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Abstract—The solubility of gold was measured in aqueous KCl (0.5m) solutions under oxygen, sulfur, and
slightly acidic pH buffered conditions between 350 and 450°C at a constant pressure of 500 bars. Two buffer
assemblages were used to constrainfO2, f S2, and consequentlyf H2 andaH2S: respectively, pyrite-pyrrhotite-
magnetite (Py-Po-Mt) and pyrite-magnetite-hematite (Py-Mt-Hm). The measured solubility of gold at equi-
librium with Py-Po-Mt and Qtz-KF-Mus is 526 8 ppb at 350°C, 1346 17 ppb at 400°C and 4966 37 ppb
at 450°C. With Py-Mt-Hm and Qtz-KF-Mus the solubility of gold is increased to 1986 9 ppb at 400°C and
692 6 10 ppb at 450°C. These results are consistent with the aqueous complex AuHS° being the dominant
gold-bearing species. The equilibrium constants (log KR10) for the reaction:

Au~s! 1 H2S~aq! 5 AuHS0 1 1⁄2 H2~ g! R10

have been determined at 350, 400, and 450°C and are, respectively,25.206 0.25,25.306 0.15, and25.40
6 0.15. These values are similar to those suggested by Zotov (written pers. commun.) and those obtained by
recalculating the experimental data of Hayashi and Ohmoto (1991). They are significantly higher than those
derived by Benning and Seward (1996) and the possible causes of the discrepancies are discussed.

The equilibrium constant for AuHS° shows that this species plays an important role in the deposition of gold
in natural environments. Cooling, H2S loss, pH change, and oxidation seem to be effective mechanisms for
gold precipitation, depending on the local ore forming conditions.Copyright © 1998 Elsevier Science Ltd

1. INTRODUCTION

Field and mineralogical studies of hydrothermal gold deposits
demonstrate the large range of physicochemical conditions of
gold deposition. This suggests that different aqueous species
can transport gold depending on temperature, pH, redox state,
and ligand concentrations. Therefore, knowledge of the solu-
bility of gold in hydrothermal fluids is critical in interpreting
the transport and deposition of gold in ore-forming processes.
The most important ligands in hydrothermal gold-bearing so-
lutions are chloride and reduced sulphur. Both are known to
form complexes with Au(I).

Several experimental studies have investigated the solubility
and formation of complexes of gold in chloride solutions (Ni-
kolaeva et al.,1972; Henley, 1973; Rytuba and Dickson, 1974;
Wood et al., 1987). A more general study of the solubility of
gold in aqueous chloride solutions (Zotov and Baranova, 1989)
has provided thermodynamic data for the AuCl2

2 species at
temperatures from 350°C to 500°C and pressures from 500 to
1500 bars.

Previously, Seward (1973) has determined the stoichiometry
and the stability constant of gold-sulphide complexes in aque-
ous sulphide solutions in the presence of pyrite and pyrrhotite.
It was shown that the dominant gold-bearing species is either
Au(HS)2

2 in neutral to slightly alkaline solutions or
Au2(HS)2S2

2 in strongly alkaline solutions, at temperatures
from 175°C to 250°C and a pressure of 1 kbar. In addition, it
was suggested that a pH independent species, AuHS°, is

present in the acidic region. Shenberger and Barnes (1989)
have also measured gold solubilities in chlorine-free sulphide
solutions. For temperatures from 150°C to 300°C under
vapour-saturated (Psat) and highfO2 conditions, they found
that Au(HS)2

2 was the dominant gold complex and also sus-
pected the presence of a neutral complex (AuHS°) in their low
pH runs. A neutral complex has been also identified at low
temperatures by Renders and Seward (1989) who measured the
solubility of AuS2(s) at 25°C and for pH between 2 to 12. They
determined that the dominant gold species was AuHS° at pH 3
to 3.5, Au(HS)2

2 at pH 4 to 10 and Au2S2
22 at pH above 11.

These findings contrast with Seward (1984), who suggested
that HAu(HS)2

° might be the dominant species in low pH
solutions. Hayashi and Ohmoto (1991) have measured gold
solubility from 250°C to 350°C at Psat in chloride and sul-
phide-bearing aqueous solutions buffered by a sulphur hydro-
lysis reaction and sulphate-sulphide equilibrium. Their data
indicate the existence of a neutral, pH independent, gold spe-
cies with an HAu(HS)2

° stoichiometry. Recently, two other
studies (Benning and Seward, 1993, 1995, 1996; Gibert et al.,
1993) have inferred an AuHS° stoichiometry for the neutral
species.

In this paper, we present the results of gold solubility mea-
surements between 350°C and 450°C at 500 bars in aqueous
chloride solutions with sulfur and hydrogen fugacities buffered
by assemblages of iron-sulphides and iron-oxides (pyrite, pyr-
rhotite, magnetite, and hematite). These mineral assemblages
are commonly found in association with gold in many hydro-
thermal deposits. The results of this study confirm that AuHS°
plays an important role in the deposition of gold in natural
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environments and promote a better understanding of the trans-
port and deposition of gold in natural hydrothermal systems.

2. EXPERIMENTAL METHODS

The experiments were designed to simulate the condition of gold
transport in natural hydrothermal systems as closely as possible, while
allowing for precise control of the experimental parameters (T, pH,fH2,
fS2).

2.1. Choice of Experimental Conditions

Our strategy is based on the modelling of the solubility and the
speciation of gold in an H2O-KCl solution in chemical equilibrium with
fO2-fS2 buffer pyrite-pyrrhotite-magnetite (Py-Po-Mt) and pH buffer
quartz-K-feldspar-muscovite (Qtz-KF-Mus) at 350°C and vapor-satu-
rated pressure (Gibert and Pascal, 1992). At 350°C and Psat, results of
the modelling show that Au(HS)2

2 is the dominant gold-bearing species
in alkaline solutions and that AuCl2

2 is significant only in solutions with
high SCl or at low pH conditions. A neutral species (AuHS° or
HAu(HS)2

°) is likely to be the dominant gold carrier in solutions with
neutral pH. With increasing temperature, the region of dominant
Au(HS)2

2 is shifted to more alkaline conditions. Thus, at high temper-
atures (T. 350°C) and in equilibrium with sulphide minerals (Py, Po),
Au(HS)2

2 plays relatively minor role in gold transport in the pH range
5–6.5. Within these premises, we have measured gold concentrations
in a 0.5m KCl aqueous solution in equilibrium withfO2-fS2 and pH
quartz-K-feldspar-muscovite (Qtz-KF-Mus) buffers between 350°C
and 450°C at a constant pressure of 500 bars. For a precise determi-
nation of the stoichiometry of the gold species, the use of two redox
buffers is necessary (Gibert et al., 1993). In our experiments either a
pyrite-pyrrhotite-magnetite (Py-Po-Mt buffer) or a pyrite-magnetite-
hematite (Py-Mt-Hm buffer) assemblage was used to bufferfO2, fS2,
and consequentlyfH2 andaH2S.

2.2. Apparatus

Experiments were performed using a rocking flexible-cell hydrother-
mal apparatus (Seyfried et al., 1987). Reactants (i.e, gold tube, solid
buffers, and aqueous solution) were loaded into a deforming titanium
reaction cell (50–160 mL, wall thickness 1/400) with a Ti closure piece
which was inserted into a 316SS autoclave. A Ti sampling tube extends
from the closure piece of the cell to the external Ti sampling valve. The
autoclave was placed into a rocking furnace and then filled with water
which was used as the pressure medium. A small amount of SrCl2 was
added to the water pressure medium as a leak tracer. Initially, the vessel
was pressurized to 20–30 bars to collapse the Ti cell. During this step,
the Ti sampling valve was opened and the first drops of solution ('1
mL) were collected. This first sample was analysed by flame absorption
spectrometry for Sr to detect any contamination of the experimental
solution from the water pressure medium. Throughout the experiment
temperature was controlled within6 2°C and pressure was maintained
within 620 bars. Before each experiment, all Ti pieces (cell, closure
piece, filter, and exit tube) were first cleaned with a diluted HCl
solution (0.1 N), then treated in concentrated nitric acid before being
heated in air at 400°C to form a superficial chemically inert titanium
oxide layer.

2.3. Starting Materials

Pyrite and pyrrhotite were synthetic phases prepared from a mixture
of sulphur and iron sponge powders (both Prolabo Co., reagent pure)
heated to 700°C for 6 days in vacuum-sealed silica tubes and then
equilibrated during 24 h at the temperature of experiment
(350–450°C). Magnetite, hematite and K-feldspar were prepared by
hydrothermal synthesis (600°C, 2kbar). Mixtures of iron and hematite
powders were used for the iron oxides; K-feldspar was synthesised
from a gel. A synthetic commercial quartz (SICN Co.) and a natural
muscovite from a pegmatite were also used. The buffer mineral assem-
blage was studied with X-ray diffraction, microprobe analysis, and
SEM before and after each experiment. Figure 1 shows an example of
the mineral assemblage after a run. Materials phases show subidio-

morphic morphologies without armoured textures. The KCl solution
was prepared by adding the desired amounts of KCl (99.999%, Trem
Chemicals Co.) to distilled water. To avoid the problem of relatively
slow reaction kinetics of the pH buffer, the starting solution was
slightly acidified by adding HCl (5 1024m) close to the pH value
expected at a high temperature and pressure. The buffers were placed
in a pierced gold tube (diameter5 0.7 cm) which acted as the gold
source and buffered the gold activity.

