the model estimated a stream over a 
certain grid node. The probability of occurrence of 
detecting stream is simply the average value of stream 
from m simulations. 

The Monte Carlo approach requires a significantly large 
number of realizations to produce a reliable estimate of 
the distribution function. The number of realizations m 
must be sufficiently large to obtain stable results. Theo-
retically, the accuracy of the Monte Carlo method is 
proportional to the square root of the number of runs m 
[42]. As a rule of thumb, we can take 100 simulations as 
being large enough, and everything below 20 as insuffi-
cient [35]. Consequently, the Monte Carlo method is 
computationally demanding, particularly when the GIS 
operation takes much computing time [43]. 

In this case study the analyses were done with 200 
simulation runs, which was a compromise to get reasona-
bly reliable simulation results with moderate computation 
load. Realizations of the DEM error were done by using 
sequential Gaussian simulation [41], which has been im-
plemented in open source statistical software R’s exten-
sion gstat [44]. The simulated DEMs were further proc-
essed for pits removal with the method of Planchon and 
Darboux [45]. The stream networks were delineated form 
each simulated DEM using the ta_channels library within 
SAGA. The different iterations were combined to pro-
duce a cumulative probability map representing how many 
times a cell was part of a stream network. 

2.2. Software Tools 

In this article we use a combination of statistical and 
geographical computing software to assess propagated 
error of detecting streams: SAGA1 (System for Auto-
mated Geoscientific Analyses) for geographical comput-
ing and R2 for statistical computing. Many spatial pack-
ages3 have been developed in recent years, which allow 
R to be also used for spatial analysis. Three important 
packages that are used in this paper are gstat [44], geoR 
[46], and maptools [47]. The link between SAGA and R 
is made via a special link library RSAGA [48]. A similar 
link is currently being established to access geoprocess-

1http://saga-gis.org 
2http://www.r-project.org 
3http://cran.r-project.org 
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ing tools of ESRI’s ArcGIS from within R using the 
RPyGeo package and a Python interface [49]. The RSAGA 
package provides access to geocomputing and terrain 
analysis functions of SAGA by running the command 
line version of SAGA. RSAGA package provides direct 
access to SAGA functions including a comprehensive set 
of terrain analysis algorithms for calculating local mor-
phometric properties (e.g. slope, aspect, curvature), hy-
drographic characteristics (e.g. size, height, and aspect of 
catchment areas), and other process-related terrain attrib-
utes (e.g. topographic wetness index). In addition, RSAGA 
provides functions for importing and exporting different 
grid file formats, and tools for preprocessing grids. Even 
more detailed instructions of R + SAGA integration can 
be found in [48,50]. 

right © 2012 SciRes.                                                                                 

3. Case Study 

3.1. Data and Study Area 

Figure 1 show the data used in this study. This data con-
sists of 8742-point differential GPS (DGPS) survey con-

ducted for Anaguid seismic project (Saharan platform of 
Tunisia) in 2010 by CGGV Company, with a variable 
spatial resolution, ranging from 40 m along survey lines 
to more 240 m between survey lines, and a positional and 
vertical accuracy less than 2 cm. This data was used ini-
tially to generate multiple realizations of DEM, and then 
extract drainage network of the study site. 

The case study was carried out on a DEM of Anaguid 
located in southern of Tunisia. This DEM has a 30 m 
grid cell resolution with 341 × 369 dimension and it was 
interpolated with the ordinary Kriging method (Figure 
1(a)). The study area is enclosed between latitudes 
31˚58'N and 31˚52'N and longitudes 9˚45'E and 9˚52'E, 
covering an area of 111.3 km2. Its elevation ranges from 
300 to 440 m with an average and a standard deviation of 
36.86. This area is specifically suitable as it presents two 
contrasting landscapes: plains with terraces in the west 
and dissected plateau with small valleys in the east direc-
tion. Geologically, the area under study is occupied es-
sentially by hard carbonate rocks and conglomerates de-
posited from the upper Cretaceous to the Neogene. 

