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Abstract  

We present a stuctural and kinematic study of an Early Paleozoic subduction 

mélange and a magmatic arc that form the main elements of the Southern Orogen Belt 

of Inner Mongolia, which lies in the eastearn part of the Altaids or Central Asia 

Orogenic Belt. The structural analysis of the mélange conducted in the Hongqi and 

Ondor Sum areas (western Inner Mongolia) shows two phrases of ductile deformation. 

The D1 event is responsible for the pervasive S1 foliation, NW-SE striking L1 stretching 

lineation and F1 intrafolial folds. These microstructures are coeval with a greenschist 

facies metamorphism. During D2, NW-verging F2 folds associated with a S2 axial planar 

cleavage deformed S1 and L1. The D1 kinematic criteria indicate a top-to-the-NW sense 

of shear. D1 and D2 developed before the unconformable deposition of the Early 

Devonian shallow water sandstone. A lithosphere scale geodynamic model involving 
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an Early Paleozoic southeast-directed subduction beneath the North China Craton and 

late Silurian collision of the North China Craton with an hypothetical microcontinent is 

proposed to account for the microstructural evolution.  

 

Key words: Accretionary orogen; Altaids (CAOB); Inner Mongolia; Early Paleozoic 

collision.  

 

1. Introduction 

Accretionary orogens, formed at active plate margins, play a major role in 

continental growth either vertically by transfer of mantle material within the crust in 

magmatic arcs or horizontally by accretion of oceanic material (i.e. magmatic island 

arcs, sea-mounts, oceanic crust and its sedimentary cover) against the continental 

margin (e.g. Condie et al., 2007; Cawood et al., 2009). Accretionary orogens are 

widespread in Central and East Asia. The Paleozoic accretionary orogens, recognized 

from the Urals Mts to Inner Mongolia in NE China, are called Altaids (Altaid Tectonic 

Collage, Sengor et al., 1993; Sengor and Natal’in, 1996) or Central Asia Orogenic Belt 

(CAOB, Jahn, 2004; Xiao et al., 2003, 2008; Windley et al., 2007). The Altaids/CAOB 

represents the consumption and remnant of the Paleo-Asian Ocean, currently preserved 

as ophiolite and serpentinite mélanges. This belt occupies an area of more than 5000 km 

long and 300 km wide. The end of the oceanic subduction and accretionary process is a 

critical point in the evolution of any accretionary orogen. Several possibilities have 

been suggested. Strike-slip tectonics along plate margins may lead to oblique 
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subduction and collage (e.g. Sengor et al., 1993; Choulet et al., 2012). Another 

possibility is that the stopping of oceanic subduction is due to the entrance of a buoyant 

feature such as a magmatic arc or a microcontinent in the subduction channel (Condie et 

al., 2007; Cawood et al., 2009).  

The eastern segment of the Altaids/CAOB is mainly exposed in Inner Mongolia. 

The Solonker (also called Solon Obo) suture is considered as the major structure that 

delineates the location of the Paleo-Asian Ocean (Xiao et al., 2003; Windly et al., 2007; 

Chen et al., 2009; Jian et al., 2010). Xiao et al (2003) considered that during the Late 

Precambrian to Cambrian a north-directed subduction gave rise to the Ulan arc, and 

during the Early Paleozoic, a south-directed oceanic subduction below the North China 

Craton was coeval with a north-directed oceanic subduction below the southern 

Mongolian margin. Finally, in Late Permian to Early Triassic, the two opposite 

subduction systems came into contact to give rise to the Solonker suture. However, the 

Paleozoic tectonic evolution of this area is also interpreted as the result of two opposite 

subductions and collisions during the Middle Paleozoic (Xu and Chen, 1993; 1997; Xu 

et al., 2012).  

The Southern Orogenic Belt (SOB) is equivalent to the Manchurides (Hsu et al. 