2.4. Sampling Procedure

When the Ti sampling valve is opened, the fluid from the Ti reaction
cell flows through a Ti filter placed at the top of the cell into the Ti
sampling tube and finally out of the valve into a sample receiver
(plastic syringe with titanium and teflon plunger) which is cooled by
nitrogen and ice. Simultaneously, a high pressure pump delivers water
to the pressure vessel, thereby maintaining the pressure of the system
at the desired value. Thus, fluid samples were withdrawn from the Ti
reaction cell at essentially constant temperature and pressure, thereby
minimising quench problems. A first aliquot, approximately 1 mL, was
either discarded or used for pH measurements. About 4 mL were then
sampled and prepared for gold analysis. Approximately 0.5 mL of this
solution was evaporated onto an aluminium sheet for neutron activation
analysis (NAA) with Ge and Ge-Li detectors, and approximately 1–2
mL were diluted for ICP-MS (VG Plasmaquad PQ21) or ICP (JY

Fig. 1. SEM photomicrographs of the buffer mineral assemblages
buffers after experiment (Py5 pyrite; Po5 pyrrhotite, Hm5 Hema-
tite; Musc.5 muscovite; KF5 potassium feldspar).
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381) analysis. A gold-bearing standard solution was prepared using
two titrated Au standard solutions (Titrisol, Merck Co.; Normex, Carlo
Erba Co.) and the same KCl as that used in the experiments. The
remaining solution was used up to detect the presence of any Sr, by
flame absorption spectrometry, to test for the possible contamination of
the experimental solution during sampling.

2.5. f H2 Control

The control of redox conditions is critical in this study. The semi-
permeable membrane technique (Shaw, 1963) was used to test the
behaviour of hydrogen in the titanium reaction-cell system under our
experimental conditions. Due to the relatively low temperatures of our
experiments (# 500°C) an Ag40-Pd60 composition was selected for
the membrane, which corresponds to composition with a relatively high
permeability in the Ag-Pd system (Gunter et al., 1987). The Ag-Pd tube
(thickness 0.2 mm, id 2.5 mm, length 40 mm) filled with rounded
quartz grains (natural sand, 0.5 mm) was silver brazed (Hewitt, 1978)
on a 1/160 stainless-steel high-pressure capillary. This capillary was
inserted into, and silver brazed on a1⁄40 high pressure tube which was
used instead of the Ti sample tube in the hydrogen test experiments.
The membrane was connected through the capillary to a pressure
controller (0–2.5 bars), an H2 reservoir and a vacuum pump. Figure 2
shows the arrangement of the experimental apparatus. Before starting
the experiment, the H2 line was air-evacuated by opening valves 1 and
3 (Fig. 2). Two types of experiments were performed.

The first set of experiments was carried out without the Ti flexible
cell in order to determine the intrinsicfH2 andfO2 values of the 316SS
vessel pressurized with H2O. The results show that at 500 bars, the
vessel imposed an intrinsicfH2 of 0.25 bar at 400°C and of 0.20 bar at
500°C and that a steady-state equilibrium was reached after 6 days at
400°C. Thefore, 316SS vessels pressurized with water impose an
intrinsic fO2 close to the Ni-NiO buffer.

The second set of experiments was designed to test the hydrogen
permeability of the Ti cell filled with distilled water by removing
(procedure 2a) or by injecting (procedure 2b) hydrogen into the system
through the membrane. First, the system was brought to 400°C and 500
bars for 7 days so that thefH2 outside the Ti cell is that imposed by the
vessel. Then, hydrogen (;0.26 bar) was introduced into the Ti cell by
a repetition of rapid drops and rises in total pressure, allowing con-
tamination of the Ti cell by the external fluid. The membrane was then

connected to the vacuum pump and H2 was removed from the Ti cell
through the H2 membrane. Four H2 evacuation experiments of increas-
ing duration (P1 to P4, Fig. 3a) were performed and the evolution of the
H2 pressure in the membrane was monitored after each evacuation step
(Fig. 3a). After the initial drop in H2, the H2 pressure in the membrane
rapidly increased and reached in all the case a steady state equilibrium
value which could be maintained for duration up to 50 hours without
any noticeable diffusion of hydrogen from the vessel to the membrane
through the titanium capsule, even at very lowfH2 (0.04 bar, Fig. 3a).
In procedure 2b, the membrane was connected to the H2-reservoir and
three successive injections of H2 (at PH2

; 2.4 bars each) were made
into the H2 line and the Ag-Pd membrane (I1 to I3, Fig. 3b). Between
two injections, the membrane pressure rapidly decreased to a steady-
state value which after the second injection, exceeds the intrinsicfH2 of
the vessel, indicating that H2 progressively fills the Ti cell. In conclu-
sion, these experiments show that there is no evidence for any signif-
icant transfer of H2 by diffusion through the Ti cell either from the Ti
cell to the external fluid or the opposite. The data are also inconsistent
with the formation of Ti-hydrides, a possibility that needs to be con-
sidered given the reported capacity of Ti to absorb large amounts of
hydrogen (Lewkowicz, 1996). Thus, the relatively thick, surface oxi-
dized, Ti cell used in this study can be considered to behave like a
container closed to hydrogen in our experiments.

An additionalfH2 test was performed in a Ti cell filled with 0.5m
KCl solution together with the Py-Po-Mt and the Qtz-KF-Musc buffers
(Gibert et al., 1993). In agreement with the result of Kishima (1989) on
Py-Po-Mt, this experiment confirmed the relatively fast reaction rates
of this assemblage since near equilibriumfH2 values were approached
in less than 3 days. However examination of the H2 membrane after the
experiment revealed an intense sulfidization of the Ag-Pd alloy which
may have raised thefH2 and makes this experimental test inconclusive.

3. RESULTS AND DISCUSSION

3.1. Gold Solubility Measurements

The experimental data are presented in Table 1. The mea-
sured solubility of gold in equilibrium with both Py-Po-Mt and
Qtz-KF-Mus buffers at 500 bars is 52 ppb6 8 ppb at 350°C,
1346 17 ppb at 400°C and 4966 37 ppb at 450°C. Approach

Fig. 2. A schematic diagram of the complete experimental system for thefH2 control test using the semi-permeable
membrane technique. 1–3 indicate valves used duringfH2 control tests, valve 4 was used during sampling in the solubility
experiments. During the solubility runs the membrane and the connections were exchanged for a Ti sampling tube.
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of equilibrium from both undersaturation and supersaturation
demonstrates that these data represent equilibrium values. An
example of this reversibility at 400°C and 500 bars is given in
Fig. 4. Supersaturation was obtained by first keeping the tem-
perature at 450°C for 10 days (until steady-state was reached)
and then decreasing it to 400°C. In all studied cases, the
equilibrium Au concentration was obtained in less than 4 days.
When the solutions are buffered with Py-Mt-Hm and Qtz-KF-
Mus, the solubility of gold increases to 1986 9 ppb at 400°C
and 6926 10 ppb at 450°C.

Results from NAA analyses correlate with results from
ICP-MS or ICP analyses although they are about 20% higher

(Fig. 5 ). This systematic difference cannot be due to either the
precision in weighing the amounts of evaporated solutions for
NAA analyses or to the two standard Au solutions used. As
ICP-MS and ICP methods gave similar results, these values
were preferred to those from the neutron activation analyses.
Due to the low gold concentration (log(mAu) , 26.5) in the
350°C runs (Table 1), only the NAA analysis could be used.
This may lead to a 20% over-estimation of the gold solubilities
at this temperature.

3.2. Analysis and Interpretation of Data

From the literature data and the calculations performed to
define the experimental conditions, we can expect that the
dominant complexes in our solutions are Au(HS)2

2, AuCl2
2, and

a neutral species HAu(HS)2
° or AuHS°. The reaction represent-

ing the dissolution of gold in an H2S-bearing aqueous solution
can be written in a general form

xAu~s! 1 yH2S~aq! 1 zHS2 5 Aux H~2y1z2x! Sy1z
2z

1 x⁄2 H 2~ g!