 

 
(a)                                   (b) 

 
(c)                                 (d) 

Figure 1. Datasets used in this study: (a) Digital elevation model; (b) and (c) Distribution of the data in geographical space; (d) 
The elevation values are approximately normally distributed. 
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.2. Error Propagation in Stream Network 3

The first results of our analysis are the variograms mod-

some artificial breaks in the lines. These artifacts are pro- 

4. Discussion and Conclusions 

mportant in many 

els fitted using geoR package (Figure 2). These show 
that the elevation data (Z) in general varies equally in all 
directions. This is especially distinct for shorter distances 
which allow us to model the variograms using isotropic 
models. It is also a relatively smooth variable, there is no 
nugget variation and spatial autocorrelation is valid (pra- 
ctical range) up to a distance of 2 km. The next results of 
analysis are the realization of DEMs simulated using Sto- 
chastic Conditional Gaussian Simulations algorithm as 
implemented in the gstat package. To visualize the dif-
ferences between 200 realizations, we plotted the eleva-
tion values of each DEM against their slope values (Fig-
ures 3 and 4). In the next step, we look at the dispersion 
of the stream lines derived for all simulated DEMs. Once 
the processing is finished, we can visualize all derived 
streams at top of each other. The spatial distribution of 
the 200 simulations of stream networks for our study area 
is shown in Figure 5. The visualization of density of 
streams clearly illustrates the concept of propagated un-
certainty. If you zoom in into this map, you will notice 
several things. In some areas streams are isolated and 
hence seem to be very improbable; in other areas stream 
are densely distributed but over a wider area. Looking at 
Figure 5(a) we notice that the derived streams show 

bably a consequence of the fact that we have used arbi-
trary input parameters for the minimum length of streams 
(80 pixels) and grid cell size (30 meters). In practice, 
these parameters should be refined by experts familiar with 
the study area. In addition, the course of many delineated 
streams is significantly different in comparison with the 
streams derived from topographic map as seen in Figure 
5(b) which shows clearly the deviations in network de-
lineation. The results from this case study clearly dem-
onstrate the usefulness of the error propagation analysis. 
By mapping the propagated error we can delineate the 
most problematic areas and focus our further efforts. 

 

The delineation of stream networks is i
environmental and hydrological applications. DEM error 
propagation can provide valuable additional information 
for the reliability of stream extraction. The methodology 
and its application presented here demonstrate an easily 
employed method to assess DEM error and its impact on 
stream networks. Previous research used techniques that 
require higher accuracy data sources such as higher 
resolution DEMs (LIDAR for example). The reality is 
that most DEM users do not have such data. The meth-
odology p resented here was designed to remedy this 

 

Figure 2. Standard variograms fitted for study area: (left) anisotropy in four directions; (right) isotropic variogram model 
fitted using the weighted least squares (WLS). 
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Figure 3. Nine realizations of the DEM following conditional geostatistical simulations. The grayscale legend indicates eleva-
tions in meters. 
 

 

Figure 4. Slope plotted against elevation values for nine DEMs. 
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(a)                                                  (b) 

Figure 5. Uncertainty modelling of stream network derived from elevation data: (a) 200 realizations of stream network over-
laid on top of each other. The grayscale legend indicates elevations in meters; (b) Probability of the occurrence of stream 
networks. The more probable stream network is indicated with black lines. The blue dashed lines indicate digital stream 
network derived from topographic map. 
 
issue by providing a methodology based on Monte Carlo 
approach that was successfully implemented using R and 
SAGA open source software. The purpose of this meth-
odology is to provide DEM users with a suite of tools by 
which they can evaluate the effect of uncertainty in 
DEMs and derived topographic parameters. However, 
some limitations have been identified in this study: 
 Firstly, we have limited the number of simulations to 

200 runs. It should be feasib
in accuracy with an increasi
evaluating the change in derived probability or attrib-
ute property such as estimated stream length or cat- 
chments width. If such a parameter or function does 
not change anymore below a certain threshold, no 
more simulations seem to be required. 

 Secondly, we have set the grid cell size at 30m with-
out any real justification. It is relevant to evaluate the 
increase in accuracy with an increasing grid cell size 
by plotting the error of mapping streams versus the 
grid spacing index, one can select the grid cell size 
that shows the maximum information content in the 
final map. The optimal grid cell size is the one where 
further refinement does not change the accuracy of 
derived streams. Future rese

tions are geosta-
tistical simulations and extraction of stream networks. 

 Fourthly, the demonstrated methodology did not as-
sess uncertainty associated with specific DEM appli-
cations such as hydrologic modeling or hazard map-
ping. Researchers can, however, use the uncertainty 
estimates provided by the proposed simulation tech-
niques to better assess uncertainty for projects that 
utilize DEMs and DEM-derived data. For example, 
input parameters for hydrologic odels (such USLE) 

 and slope values that are fre-
quently obtained directly from a DEM.  

 Finally our conclusions are limited to this empirical 
study of Anaguid with a relatively gentle topography. 
An obvious future direction is to conduct similar 
evaluations in other sites with different topographic 
characteristics to verify the robustness of our results. 
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