1991; Sengor and Natal’in, 1996). Xu et al., (2012) argued that during the Early 

Paleozoic, a south-directed oceanic subduction took place below the North China 

Craton, and that the subduction system ended around 420-380Ma. Recently, paired 

metamorphic belts were reported in the Bainaimiao and the Ondor Sum areas, and the 

age of 411 ± 8Ma for undeformed pegmatite dike was regarded as upper limit of the 
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collision (Zhang et al., 2012). Despite the existence of several geodynamic scenarios, 

the structural and kinematic features of the south-directed subduction are poorly 

constrained. This paper deals with the western part of the Southern Orogenic Belt that  

extends from Hongqi to Ondor Sum, in the west, and east, respectively (Fig. 1). In the 

following, two main questions will be addressed, namely: i) what is the bulk geometry 

and kinematics deduced from microtectonic analysis of the rocks involved in the main 

tectonic events? ii) what are the timing and relationships between these deformation 

events? 

 

2. Regional Geological Framework  

The CAOB of Inner Mongolia is subdivided into several, roughly W-E striking, 

litho-tectonic units namely, from south to north, the North China Craton, the Southern 

orogenic Belt (SOB), several microcontinents, including the Hunshandake block (HB), 

and the Hutag Uul block, the Northern orogenic Belt (NOB), and the Southern Margin 

of the Ergun block (SME) (Fig. 1; Xu et al., 2012).  

 

2.1 The North China Craton (NCC) 

The NCC is mainly composed of Archean trondhjemitic-tonalitic-granodiorite 

gneiss with mafic igneous rocks. Although the detailed tectonic evolution, timing and 

polarity of subduction remain disputed, it is now well accepted that the NCC was 

mainly built up during the Paleoproterozoic (ca. 2 Ga) by the collision of several 

Archean blocks (e.g. Zhao et al., 2005; Kusky and Li, 2003; Faure et al., 2007; Zhai et 
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al., 2010; Trap et al., 2012, and enclosed references). Undeformed Mesoproterozoic to 

Early Paleozoic, ca.10 km thick, sedimentary deposits intercalated with volcanic rocks 

unconformably cover the Paleoproterozoic belts (Zhang, et al 1999). All these rocks are 

in turn unconformably overlain by unmetamorphosed and weakly deformed 

Carboniferous-Permian strata. (BGMRIM. 1991; Hsü et al., 1991; Zhao et al., 2005; 

Kusky et al., 2007; Faure et al., 2007; Trap et al., 2007). Late Palaeozoic granite and 

granodiorite intrude into the Precambrian basement of the NCC (BGMRIM, 1991). The 

east-west striking Baiyan Obo-Chifeng fault is considered as the northern boundary 

between the NCC and the Bainaimiao arc that belong to the SOB (Shao, 1991; Tang, 

1990; Tang et al., 1993; Xiao et al., 2003). 

 

2.2 The South Orogenic Belt (SOB) 

The SOB extends at least for more than 700km from the Tugurige area in the west 

via Ondor Sum to the Chifeng area in the east (Fig. 1). It is composed of the Ondor Sum 

mélange unit and the Bainaimiao arc unit (Xiao et al., 2003; Jian et al., 2008; Xu et al, 

2012). The Ondor Sum mélange unit consists mainly of blocks of pillow basalts, 

gabbro, diabase, tuff, metasandstone, chert, pelagic sediments including iron- 

manganese formation, and rare limestone enclosed into a pelite-siltite matrix (Wang 

and Liu, 1986; Shao, 1991; Tang, 1990; Xiao et al., 2003). The Bainaimiao arc unit 

extends along an E-W trend from the Bater Obo in the west to the Chifeng in the east. It 

contains mainly andesite, basalt, a small amount of felsic lava, and 

volcanic-sedimentary rocks. Several granodiorite and granite plutons also crop out 
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(Xiao et al, 2003). Three magmatic phases have been identified from ca.500Ma to 

ca.415Ma (Jian et al., 2008). Based on the high initial strontium isotope ratio (
87

Sr/
86

Sr 

= 0.7146) of granites and the εNd value of 2.4 ± 1.7 of granodiorite (Nie et al., 1999), 

Xiao et al., (2003) suggested that the Bainaimiao arc was formed by mixing between 

mantle-derived and crust-derived magmas emplaced in an active continental margin of 

Cordilleran-type. 