The specific reactions which are important in our study include

Au~s! 1 H2S~aq! 1 HS2 5 Au~HS!2
2

1 1⁄2 H2~aq! (R8)

Au~s! 1 2H2S~aq! 5 HAu~HS!2
8

1 1⁄2 H2~aq! (R9)

Au~s! 1 H2S~aq! 5 AuHS8 1 1⁄2 H2~aq! (R10)

for bisulfide gold species, and

Au~s! 1 2Cl2 1 H1 5 AuCl2
2

1 1⁄2 H2~aq! (R11)

for chloride species.
The contribution of Au(HS)2

2 to the measured gold content
can be calculated using the equilibrium constant (log K) of
reaction R8, determined as21.35 6 0.11 at 350°C and 500
bars by Benning and Seward (1996). Using a value of21.3
(see further discussion) will, therefore, maximize the impor-
tance of the Au(HS)2

2 species. Thermodynamic data for AuCl2
2

are given by Zotov and Baranova (1989).
The following seventeen species are considered for the cal-

culation of the gold content in a 0.5m KCl aqueous solution in
equilibrium with Qtz-KF-Mus and Py-Po-Mt buffers at 350°C
and 500 bars: Au(HS)2

2, AuCl2
2, KCl°, KOH°, KHS°, K1,

FeCl2
°, FeCl1, Fe21, HCl°, H1, OH2, Cl2, HS2, H2(aq),

H2(g), and H2S(aq). Seventeen equations are required to deter-
mine the composition of the solution. They include the expres-
sions of the equilibrium constants for eleven association reac-
tions listed in Table A1 (R8, R11, R12, R13, R16, R17, R18,
R19, R20, R21, and R22), the charge balance constraint, and
the mass balance equation for chlorine. The last four equations
are imposed by the equilibrium with the mineral assemblage
which constrainsfH2, aH2S,aFe21/a2H1, andaK1/aH1. Ionic
activity coefficients are calculated according to Helgeson et al.
(1981), assuminggi

21 5 gi
22 5 gCa21 andgi

1 5 gi
2 5 gNa1;

in accordance with the values ofgH2S recently measured in an
H2O-NaCl solution at low ionic strength by Suleimenov and
Krupp (1994), the activity coefficient for the neutral species is
assumed to be unity. The system of equations was solved using
a Newton-Raphson algorithm, the consistency between activity
coefficients and ionic strength being obtained through an iter-

Fig. 3. Hydrogen permeability test of the Ti cell by removing (4a)
or by injecting (4b) hydrogen in the system through the membrane. In
procedure (a) H2 was removed out of the Ti-cell by opening valves 1
and 3 to connect the vacuum pump. From a starting value of 0.26 bar
(see text) four time-increasing H2 removing are performed (P1, one
minute; P2, 8 min; P3, 30 min; P4, 60 min) and between each of them
the valve 3 is closed and the return of hydrogen in the H2 membrane
was monitored by the H2 pressure gauge. In procedure (b) H2 was
injected in the Ti cell through the membrane by opening valves 4 and
1. Three successive injections of H2 (at about 2.4 bar each) were done
into the H2 line and the Ag-Pd membrane (I1 to I3). Between the
injections the valve 4 is closed, and the loss of hydrogen in the H2

membrane was monitored by the H2 pressure gauge.

2934 F. Gibert, M.-L. Pascal, and M. Pichavant



Table 1. Experimental solubility data in KCl (0.5 m) at 500 bars.

Py-Po-Mt and Qtz-KF-Mus buffers log KR10

Run °C
Sample
number

Duration*
day

Calculated Measured

log (H2) log(aH2S) I pH
NAA

ppb Au
ICP

ppb Au
ICP-MS
ppb Au log (m Au)

1 350
350 1 6.5 21.04 21.96 0.35 4.54 63.7 26.49
350 3 8.5 21.04 21.96 0.35 4.54 45.5 26.64
350 4 10.5 21.04 21.96 0.35 4.54 47.6 26.62
350 6 13.5 21.04 21.96 0.35 4.54 62.5 26.50
350 7 13.5 21.04 21.96 0.35 4.54 47.4 26.62 25.18
350 8 13.5 21.04 21.96 0.35 4.54 45 26.64 25.20
350 10 15.5 21.04 21.96 0.35 4.54 53 26.57 25.13

2 400
400 11 8.5 21.00 21.4 0.30 4.66 141 26.15 25.25
400 12 14.0 21.00 21.4 0.30 4.66 162 145 26.13 25.23
400 13 21.0 21.00 21.4 0.30 4.66 176 135 26.16 25.26

3 450
450 14 11.5 21.00 20.78 0.14 5.12 734 496 25.60 25.32
450 15 16.5 21.00 20.78 0.14 5.12 631 461 25.63 25.35
450 16 19.5 21.00 20.78 0.14 5.12 646 427 480 25.61 25.33

4 450
450 17 6.5 21.00 20.78 0.14 5.12 630 546 25.56 25.28
450 18 10.5 21.00 20.78 0.14 5.12 722 472 485 25.61 25.33
450 19 13.5 21.00 20.78 0.14 5.12 809 507 25.59 25.31

5 450
450 20 1.0 21.00 20.78 0.14 5.12 405 320 360 25.74
450 21 2.0 21.00 20.78 0.14 5.12 396 268 318 25.79
450 22 3.0 21.00 20.78 0.14 5.12 550 342 436 25.65 25.37

6 400
400 23 1.5 21.00 21.4 0.30 4.66 78 61 26.51
400 24 2.5 21.00 21.4 0.30 4.66 168 101 112 26.25
400 25 4.5 21.00 21.4 0.30 4.66 130 117 26.23 25.33
400 26 5.5 21.00 21.4 0.30 4.66 124 110 26.25 25.35
400 27 8.5 21.00 21.4 0.30 4.66 143 122 26.21 25.31

3 450 8.5 0.14 5.12
3 400 2.0

400 28 0.5 21.00 21.4 4.66 371 299 25.82

3 332 29** 0.0 109

7 450
450 30 6.5 21.00 20.78 0.14 5.12 696 556 25.55 25.27
450 31 8.5 21.00 20.78 0.14 5.12 601 501 25.59 25.31

3 400 10.5
400 32 2.0 21.00 21.4 0.30 4.66 227 163 26.08
400 33 4.0 21.00 21.4 0.30 4.66 184 144 26.14 25.24

Py-Hm-Mt and Qtz-KF-Mus buffers
8 450

450 34 3.50 21.76 21.04 0.14 5.12 702 -5.45 25.29
450 35 5.50 21.76 21.04 0.14 5.12 682 25.46 25.30

3 400 5.50
400 36 6.00 21.86 21.68 0.30 4.66 206 25.98 25.23
400 37 9.00 21.86 21.68 0.30 4.66 186 26.02 25.27

9 400
400 38 4.50 21.86 21.68 0.30 4.66 196 26.00 25.25
400 39 10.50 21.86 21.68 0.30 4.66 204 25.98 25.23

* Duration since last temperature change
** Sampled during a break of the pressure capillary and a temperature shutdown, reported has an indicative value only.

AuHS°11⁄2 H2(g)5Au(s)1H2S(aq) (R10)
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ative method. As expected, the calculation at 350°C and 0.5
kbar with the Py-Po-Mt buffer shows that AuCl2

2 can be
neglected in our experiments while the calculated contribution
of Au(HS)2

2 is about 5 ppb. This leads to the conclusion that
species other than Au(HS)2

2 or AuCl2
2 control the solubility of

gold.
In the literature (e.g., Renders and Seward, 1989; Seward,

1984; Hayashi and Ohmoto, 1991), it is usually accepted that a
neutral species such as AuHS° or HAu(HS)2

° can be present in
near neutral to slightly acid solutions. From reaction R9 and
R10, the variations of gold solubility withaH2S andfH2 can be
expressed as:

dlog aHAu~HS!2
8

5 2 dlogaH2S2 1⁄2 dlog fH2 (a)

and

d logaAuHS8 5 dlogaH2S2 1⁄2 dlogfH2 (b)

For the pyrite-magnetite equilibrium

1⁄2Fe3O4 1 3H2S5 3/ 2FeS2 1 2H2O 1 H2 (c)

we have

dlog fH2 5 3dlog aH2S (d)

Substituting Eqn. d in Eqns. a and b results in

dlog aHAu~HS!2
8

5 1/6d logfH2 (e)

and

dlog aAuHS8 5 2 1/6 dlog fH2 (f)

for the variations in gold solubility along the pyrite-magnetite
join. When logfH2 decreases from –1 (Py-Po-Mt buffer at 400
and 450°C) to –1.86 (Py-Mt-Hm buffer at 400°C) or to –1.76
(at 450°C) the gold solubilities increase of gold solubility from
134 to 198 at 400°C and from 496 to 692 at 450°C. Conse-
quently the HAu(HS)2

° stoichiometry can be ruled out in our
experiments.

A similar relation can be found for the variations in Au(HS)2
2

along the Py-Mt join from reaction R8:

dlog aAu~HS!2
2

5 1/6 dlog fH2 1 dlog aH1 (g)

For two solutions in equilibrium with the two mineral buffer
assemblages (Py-Po-Mt1 Qtz-KF-Mus, and Py-Mt-Hm1

Qtz-KF-Mus), the pH has a constant value of 4.66 at 400°C and
5.12 at 450°C (Table 1); i.e.,dlog aH1 5 0. It follows that (1)
Au(HS)2

2 cannot account for the observed increase of gold
solubility from Py-Po-Mt to Py-Mt-Hm buffer, and (2) in
agreement with the calculations, Au(HS)2

2 is a minor species in
our experimental conditions.