 

2.3 The microcontinents 

In southwestern Mongolia several microcontinents have been defined, namely the 

Hutag Uul block (Badarch et al., 2002), Totoshan Ulanul block (Yarmolyuk et al. 2005), 

and Tsagan Khairkhan block (Demoux, et al., 2009). They are dominated by quartz-rich 

micaschist, meta-volcanic rocks, meta-sandstones and marble (BGMRED, 1991). The 

Totoshan Ulanul Block contains metamorphic rocks dated at 952 ± 8Ma (single zircon 

U/Pb; Yarmolyuk et al. 2005; Demoux, et al., 2009). The Tsagan Khairkhan block 

yields ages of 916 ± 16Ma (Wang et al., 2001). In central Inner Mongolia, the existence 

of the Hunshandake Block was deduced from scattered outcrops of metamorphic rocks 

(BGMRIM, 1991) and the presence of Precambrian detrital zircon grains in mélange 

matrix (Xu et al., 2012). In our study area, Precambrian rocks are not exposed, however 

on the basis of microstructural analyses, we shall argue that the Hongqi mélange is 

underlain by a microcontinent, (cf. below). The correlation of this hypothetical 

microcontinent with the privious ones will be discussed in section 6. 
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3. The Hongqi area 

3.1 The litho-tectonic units 

The Hongqi study area is located in the north of Bayan Obo at the western end of 

the South Orogen of Inner Mongolia. Four litho-tectonic units are recognized from 

northwest to southeast, namely the Hongqi mélange, the Bainaimiao arc, an overlying 

sedimentary succession ranging from the Early Devonian to the Late Carboniferous, 

and the North China craton (Fig. 2).  

 

3.1.1 The Hongqi mélange unit 

To the north, the mélange rocks are hidden below the Mesozoic sedimentary rocks 

of the Erlian basin (Meng, 2003). To the south of the mélange unit, Permian magmatic 

rocks crop out. The entire mélange unit is cut into two parts by the Suji fault (Fig. 3A). 

The western part of the mélange is predominantly composed of fine grain quartzite, 

micaschist, sericite slate, siltstone, iron-bearing chert and metapelite with rare blocks of 

limestone. Coherent sedimentary strata of alternating beds of fine quartzite and 

metapelite are locally well preserved, suggesting a turbiditic origin for these rocks. The 

eastern part of the mélange exhibits a typical block-in-matrix structure. It mainly 

consists of tuffaceous siltstone, sericite chlorite schist, chlorite quartz schist, calc-slate, 

chert and a small amount of greywacke. Blocks include amphibolite, pillow basalt, 

volcanic rocks, limestone and chert(Fig.4A). These blocks display variable size ranging 

from tens of centimeters to several hundreds of meters. Mafic-ultramafic rocks, such as 

serpentinite, serpentinized peridotite and metagrabbro, are reported in the southern part 



 8 

of the mélange (Jia et al., 2003). In the middle part of this unit, due to mining 

exploration work, amphibolite rocks are digged out below a greenschist cover. 

Intense ductile shearing and mylonitization characterize all the rock types. To the 

south of the mélange, the available geological map shows Silurian strata composed of 

fossiliferous limestone and sandstone. However, our field observation indicates that 

these rocks are foliated, recrystallized, and contain elongated crinoids (Fig.4B and C). 

Additionally, those limestones are laterally discontinuous in the regional scale. 

Therefore, we consider these rocks as blocks within the Hongqi mélange.  

The whole mélange unit is dominated by a greenschist-facies metamorphism with 

a common mineral assemblage of chlorite, muscovite, biotite, plagioclase and quartz in 

the metapelite. The amphibolite blocks contain metamorphic minerals such as 

hornblend, plagioclase, epidote and quartz, indicating an amphibolite facies 

metamorphism. In the western part of the mélange, biotite and andalusite grains, 

oblique to the regional foliation, are related to a contact metamorphism probably due to 

plutonic intrusions emplaced after the main deformation. Graptolite fossils assigned to 

Callograptus sp., Desmograptus sp., and Dictyonema sp., found in the tuffaceous 

rocks, suggest an Early to Middle Ordovician age (BGMRIM, 1991). An acidic 

metavolcanite block is dated at 485 ± 14 Ma by ICP-MS on zircon (see Section 5).  

 

3.1.2 The Bainaimiao arc 

Eastward of the mélange, in the Bater Obo area, crops out the Bainaimiao arc. It is 

composed of basalt, basaltic andesite, andesite, interbedded with up to 10-20 m of 
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tuffaceous siltstone as well as agglomerate, pyroclastite and volcanic breccia. The 

basalts contain three types of aphanitic, porphyritic and vesicular structure. The basalts 

with typical porphyritic textures contain olivine (3-5%), pyroxene (10-15%) and 

feldspar (25-30%) phenocrysts embedded in a fine-grained groundmass of glass, 

plagioclase and pyroxene microcline. Secondary chloritic and sericitic alterations and 

fine carbonate veins are common in the volcanic rocks. Numerous granite, 

plagiogranite, granodiorite, quartz diorite and diorite plutons with calc-alkaline 

geochemical signatures are exposed (Xu and Tao, 2003). Jian et al., (2008) suggested 

that the quartz diorites are high-K calc-alkaline rocks with adakitic feature, indicating 

an island arc setting. The age of those plutons with arc signature is about 440~460Ma 

(Jian et al., 2008; Li et al., 2010; Fig. 2).  

 

3.1.3 The overlying sedimentary succession  

The Early Devonian and Late Carboniferous rocks unconformably overly the volcanic, 

sedimentary and plutonic rocks mentioned in the previous section. The Lower 

Devonian Chaganhabu Formation (IMBGMR, 2002), exposed in the southern part of 

the Hongqi mélange and the Bainaimiao arc, can be subdivided into two units. The 

lower unit, with a thickness of ca.975m, consists of basal red conglomerate, siltstone, 

grey arkose, upperwardly reef limestone and red quartzose arkose and micrite. The 

upper unit is composed of turbiditic deposits with a thickness of ca.1500m (Zhang et 

al., 2004). The association of various fossils, such as corals, brachiopods, bryozoan and 

conodonts in the limestones indicate an Early Devonian age. The conglomerate and 
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terrigeneous rocks unconformably cover the Upper Silurian series with an angular 

unconformably (IMBGMR, 2002; Zhang et al., 2004). Our observation of the basal 

conglomerates of the lower Devonian sequence reveals pebbles of volcanic rock, 

metamorphic rock, quartzite and chert (Fig. 4B, C and D). The unconformable contact 

of this sequence above the underlying deformed limestone rocks can be observed as 

well. The Uppermost Carboniferous strata consist of fossiliferous limestone and clastic 

rocks that unconformably cover the lower Devovian (IMBGMR, 2002). This Early 

Devonian to Late Carboniferous sedimentary succession did not experienced a ductile 

or synmetamorphic deformation, but only folding and brittle faulting. 

 

3.1.4 The North China Craton basement  

The southernmost unit of the study area is occupied by Meso-to Late Proterozoic 

volcanic-sedimentary series (Bayan Obo group; Fig. 2). These unmetamorphosed 

sedimentary rocks represent the NCC basement in the study area.  