If AuHS° is the dominant species in our experiments, (log
mAu 1 1⁄2 log fH2) should be positively correlated with log
aH2S (reaction R10); the slope of the correlation line defines
the Au/S ratio of the species. Results are given in Fig. 6 for the
two redox buffers at 400°C and 450°C and for the measured
equilibrium data. In this figure, the experimental data yied
slopes close to unity which is the expected slope for the AuHS°
species (a slope of12 is would suggest the presence of the
HAu(HS)2

° species). This clearly demonstrates that the main
gold-bearing species in our experiments is AuHS°. The derived
thermodynamic data for log KR10 are given in Table 2 for each
individual experiments.

3.3. Comparison with Previous Literature Data

3.3.1. AuHS° vs. HAu(HS)2
° dominant species

Two previous studies have shown the importance of neutral
bisulfide gold-bearing species at high temperatures. Hayashi
and Ohmoto (1991) have suggested the HAu(HS)2

° stoichiom-
etry from experiments in (NaCl1 H2S) aqueous solutions at
250–350°C and Psat. The critical parameters of these experi-
ments (i.e.,aH2S, fH2, fS2) were controlled by the sulfur

Fig. 4. Gold solubility as a function of time (in day) showing the
approach to equilibrium from under- and supersaturation at 400°C, 500
bars.

Fig. 5. Comparison between NAA analysis vs. ICP or ICP-MS gold
analysis.
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hydrolysis reaction and the sulfide/sulfate reaction. Because of
(1) the uncertainty in measuring the volume of silica tubes, (2)
the poor correlation of experimental results in a log(aH2S) vs.
(log mAu 1 1⁄2 log fH2) plot (Hayashi and Ohmoto, 1991, Fig.

5) and (3) the fact that, according to the authors, the Au(HS)2
2

content can be neglected in their experiments, the data of
Hayashi and Ohmoto (1991) can be better interpreted in terms
of AuHS° (Gibert et al., 1993, Fig. 4). We can see in Fig. 7 that

Fig. 6. Stoichiometry plot for neutral gold species at 450 and 400°C
using Eqns. R9 and R10. Data points represent individual samples in
which equilibrium is reached. At each temperature the slope for the
experimental data points is close to 1, demonstrating that AuHS°
species is the dominant gold-bearing species in the experimental solu-
tion.

Fig. 7. Comparison of the equilibrium constants for AuHS° species
(reaction R10) plotted as a function of temperature at 500 bars pressure.
Note that Hayashi and Ohmoto (1991) data have been reinterpreted in
terms of AuHS°.

Fig. 8. Comparison of values of the dissociation constant of H2S(aq)
(logKR20) used by Benning and Seward (1996) and those used in this
study (SUPCRT92). Figure shows also the available experimental data
sets (see text) and some other data used in the literature.

Table 2. Selected fugacities and activities used in this study

350°C
Psat

350°C
0.5 kb

400°C
0.5 kb

450°C
0.5 kb

Data
source

Quartz-K-Feldspar-Muscovite buffer
aK1/aH1 3.57 3.66 3.57 3.47 1

Py-Po-Mt buffer
aFeS 0.5 0.5 0.5 0.5 2
Log (fS2) 28.86 28.83 27.05 25.52 1
Log (fS2) 28.94 28.94 27.19 25.68 3
Log (fS2) 29.15 29.15 27.37 25.78 4
Log (fS2) 28.69 28.69 27.04 25.61 2
Log (fS2) 28.89 28.89 27.14 25.64 5
Log (fO2) 229.34 229.33 226.00 223.14 1
Log (fO2) 6 0.05 229.38 229.38 226.01 223.09 3
Log (fH2) 21.11 21.04 21.00 21.00 1
Log (fH2) 21.03 21.04 21.05 3
Log aH2S 21.88 21.96 21.40 20.78 1
Log (fH2S) 20.49 20.12 0.19 1
Log (fH2S) 20.53 20.16 0.11 3
aFe21/aH12 2.53 2.61 2.34 2.84 1

Py-Hm-Mt buffer
Log (fO2) 227.40 227.38 224.30 221.62 1
Log (fS2) 27.57 27.53 25.92 24.51 1
Log (fH2) 22.08 22.01 21.86 21.76 1
Log aH2S 22.21 22.28 21.68 21.04 1
aFe21/aH12 2.29 2.06 2.58 1

Sources: 1 SUPCRT92, Johnson et al. (1992); 2. Scott and Bames
(1971); 3. Kishima (1989); 4. Toulmin and Barton (1964); 5. Barton
and Skinner (1979).
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our data for 350–450°C and 500 bars are in good agreement
with both the reinterpreted data from Hayashi and Ohmoto
(1991) at 250–350°C and Psat and the unpublished point of
Zotov at 350°C, 500 bars (log KR10 5 25.256 0.15; written
pers. commun.).

Benning and Seward (1996) have also indicated the presence
of the AuHS° species at T5 150–450°C and P5 0.5–1.5kbar.
In spite of the agreement with our study in terms of the
stoichiometry of the neutral gold-bearing species, the equilib-
rium constants derived by Benning and Seward (1996) are up to
two log units lower than ours (Fig. 7). For these authors two
reasons might explain this discrepancy: (1) uncertainties in the
thermodynamic data for the Py-Po-Mt mineral buffer and (2)
the choice of different ionization constant of H2S(aq). Below
we explore in details these two possible explanations.

3.3.2. The Py-Po-Mt redox buffer

In this study, we have used the thermodynamic data for
Py-Po-Mt from the SUPCRT92 database assuming an activity
of 0.5 for the FeS component in pyrrhotite (Scott and Barnes,
1971). This activity value is similar to those derived by Barker
and Parks (1986). The calculated values offS2 using
SUPCRT92 (Table 2) agree with the SUPCRT92-independent
values given by Kishima (1989). The literaturefS2 values in the
range 350–450°C (Toulmin and Barton, 1964; Scott and Bar-
nes, 1971; Barton and Skinner, 1979) are in good agreement
with one another, except the older data of Toulmin and Barton
(1964) at 350°C. The comparison of the three more recent
studies (Kishima, 1989; Scott and Barnes, 1971; Barton and
Skinner, 1979) give small variations offS2: 0.25 at 350°C, 0.15
at 400°C, and 0.07 at 450°C. Thus, the uncertainty onfS2 is
small in the temperature interval of 350–450°C. According to
Kishima (1989), the uncertainty offO2, calculated from the
literature data, may be higher:6 0.23 at 327°C. This uncer-

tainty on oxygen fugacity may lead to a small uncertainty of
fH2 and ofaH2S through reactions R1, R2, and R4 (Table A1).
However, taking high values offO2 would induce low values of
fH2 and ofaH2S and vice versa. As a consequence, the uncer-
tainty on (1⁄2 log(fH2) 2 aH2S) is likely to be small. Further-
more, Kishima (1989) measuredfH2 and fH2S in equilibrium

Fig. 9. Log(mAu(HS)2
2/mAuHS°) ratios in the experiments of

Benning and Seward (1996) at pH; 4 computed using their equilib-
rium constant data base. Au(HS)2

2 is expected to be 2.5–30 times more
important than AuHS°. Note that in Benning and Seward (1996)
experimentsaH2S is strongly decreased while pH is increased.

Table 3. Effect of change in log KR20 on computed gold solubility and speciation

Reactions: log K
Au(s) 1 HS2 1 H2S(aq)5 Au(HS)2

2 1 .5 H2(g) 21.03
Au(s) 1 H2S(aq)5 AuHS° 1 .5 H2(g) 26.06
O2(g) 1 .5 H2(g) 5 H2O 20.13
H1 1 OH2 5 H2O 10.90
HS2 1 H1 5 H2S(aq) —
H2(g) 21.824

Sm S 5 2 mAu(HS)2
2 1 mAuHS° 1 mH2S(aq)1 mHS2 5 0.1094

mHS2 1 mOH2 1 mAu(HS)2
2 5 mH1

T 5 250°C HS2 1 H1 5 H2(aq) (R20)
P 5 0.5 kb log KR20 5 7.36 log KR20 5 6.82

i log (ai) mi log (ai) mi

Au(HS)2
2 25.25 5.71E26 1125 ppb 24.98 1.07E205 2102 ppb

AuHS° 26.10 7.86E27 155 ppb 26.11 7.85E27 155 ppb
H2S(aq) 20.96 1.09E21 20.96 1.09E21
OH2 26.75 1.79E27 27.03 9.55E28
H1 24.14 7.37E25 pH 5 4.14 23.87 1.39E24 pH 5 3.87
HS2 24.18 6.78E25 23.90 1.28E24

fH2 21.83 21.83
fO2 219.21 219.21
Log (g11) 27.45E23 21.02E22

I 7.37E25 1.38E24

2938 F. Gibert, M.-L. Pascal, and M. Pichavant



with Py-Po-Mt in the interval of 300–500°C and at pressures
below 1 kbar, and derived oxygen fugacities, which to date
constitute the most reliable dataset on the Py-Po-Mt buffer
under hydrothermal conditions. Table 2 shows the comparison
between thefO2, fH2, and fH2S calculated from SUPCRT92
and those measured by Kishima (1989). The differences are
always very small (,0.05 for fO2 and fH2: ,0.08 fH2S).
Therefore, the uncertainty of the Py-Po-Mt buffer cannot ex-
plain the observed difference of 2 log units for log KR10.