 

3.2 The bulk architecture of the Hongqi area 

A general cross section of the Hongqi area is drawn along a SW-NE strike (Fig. 

3B). The regional framework is represented by an antiform composed of several 

SE-NW striking folds with hectometer-wavelength. In the centre of the antiform, a 

bimodal volcanic rock with associated gabbro and Early Triassic tonalitic pluton 

superimpose on the Hongqi mélange unit. The mélange is unconformably covered to 

the south by the Early Devonian red sandstone, and to the north by Late Carboniferous 
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limestone. The Early Devonian rocks, gently dipping to the west, do not display any 

metamorphism or ductile deformation. The structural characteristics of the mélange are 

described in detail below.  

 

3.3 Microstructural analysis of the Hongqi mélange 

From our field observations, three deformation events namely: D1, D2 and D3, with 

the first two of ductile and syn-metamorphic style, and the third one of gentle folding, 

are recognized.  

The D1 event is responsible for the formation of the main foliation (S1), stretching 

lineation (L1) and intrafolial fold (F1). In the field, S1 is defined by the alternation of 

chlorite quartz schists and sericite chlorite schists. The L1 lineation is marked by 

elongated clasts, quartz ribbons, aggregates of chlorite and mica (Fig. 5A). Intrafolial 

F1 folds with axes plunging to the SE are also developed within the S1 foliation (Fig. 

5B). In places, the S1 foliation is approximately parallel to the sedimentary bedding, 

which is well preserved in the metapelite and meta-quartzstone. Pinch-and-swell and 

boudinaged structures are also observed in quartz schists indicating a layer-parallel 

shearing (Fig. 5C). At the microscopic scale, pressure solution seams of dark insoluble 

material and aligned recrystallized phyllosilicates represent S1 (Fig. 6A). The S1 

foliation mostly dips to the NE or SW due to D3 folding. The well foliated and lineated 

blocks wrapped around by S1 matrix foliation display SE-NW directed elongation. The 

L1 lineation in amphibolite blocks is represented by oriented hornblende and 

recrystallized quartz and plagioclase aggregates (Fig. 6B). Pillow lava blocks, up to 
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30-50 cm in diameter, are also elongated in the NW-SE direction (Fig. 5D). Sandstone 

blocks exhibit commonly elongated chert pebbles along the NW-SE direction. 

Limestone blocks display aligned and elongated crinoids along the NW-SE stretching 

direction of L1. 

The D2 event is associated with the development of NW-verging asymmetrical 

folds (F2) that deform S1 and L1. The most striking structure is meter-scale 

asymmetrical fold F2. F2 fold with NE-SW trending subhorizontal axes (L2) exhibits a 

NW vergence (Fig. 5E). Asymmetric kink bands, bending the S1 foliation and L1 

mineral lineation, are well developed in quartz sericitic schists (Fig. 5F).  

The D3 event is represented by NW-SE trending upright folds (F3) responsible for 

the bulk architecture of the area. Although the eastern and western parts of the mélange 

unit on each side of the Suji fault should have experienced similar structural histories, 

the structures of the western part are, to some degree, disturbed by the activity of the 

brittle Suji fault as well as the post-tectonic intrusions (Figs. 3C and 3D). In contrast, 

the three deformation events are well recognized in the eastern part (Figs. 3A, 3E and 

3F).  

The D3 event is defined by SE-NW striking upright folds. Similar folds are 

widespread in the layers where incompetent material dominates such as chlorite schists 

(Fig. 5G), whereas parallel folds with SE-NW trending axes develops in the quartz 

sandstone layers (Fig. 5H). At the macroscopic scale, F3 folds deform the S1 foliation, 

giving rise to the general antiformal structural framework of the Hongqi mélange (Figs. 

3B and 3E).  
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 Thin sections, made parallel to L1 and perpendicular to S1, exhibit numerous 

kinematic indicators. In amphibolite blocks, the recrystallized amphibole and quartz 

aggregates indicate a top-to-WNW shearing (Fig. 6B). In mylonitic 

volcanic-sedimentary rocks, asymmetric pressure shadows defined by chlorite fibers 

around feldspar porphyroclasts indicate a top-to-the-NW sense of shear (Figs. 6C and 

6D). Quartz oblique grain shape fabric showing a top-to-the NW shearing is also 

recognized (Fig. 6E). Boudins formed by pull-apart clasts with chlorite aggregates 

filling in the cracks suggest a top-to-the-NW sense of shear (Fig. 6F). Mica fishs,and  

shear bands developed in the metapelites also have the same sense of shear (Fig. 6G). 

Sigma-type porphyroclast systems in the metapelite in the western part of the mélange 

exhibit a top-to-the-N thrusting (Fig. 6H). Thus the kinematic criteria of the mélange 

unit show a consistent top-to-the-NW sense of shear. 

In summary, the Hongqi mélange of block-in-matrix structure experienced three 

phases of deformation. The D1 phase is dominated by a consistent top-to-the-NW sense 

of shear coeval with the mélange formation. The NW-verging asymmetric folds 

developed during the D2 event can be interpreted as the continuation of the same ductile 

shearing under less penetrative conditions. The last D3 deformation forms upright folds, 

which control the general structural framework of the mélange unit. The Early 

Devonian red sandstone unconformably covering this mélange unit does not record the 

D1 and D2 events, and thus provides an upper time limit for the termination of the 

ductile events. The km-scale upright folding involves the Devonian and Carboniferous 

rocks.  
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4. The Ondor Sum area (Fig. 7) 

4.1 The litho-tectonic units 

In the Ondor Sum area, two litho-tectonic units are recognized from north to south. 

The geometrically lowermost unit corresponds to the Ondor Sum mélange, it is 

bounded to the south by an amphibolite-granite unit, called “Tulinkai ophiolite” (Jian et 

al., 2010).  

 

4.1.1 The Ondor Sum mélange unit 

The Ondor Sum mélange crops out in three places: the southern one (or Ulan 

Obo-Tulinkai area), the middle and the northern Ulan valley areas (Fig. 7A). The Ondor 

Sum mélange is mainly composed of sericite quartz schists, chlorite-epidote schists and 

albite-chlorite-epidote schists. Various decimeter to several meter sized lenses of 

sandstone, limestone, mafic rocks and iron-bearing quartzite are scattered into a 

greenish matrix. These green and red blocks dispersed in a sandy-silty matrix define a 

typical coloured mélange formation (Figs. 8A and B). Two types of basalts are 

recognized near the Ulan valley. One is represented by flattened vesicular basalt. As 

described by Xiao et al. (2003), the pillow lavas are up to 30-50 cm in diameter, 

elongated, facing upward, and dipping to the north. The other type of basalt is 

undeformed, with a vesicular or massive texture filled by centimeter sized white quartz. 

These deformed pillow basalts are blocks within the mélange and were geochemically 

interpreted as originated from a sea-mount (Huang et al., 2006). They must not be 
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confused with undeformed basalts that occupy the top of some hills. Some of these 

undeformed basalts yield a radiometric age of 260Ma (Miao, 2007); Cenozoic basalts 

are also likely (IMBGMR, 1976).  

In the Ondor Sum mélange, the rocks are pervasively deformed, mylonitized and 

metamorphosed into greenschist or blueschist facies. Petrological study of 

metamorphic assemblages led previous authors to deduce P-T conditions of the 

blueschist facies rocks at 7-8Kb and 380-400ºC, respectively (Tang et al., 1992). 

Glaucophane from blueschists yields 
40

Ar/
39

Ar ages of 446 ± 15 Ma and 426 ± 15Ma 

(Xiao et al., 2003; and references therein). Phengite from quartzite mylonites at Ondor 

Sum has 
40

Ar/
39

Ar plateau age of 449-453Ma (De Jong, et al., 2006). In agreement with 

Xiao et al. (2003), we consider that this rock assemblage, derived of Fe and Mn 

siliceous sediments, volcaniclastic sediments, basalts and spilites, indicates an ocean 

floor origin.  