3.3.1.2 The ionization constant of H2S(aq)

In their study, Benning and Seward (1996) used ionization
constant of H2S(aq) of Seward’s (1973) based on a polynomial
extrapolation similar to Clarke and Glew (1966) of the Ellis and
Giggenbach (1971) experiments. In this work, we use the
H2S(aq) ionization constant based on the data of Barbero et al.
(1982) and Tsonopoulos et al. (1976), taken from the
SUPCRT92 software (Shock et al., 1989; Johnson et al., 1992).
Figure 8 shows the two sets of log KR20 values, with other data
from the literature. At low temperatures, the ionic association
constants are quite similar, and the pressure dependence is in
good agreement with the Sretenskaya (1977) data. At higher
temperatures, the log KR20 values diverge, reaching a differ-
ence of up to 2 log units at high temperature and pressure.
Recent spectroscopic data from Suleimenov and Seward (1997)

do not show the inversion of curvature predicted by the extrap-
olation of the Ellis and Giggenbach (1971) data up to 350°C
(Fig 8). Since, at constant pressure, a temperature increase
results in a large decrease of the dielectric constant (e) of the
solution, leading to an increased association, the SUPCRT92
constants for KR20 are preferred in this study.

Until a more accurate dataset for the association constant of
H2S(aq) becomes available at high temperature and pressure,
the effect of the different choices of log KR20 on the derived
equilibrium constant of gold-bearing species must be analysed.
Table 3 shows the computed speciation for two models where
the only variable is the association constant of H2S(aq). The
method of resolution is the same as previously discussed in
this paper, and speciation is calculated at 250°C and 500
bars for a pure H2S solution (SS 5 0.1094) equilibrated at
25°C with a pressure of hydrogen of 0.03575 bar (compo-
sition of run 4 in Benning and Seward, 1996). The first
model uses thermodynamic data from Benning and Seward
(1996); in the second one, the association constant of
H2S(aq) is the one we have used (Table A1). The results
show that the variation of log KR20 affects only the pH, HS2

and Au(HS)2
2 molalities. In contrast,mH2S(aq) (the domi-

nant sulfur species) andmAuHS° remain almost unchanged
(Table 3). Thus, if H2S(aq) is the dominant sulfur species,
the choice of the dissociation constant of H2S(aq) is not

Fig. 10. Stoichiometry plots for Au(HS)2
2 from 150 to 300°C using equations R8 for the Benning and Seward (1996)

runs. The slope for the experimental data points at each temperature is close to 1, demonstrating that Au(HS)2
2 species is

likely the dominant gold-bearing species in their experimental solutions.
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critical in experiments where AuHS° (a neutral species) is
the main gold-bearing species. In other words, if AuHS° is
the species undergoing a major concentration, the choice of
the association constant of H2S(aq) does not account for the
difference in Au solubility between Benning and Seward
(1996) and the present study.

3.3.2 Au(HS)2
2 species

Benning and Seward (1996) gave a graphical evidence for
the dominance of the AuHS° species, between 150°C and
300°C, in (logmAu,tot) vs. (log mS,tot) plots for runs with a
pH ' 4 (Fig. 7, p. 1856 in Benning and Seward, 1996). They
then used an independent least-square refinement to derive the
equilibrium constants for reactions R8 and R10 (Table 2 in
Benning and Seward, 1996). However, the derived constants
seem inconsistent with the graphical analysis: for example,
using their equilibrium constants, the computed gold speciation
in their runs shows that Au(HS)2

2 is twice to thirty times more
important than AuHS° at pH' 4 (Table 3 and Fig. 9). Indeed,
in a (log mAu,tot) vs. (log mS,tot) plot, the Au/S ratio of the
gold-bearing species is given by the partial derivative ofmAu,tot

with respect tomS,tot only if, in addition to temperature and
pressure, thefH2 and pH are constant. Benning and Seward
(1996) have measured gold solubility in H2S aqueous solutions
(6NaHS6 H3PO4) and according to these authors,fH2 may be
considered constant in their experiments at pH' 4. However,

Fig. 9 shows that the pH varies by nearly 1 order of magnitude
between the data used in their graphical analysis and, therefore,
cannot be considered constant. Careful examination of the log
mAu,tot vs. log mS,tot plots (Fig. 7, in Benning and Seward,
1996) shows that the low and high pH values correspond to
high and low gold concentrations, respectively. This suggests a
marked influence of the pH on the gold solubility in their runs
at pH' 4, and consequently the presence of a charged species.

If Au(HS)2
2 is dominant in the Benning and Seward (1996)

experiments, (log(mAu,tot) 1 1⁄2 log (fH2) 2 log (aH2S)) should
be positively correlated with log(aHS2) (with a slope of 1). In
this type of diagram, the presence of the neutral AuHS° species
would be indicated by a horizontal trend (expected at about
–6.15 at 150°C to –5.35 at 300°C if the new interpretation of
the Hayashi and Ohmoto (1991) data is correct). To allow for
a more precise comparison of the different data from the
literature we have recalculated the solubility data of Hayashi
and Ohmoto (1991), Benning and Seward (1996), Shenberger
and Barnes (1989), using the same thermodynamic base. The
equilibrium constants used for this calculation are given in
Table A1. The results of the recalculated experimental solubil-
ity data of Benning and Seward (1996) are plotted in Fig. 10.
The best fit lines are close to 1 and clearly demonstrate that
Au(HS)2

2 is likely to be the dominant gold-bearing species in
most of the Benning and Seward (1996) experiments. Two
main consequences follow: (1) surprisingly there is no clear

Fig. 11. Equilibrium constant for the reaction Au(c)1 H2S(aq)1 HS2 5 Au(HS)2
2 1 1⁄2 H2(aq) (R8) recalculated from

the experimental data of Shenberger and Barnes (1989). The equilibrium constant show a linear dependence against 1/T up
to 350°C at Psat as expected from an pseudo-isocoulombic reaction.
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evidence of the presence of the AuHS° species in the experi-
ments of Benning and Seward (1996); and (2) as the Au(HS)2

2

species is dominant in most of their runs, the choice of the
values of the dissociation constant of H2S(aq) is critical to the
results of their least-square fit (see previous section). The new
values of Log KR8 derived from Benning and Seward (1996)
data are plotted in Fig. 11 together with the previous ones. For
comparison, the recalculated data of Shenberger and Barnes
(1989) plotted in Fig. 11, together with other experimental data
available on Au(HS)2

2 at an intermediate temperature (Seward,
1973; Zotov and Baranova, 1995) and at a low temperature
(Belevantsev et al., 1981; Renders and Seward, 1989; Wood et
al., 1994) and with the predicted values of Sverjensky et al.
(1997). The calculation has been performed in terms of the
reaction

Au~c! 1 H2S~aq! 1 HS2 5 Au~HS!2
2

1 1⁄2 H2~aq! (R8)

Writing equation R8 with H2(aq) instead of H2(g) makes the
reaction more symmetrically balanced and keeps its pseudo-
isocoulombic properties, inducing an expectedDCp50 (Lind-
say, 1980). Consequently, theDH°R must be roughly constant,
so that a plot of (log K) vs. 1/T should be linear. Figure 11
shows that most of the data are in good agreement with each
other. In contrast, the Seward (1973) and Benning and Seward
(1996) data (both the original data and that recalculated in this
study using the Table A1 database) still conflict with the results
from Shenberger and Barnes (1989) (see discussion in Zotov
and Baranova, 1995 and in Sverjensky et al., 1997). The above
calculations and discussion show that this discrepancy is too
large to be the result of the choice of a different dissociation
constant of H2S(aq).

The equilibrium constants from Shenberger and Barnes
(1989) recalculated with the data base of table A1 are slightly
shifted in comparison with the previous ones (no more than 0.2
log unit; Fig. 11). These new recalculated values have probably
been slightly over-estimated because the log KR8 values, de-
rived by Shenberger and Barnes (1989) for individual runs,
exhibit a negative dependence upon the pH (Fig. 12a). This
dependence indicates that another gold species becomes more
and more important in acidic runs as already suspected by these
authors. Figure 12b shows that the Shenberger and Barnes
(1989) data seem to be compatible with the AuHS° species, and
are in reasonable agreement with a log KR10 near25.1 derived
in the present study from the Hayashi and Ohmoto (1991) data.

The reasons for the discrepancy between our results and
those of Benning and Seward (1996) are not clear. Pan and
Wood (1994) discuss the possibility that the lower gold solu-
bility values in their experiments are due to generation of H2 in
the sampling tube because of the use of a Ti-filter. However,
this effect can be totally ruled out in our experiments since the
same Ti-filter device was used in this study yet we measured a
higher solubility than Benning and Seward (1996). Our new
results are in good agreement with the recalculated data of
Hayashi and Ohmoto (1991) and with Zotov (written pers.
commun.) despite the fact the experimental designs of these
three studies are completely different: Hayashi and Ohmoto
(1991) used chloride and sulphide-bearing aqueous solutions
buffered by a sulphur hydrolysis reaction and sulphate-sulphide
equilibrium; Zotov (written pers. commun.) used pH-variable
sulfide-bearing aqueous solution with H2 produced by Al met-
al; in the present study, we have used Py-Po-Mt and Py-Mt-Hm
buffers. Furthermore, the data of Shenberger and Barnes (1989)
also seem compatible with the expected presence of the AuHS°
species.

3.3.3. Thermodynamic constants

The total contribution of AuCl2
2 and Au(HS)2

2 to the ob-
served gold solubilities in our experiments has been calculated
using for AuCl2

2 the thermodynamic constants from Baranova
and Zotov (1989) and for Au(HS)2

2 our new stability constants
extrapolated from Shenberger and Barnes (1989) (Table A1).
At 350°C, 400°C, and 450°C, it was determined to be 5 ppb
(0.4 ppb as AuCl2

2 1 4.7 ppb as Au(HS)2
2) , 35 ppb (5 ppb as

Fig. 12. a. Log KR8 values recalculated from the experimental data
of Shenberger and Barnes (1989) as a function of pH. b. Stoichiometry
plots for Au(HS)2

2 and AuHS° at 300°C for the experimental data of
Shenberger and Barnes (1989).
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AuCl2
2; 30 ppb as Au(HS)2

2), and 117 ppb (41 ppb as AuCl2
2;

76 ppb as Au(HS)2
2) with the Py-Po-Mt buffer. At 400°C and

450°C, it was calculated as 35 ppb (13 ppb as AuCl2
2; 22 ppb

as Au(HS)2
2) and 150 ppb (99 ppb as AuCl2

2; 50 ppb as
Au(HS)2

2) with the Py-Mt-Hm buffer. Recently Suleimenov
and Seward (1997) have given a new determination for the
dissociation constant of H2S (Fig. 9) at 20–350°C and Psat.
From their study, a new logKR20 of –8.28,29.10, and210.70
can be extrapolated at 500 bars and 350, 400, and 450°C,
respectively. As a consequence, the contributions of the
Au(HS)2

2 species in our experiments change to 1.8 ppb at
350°C, 7.3 ppb at 400°C, 17 ppb at 500°C with the Py-Po-Mt
buffer and 1.3 ppb at 400°C, 5.4 ppb at 450°C with the
Py-Mt-Hm buffer.

Table 4 summarizes the final calculated solubility constants
for reactions R8 (Au(HS)2

2) and R10 (AuHS°).

4. GEOLOGICAL APPLICATIONS

Specific reactions important in gold transport and deposition
are

Au~s! 1 H2S~aq! 1 HS2 5 Au~HS!2
2

1 1⁄2 H2~aq! (R8)

Au~s! 1 H2S~aq 5 AuHS8 1 1⁄2 H2~aq! (R10)

and

Au~s! 1 2Cl2 1 H1 5 AuCl2
2

1 1⁄2 H2~aq! (R11)

These reactions, combined with the following equilibrium:

H2S~aq! 5 HS2 1 H1 (R20)

H2O 5 1⁄2 O2~ g! 1 H2~ g! (R1)

show that, besides temperature and pressure, critical parameters
for the mechanisms of gold transport and deposition are the
total sulfur (SS) and total chloride (SCl) concentrations in the
solution, the redox state (fO2) and the pH.

A common advocated deposition process is the variation in
pH. Using the stability constants summarized in Tables 4 and
A1, gold solubility and the relative importance of the two
gold-bisulfide complexes (AuHS° and Au(HS)2

2) and the chlo-
ride species (AuCl2

2) are compared as the function of pH in a

fluid (H2O-NaCl 0.5m) buffered by the Py-Po-Mt assemblage.
The effect of temperature has been investigated from 250°C up
to 450°C (Fig. 13). In this system,fO2, fH2, fS2, and conse-
quentlyaH2S are constant, and the pH is varied by modifying
the Cl concentrations. We see that cooling must be an efficient
mechanism for gold precipitation. AuCl2

2 is dominant in the
acidic region and only for high temperature (.30°C). At lower
temperatures (350–250°C), and for pH, 5, AuHS° is domi-
nant, meaning that under these conditions gold will not precip-
itate due to a change in pH. For pH. 5, Au(HS)2

2 is the
dominant gold species and gold can precipitate through neu-
tralization. In this calculation, we note that theaH2S andaH2

values remain constant at a given temperature, while theaHS2

and SS values do not. Thus, the observed increase of the

Fig. 13. Solubility contours of gold (SAu 5 mAuCl2
2 1 mAuHS°

1 mAu(HS)2
2; heavy lines) and relative importance of the three gold-

bearing species, AuCl2
2 (dashed thin lines), Au(HS)2

2 (thin lines) and
AuHS° (dotted thin lines) as a function of temperature (250 up to
450°C) and pH in a fluid (H2O-NaCl 0.5m) buffered by the Py-Po-Mt
assemblage.

Table 4. Equilibrium constants for the AuHS° and Au(HS)2
2 species

AuHS° 1 1⁄2 H2(g) 5 H2(aq) 1 Au(s) (R10)

150°C 200°C 250°C 300°C 350°C 400°C 450°C

Psat 5.90§ 5.40§ 5.20* 6 0.5 5.10*6 0.5 5.00*6 0.6
500 bar 6.15§ 5.65§ 5.45§ 5.35§ 5.20† 6 0.25 5.30† 6 0.15 5.40† 6 0.15

Au(HS)2
2 1 1⁄2 H2(g) 5 H2S(aq)1 HS2 1 Au(s) (R8)

150°C 200°C 250°C 300°C 350°C 400°C 450°C

Psat 2.64‡ 6 0.2 2.14‡ 6 0.2 1.77‡ 6 0.3 1.50‡ 6 0.3 1.34‡ 6 0.2
500 bar 2.84§ 2.25§ 1.85§ 1.50§ 1.30§ 1.25§ 1.20§

* Recalculated from the data of Hayashi and Ohmoto (1991).
† Calculated from the solubility data of this study.
‡ Recalculated from the data of Shenberger and Barnes (1989).
§ Interpolated/extrapolated.
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Au(HS)2
2 content in an alkaline solution is not directly due to

an increase in pH, but rather inaHS2.
Typically, gold solubility models are presented in log(fO2)

vs. pH diagrams calculated for constants values ofSS andSCl
(Shenberger and Barnes, 1989; Hayashi and Ohmoto, 1991).
Using this diagram,fO2 and pH variations can be shown to
control gold deposition. A diagram of this kind calculated for
350°C, SCl5 0.5 andSS 5 0.01 is presented in figure 14.
When AuCl2

2 is the dominant species, an increase in pH is
expected to precipitate Au whereas a decrease in pH will cause
the deposition of gold if the Au(HS)2

2 species dominates (Fig
14 ). In the same projection, a decrease infO2 is an effective
mechanism for gold precipitation regardless of whether gold is
transported as chloride or bisulfide complexes. However, we
believe that the choice of the log(fO2) vs. pH diagram is
confusing, because this type of diagram does not take into
account the variations ofSS and moreover, postulates large
variations of natural pH. In contrast with chlorine which almost
never enters the mineral compositions (SCl 5 constant), S is a
main component of minerals such as pyrrhotite, pyrite, ar-
senopyrite, sphalerite, etc, found in association with gold in
natural deposits. The total S content of the gold-bearing solu-
tion is controlled by the stabilities of these sulphides and thus
SS, far from being constant, may undergo major changes
through sulfide precipitation. Moreover, the pH of hydrother-
mal fluids is in nearly all cases determined by equilibrium with
silicate minerals (feldspar, micas, etc.) with a value close to
neutrality 61. Consequently, two other projections are pre-
ferred in this study: the log (fO2) vs. log(aH2S) at constant pH
andSCl (Hayashi and Ohmoto, 1991) and the log (fO2) vs. pH
at constantSCl and variableSS.

The solubility of gold has been computed as a function of
log(fO2) and log (aH2S) at 350°C and 250°C (Fig. 15 a and b).

Fig. 14. Solubility contours for gold (SAu 5 mAuCl2
2 1 mAuHS°

1 mAu(HS)2
2) in a solution of T5350°C, 500 bar,SS 5 0.01, and

SCl 5 0.5, shown as a function offO2 and pH.

Fig. 15. Calculated solubility of gold at 250°C (a) and 350°C (b), computed as a function offO2 andaH2S(aq) for a
0.5 m NaCl aqueous solution in equilibrium with the quartz-albite-paragonite pH buffer. The dashed lines represent the
solubility contours of gold (SAu 5 mAuCl2

2 1 mAuHS° 1 mAu(HS)2
2). The solid lines separate the stability fields of

pyrite, pyrrhotite, magnetite, and hematite.
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Gold solubility was calculated for a NaCl aqueous solution
with SCl 5 0.5 m. The pH is controlled by the quartz-albite-
paragonite mineral assemblage which is common in the wall-
rock of epithermal gold deposits. Also shown in these diagrams
are the Py, Po, Mt, and Hm stability fields.

The gold content in economic deposits is typically of the
order of a few ppm (Kesler, 1973; Hannington and Scott 1989).
For a plausible water/rock ratio of 1000 (Barnes, 1979), mass
balance considerations reveal that hydrothermal fluids would
have precipitated 10 ppb to obtain a concentration of 10 ppm in
mineralized rocks (or 5 ppb for a water-rock ratio5 2000).
Thus the Au-content of the mineralizing fluids was probably
between 10 and 100 ppb.

Pyrite (6pyrrhotite) is an ubiquitous mineral in many base
metal sulfide deposits; in the pyrite stability field, fluids with
10–100 ppb of gold are mostly undersaturated with respect to
gold at 350°C and generally supersaturated at 250°C (Fig. 15).
Under these conditions, low temperatures are necessary for
gold to precipitate in equilibrium with pyrite. At 350°C, if no
other mechanisms of gold precipitation occur, gold will pre-
cipitate as a primary mineral only at low values of logaH2S
and in a reduced environment in equilibrium with pyrrhotite
and/or magnetite. Otherwise gold will be incorporated as in-
visible gold in pyrite or arsenopyrite. Thus here again cooling
may be an effective method for gold precipitation.

Substantial amounts of gold may be transported in chemical
conditions where bisulfide complexes predominate (AuHS° or
Au(HS)2

2) against chloride gold-bearing species (AuCl2
2).

Thus, Au solubility will be very sensitive to a decrease in the
total activity of reduced sulfur species. In natural environments,
such a reduction may be caused by various geological pro-
cesses: direct precipitation of sulfur or sulfate minerals, dilution
and mixing with an H2S-poor brine (seawater), boiling pro-
cesses, sulfidization of wall rocks, or a change infO2. Figure 16
illustrates the effect various pH-redox paths on the solubility of
gold computed as a function of logfO2 and pH at 350°C, with
SNa 5 SCl 5 0.5. In this calculation, the total sulfur content
(SS) is variable and the pH depends on the sulfide (6sulfate)
content of the solution; high and lowSS correspond to low and
high pH respectively. This diagram also shows equal activity
boundaries for sulfate and sulfide.

H2S dominates in most of the pH-fO2 conditions investi-
gated. The chlorine gold-bearing species is dominant for very
low sulfur contents. Therefore, gold is highly soluble (.10
ppb) as AuCl2

2, in equilibrium only with hematite and can be
precipitated with increasing pH, sulfate precipitation (gypsum,
anhydrite) or with increasingfO2. Gold is also highly soluble
(100 ppb210 ppm) in the pyrite field as Au(HS)2

2, indicating
that it may be transported in equilibrium with pyrite while
AuHS° controls gold solubility for intermediateSS (0.001–
0.01 m) and pH close to neutrality. If gold is transported as
bisulfide, a decrease inaH2S caused by the precipitation of
sulfide minerals (FeS2, FeS, FeAsS, PbS, ZnS, CuFeS2), sul-
fidization of wall-rocks or mixing with H2S-poor water, may
cause the precipitation of gold. In this system, oxidation can be
an effective mechanism for gold precipitation, but only in high
fO2 environments near the Py-Hm boundary. Reduction ap-
pears not to play an essential role for gold deposits in the Py,
Po, or Mt stability fields.

These calculations demonstrate the complexity of gold-de-

posing reactions in natural systems. Cooling, pH change, dilu-
tion, and sulfur/sulfate precipitation are some of the mecha-
nisms which can play a role in the formation of gold deposits.
In natural environments it is unlikely that the change of only
one parameter would cause the precipitation of gold. For ac-
curate chemical modelling of any ore deposit, it is essential to
constrain all on these parameters. As a result, the specific
natural buffers must be identified in each environment.

5. CONCLUSIONS

(1) Experiments of hydrogen diffusion show that under our
experimental conditions the Ti cell can be considered a
container closed to hydrogen.

(2) Stoichiometry of the dominant neutral gold-bearing species
in our experiments is AuHS°. Under experimental condi-
tions, of T5 350–450°C and P5 500 bars, AuHS° is the
dominant gold-bearing species in an H2O-KCl (0.5 m)
solution in chemical equilibrium with the oxygen-sulphur
buffers Py-Po-Mt or Py-Mt-Hm and the pH buffer quartz-
K-feldspar-muscovite.

(3) The log equilibrium constants for the reaction atAu(s) 1

H2S(aq) 5 AuHS8 1 1⁄2 H2(g) at 350°C, 400°C, and
450°C were determined as25.206 0.25,25.306 0.15,
and25.40 6 0.15 respectively. These values are in good

Fig. 16. Solubility contours for gold in a solution of T5350°C,
SNa 5 SCl 5 0.5 m, shown as a function offO2 and pH. The dashed
lines represent the solubility contours of gold (SAu 5 mAuCl2

2 1
mAuHS°1 mAu(HS)2

2). The heavy lines separate the stability fields of
pyrite, pyrrhotite, magnetite, and hematite. The thin solid lines repre-
sent isovalues ofSS. The shaded areas represent the predominance
fields of Au(HS)2

2 and AuCl2
2 gold-bearing species for low and high

pH, respectively. Determination of the limit of salting-out effect in the
H2O-NaCl-H2S system based on the data of Suleimenov and Krupp
(1994) at Psat, extrapolated at 500 bars assuming identical the variation
of the volativity ratio of H2S and CO2.
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agreement with those of Hayashi and Ohmoto (1991) and
Zotov (written pers. commun.) and seems consistent with
the Shenberger and Barnes (1989) study, but are signifi-
cantly higher than those given by Benning and Seward
(1996).

(4) In a temperature range of 250–400°C, AuHS° becomes the
dominant gold-bearing species in most ore-forming condi-
tions. The AuHS2

2 species becomes important at a pH
above 5.5. The AuCl2

2 species is important only in H2S
poor brines at 350°C. At temperatures above 400°C,
AuCl2

2 becomes important for gold transport in acidic
solutions in equilibrium with Py-Po-Mt and quartz-albite-
paragonite buffers.

(5) Cooling, pH change, H2S loss and oxidation appear to be
effective mechanisms for gold precipitation, depending on
the ore-forming conditions. Consequently, prior to the
modelling of Au transport and deposition, the specific
natural buffers must be identified in each deposit.
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CNRS/PIRSEM (Arc Métallogénie) and the Bureau des Recherches
Géologiques et Minières. We are grateful to H. Ohmoto and two
anonymous reviewers for careful reviews and suggestions for improve-
ment of the manuscript. The authors wish to thank B. Moine, A. Zotov,
J. Schott, D. A. Sverjensky, and E. L. Shock for helpful discussions.
We are also indebted to A. Zotov for supplying data in advance of
publication and to B. Moine for his perceptive about geological appli-
cations.

REFERENCES

Barbero J. A., McCurdy K. G., and Tremaine P. R. (1982) Apparent
molal heat capacities and volumes of aqueous hydrogen sulfide and
sodium hydrogen sulfide near 25°C: The temperature dependence of
H2S ionization.Canadian J. Chem.60, 1872–1880.

Barker W. W. and Parks T. C. (1986) The thermodynamic properties of
pyrrhotite and pyrite: a reevaluation.Geochim. Cosmochim. Acta50,
2185–2194.

Barnes H. L. (1979) Solubilities of ore minerals. InGeochemistry of
Hydrothermal Ore Deposits(ed. H. L. Barnes), 404–460. Wiley.

Barton P. B., Jr. and Skinner B. J. (1979) Sulfide mineral stabilities. In
Geochemistry of Hydrothermal Ore deposits,2nd edit. (ed. H. L.
Barnes), pp. 278–403, Wiley.

Belevantsev V. I, Pesccheviskii and Shamovskaya G. I. (1981) Gold(I)
complexes in aqueous solution.Isvest. sib. Otd. Acad. Nauk SSSR,
Ser. Khim.1, 81–87.

Benning L. G. and Seward T. M. (1993) The stability of the monohy-
drosulphidogold (I) complex, AuHS°, at temperatures between
150°C and 500°C: Preliminary results. Proc. 4th. Intl. Symp. Hy-
drothermal Reactions, 65–68 (abstr.)

Benning L. G. and Seward T. M. (1995) AuHS°2 An important
gold-transporting complex in high temperature hydrosulphide solu-
tions (abstr.). InWater-Rock interaction-8(ed. Y. K. Kharaka and
O. V. Chudaev), pp. 783–786. Balkema Press.

Benning L. G. and Seward T. M. (1996) Hydrosulphide complexing of
Au(I) in hydrothermal solutions from 150–400°C and 500–1500
bar.Geochim. Cosmochim. Acta60, 1849–1871.

Clarke E. C. W. and Glew D. N. (1966) Evaluation of thermodynamic
functions for equilibrium constants.Trans. Faraday Soc.62, 539–
547.

Ellis A. J. and Giggenbach W. (1971) Hydrogen sulphide ionisation
and sulphur hydrolysis in high temperature solution.Geochim. Cos-
mochim. Acta35, 247–260.

Gibert F., Pascal M-L, and Pichavant M. (1993) Solubility of gold in
KCl (0.5m) solution under hydrothermal conditions (350–450°C,
500 bars). Proc. 4th. Intl. Symp. Hydrothermal Reactions, 65–68
(abstr.).

Gibert F. and Pascal M-L. (1992) Modélisation de la solubilite´ et de la

spéciation de l’or en milieu hydrothermal (T5 350°C, Psat) (abstr.).
14ème R.S.T., Toulouse, Soc. Géol. Fr.édit. Paris.
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Table A1. Selected equilibrium constants used in this study

Psat 500 bar

25°C 150°C 200°C 250°C 300°C 350°C 150°C 200°C 250°C 300°C 350°C 400°C 450°C

(R1) H2(g) 1 1⁄2 O2(g) 5 H2O 26.85 23.18 20.22 17.80 15.78 26.73 23.07 20.13 17.71 15.70 14.01 12.57 1
(R2) H2S(aq)1 1⁄2 O2(g) 5 H2O 1 1⁄2 S2(g) 20.02 17.49 15.41 13.65 12.12 20.13 17.58 15.48 13.72 12.21 10.87 9.59 1
(R3) FeS2 5 FeS1 1⁄2 S2(g) 210.32 28.50 27.01 25.78 24.73 210.29 28.47 26.99 25.76 24.72 23.83 23.06 1
(R4) Fe3O4 1 3 S2(g) 5 3 FeS2 1 2 O2(g) 240.63 237.79 235.51 233.64 232.09 240.80 237.94 235.64 233.75 232.17 230.84 229.70 1
(R5) 2 FeS1 Fe3O4 1 8 H1 5 4 Fe21 1 FeF2 1 4 H2O 26.34 21.36 17.11 13.29 10.12 26.88 21.95 17.83 14.28 11.06 9.97 11.95 1
(R6) 2 Fe3O4 1 1⁄2 O2(g) 5 3 Fe2O3 23.45 20.24 17.65 15.51 13.70 23.44 20.23 17.64 15.50 13.69 12.15 10.81 1
(R7) 3 KAISi3O8 1 2 H1 5 2K1 1 6 SiO2 1 KAI 3Si3O10(OH)2 8.31 7.99 7.70 7.42 7.14 8.48 8.14 7.85 7.58 7.32 7.13 6.93 1
(R8) Au(HS)2

2 1 1⁄2 H2(g) 5 H2(g) 1 HS 1 Au(s) 2.64 2.14 1.77 1.50 1.34 2.84 2.25 1.85 1.50 1.30 1.25 1.20 2
(R9) HAu(HS)2

2 1 1⁄2 H2(g) 5 2 H2S(aq)1 Au(s) 4.00 3
(R10) AuHS°1 1⁄2 H2(g) 5 H2S(aq)1 Au(s) 5.90 5.40 5.20 5.10 5.00 6.15 5.65 5.45 5.35 5.20 5.25 5.30 4
(R11) AuCl2

2 1 1⁄2 H2(g) 5 2Cl2 1 H1 1 Au(s) 11.26 8.97 6.90 4.90 2.70 11.35 9.10 7.11 5.28 3.48 1.8220.46 5
(R12) FeCl1 5 Cl2 1 Fe21 20.61 21.09 21.69 22.45 23.52 20.52 20.96 21.47 22.05 22.79 23.36 24.30 1
(R13) FeCl2

° 5 2 Cl2 1 Fe21 1.05 0.17 20.92 22.34 24.43 1.24 0.45 20.48 21.56 22.92 24.02 25.96 1
(R14) Fe21 1 H2O 5 Fe(OH)1 1 H1 26.63 25.94 25.35 24.84 24.47 26.45 25.79 25.24 24.77 24.35 24.31 24.58 6
(R15) Fe21 1 2 H2O 5 Fe(OH)2

° 1 2 H1 214.60 213.11 211.88 210.80 29.97 214.41 212.99 211.83 210.84 29.97 29.73 210.13 6
(R16) HCl° 5 H1 1 Cl2 0.53 0.10 20.47 21.22 22.33 0.70 0.29 20.23 20.86 21.63 22.51 24.12 7
(R17) KOH° 5 K1 1 OH2 20.10 20.26 20.50 20.91 21.72 20.81 20.92 21.08 21.31 21.69 22.04 22.87 8
(R18) KCl° 5 K1 1 Cl2 0.58 0.22 20.20 20.74 21.64 0.68 0.35 0.00 20.39 20.91 21.49 22.87 1
(R19) KHS°5 K1 1 HS2 0.58 0.22 20.20 20.74 21.64 0.68 0.35 0.00 20.39 20.91 21.49 22.87 9
(R20) H2S(aq)5 HS2 1 H1 26.50 26.68 27.02 27.56 28.50 26.37 26.53 26.82 27.21 27.78 28.49 210.06 1
(R21) H2O 5 H1 1 OH2 211.63 211.28 211.17 211.30 211.83 211.46 211.09 210.81 210.90 211.11 211.36 212.19 1
(R22) H2(g) 5 H2(aq) 23.105 22.98 22.81 22.61 22.38 22.07 23.15 22.97 22.76 22.54 22.28 21.96 21.39 1
(R23) NaOH°5 Na1 1 OH2 0.34 20.06 20.61 21.42 22.87 0.41 0.07 20.36 20.91 21.70 22.64 24.92 10
(R24) NaCl°5 Na1 1 Cl2 0.21 20.09 20.48 21.01 21.92 0.30 0.03 20.29 20.67 21.18 21.74 23.05 1
(R25) NaHS°5 Na1 1 HS2 0.21 20.09 20.48 21.01 21.92 0.30 0.03 20.29 20.67 21.18 21.74 23.05 11
(R26) SO4

22 1 2 H1 5 H2S(aq)1 2 O2(g) 279.21 266.97 256.71 247.75 239.29 279.40 267.22 257.08 248.39 240.66 233.77 226.18 1
(R27) HSO4

2 5 H1 1 SO4
22 23.72 24.47 25.26 26.18 27.40 23.56 24.28 25.01 25.78 26.65 27.44 28.76 1

(R28) FeS2 1 2 H1 1 H2(g) 5 Fe21 1 2 H2S(aq) 21.61 21.26 20.94 20.66 20.27 21.75 21.35 20.97 20.60 20.27 0.55 2.27 1
(R29) FeS1 2H1 5 Fe21 1 H2S(aq) 1.88 1.55 1.25 0.97 0.80 1.93 1.62 1.38 1.16 0.96 1.25 2.36 1
(R30) Fe3O4 1 H2(g) 1 6 H1 5 3 Fe21 1 4 H2O 20.96 17.00 13.67 10.70 8.25 21.26 17.35 14.12 11.36 8.88 8.03 9.52 1
(R31) Fe2O3 1 H2(g) 1 4 H1 5 2 Fe21 1 3 H2O 15.11 12.31 9.97 7.90 6.19 15.27 12.51 10.24 8.31 6.59 5.96 6.93 1

Qtz-FK-Musc K1/H1 4.16 3.99 3.85 3.71 3.57 4.24 4.07 3.92 3.79 3.66 3.56 3.46 1
Py-Po-Mt Fe21/(H1)2 6.43 5.24 4.13 3.17 2.38 6.57 5.34 4.31 3.42 2.61 2.34 2.84 1
Qtz-Ab-Par Na1/H1 4.76 4.48 4.23 4.08 3.98 1

Sources: 1. SUPCRT92, Johnson et al. (1992); 2. This study recalculated from Shenberger and Barnes (1989) at Psat, extrapolated at 500 bar; 3. Hayashi and Ohmoto (1991); 4. This study extrapolated
from measured gold solubility at 350-450°C and 500 bar; 5. Zotov and Baranova (1989); 6. Shock et al. 1997; 7. Tagirov et al. (1997); 8. Sverjensky et al. (1991); 9. Assumed identical to the dissociaiton
constant of KOH; 10. Pokrovskii and Helgeson (1995); 11. Assumed identical to the dissociation constant of NaOH.
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