 

4.1.2 The Tulinkai unit 

The Tulinkai unit spreads in the E-W direction from Tulinkai to Ulan Obo (Fig. 

7A). In the literature, the Tulinkai unit is described as an “ophiolitic suite” (Hu et al., 

1990; Jian et al., 2010). Our field observations indicate that the dominant rock is coarse 

to medium grained, well foliated amphibolite, diorite and gabbro. Granitic layers are 

also widespread. Some appear as dykes cross cutting the foliation and others show 

foliation parallel veins (Figs. 8C and 8D). Large volumes of diorite and granodiorite 

with mafic boudins are exposed further south of the “ophiolitic” rocks. Cumulate 
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gabbros from Tulinkai have a zircon SHRIMP age of 457±4Ma, and a diorite intrusion 

with an adakitic geochemical signature has a zircon age of 467±6Ma (Liu et al., 2003; 

Miao et al., 2007). These rocks have been interpreted as supra-subduction zone type 

ophiolite (Liu et al., 2003; Jian et al., 2008). However, from our field observation, usual 

ophiolitic component, such as serpentinized peridotite, pillow basalts and siliceous 

sediments, are not observed. Therefore, in the following section, we shall argue that 

these rocks might belong to the deep part of a magmatic arc.   

 

4.2 The bulk architecture  

Based on field structural measurements, the bulk architecture of the Ondor Sum 

area is dominated by a NE-SW trending antiform (Fig. 7B). The general structure 

results of a polyphase deformation evolution. The southern limb of the antiform is 

dominated by a steeply south dipping or vertical foliation (Fig. 7C). In the middle part, 

the main foliation is involved in a series of nearly E-W trending upright folds (Fig. 7D). 

The Ulan valley, dominated by northwest dipping foliation, corresponds to the northern 

limb of the antiform. To the south of the Ondor Sum mélange, the Tulinkai unit is 

fault-contact with the mélange unit. A top-to-the-north thrusting is documented 

(IMBGMR, 1976). The light colored gneiss-amphibolite alternation of the Tulinkai unit 

is ductilely deformed. Amphibolitic and granitic dykes commonly form meter-scale 

isoclinal folds with approximately NW-dipping axes. The northward and southward dip 

of the Carboniferous limestone bedding, in the northern and southern limbs of the 

Ondor Sum antiform indicate that the last deformation event took place after the 
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Carboniferous. However, the synmetamorphic deformations are clearly older than the 

deposition of the Carboniferous series.  

 

4.3 Microstructural analysis 

Like the Hongqi area, three deformation events are also identified in the Ondor 

Sum area. They are named here D1, D2 and D3, nominally like in the Hongqi area but 

with a slightly different meaning for D3.  

In the southern limb of the mélange unit, the approximately E-W trending S1 is 

subvertical or dipping at a high angle to the south. The L1 subvertical lineation is 

represented by elongated quartz, feldspar or calcite clasts, and chlorite fibers on the S1 

surface (Fig. 8E). In thin section, the lineation is marked by oriented phyllosilicates and 

recrystallized carbonate clasts within insoluble material. For this part, a subhorizontal 

crenulation lineation is weakly developed. But centimeter- to meter- scale asymmetric 

folds are observed in the chlorite quartz schistose layers. Shear criteria, such as pressure 

shadows, sigma type porphyroclast systems and shear bands indicate a SE (or S) 

moving upward sense of shear (Figs. 10A, 10B and 10C). Thus, when the foliation is 

rotated to horizontal, the kinematic indicators are top-to-the-NW (or N) sense of shear.  

In the central part of the Ondor Sum area, a series of E-W striking centimeter- to 

millimeter-scale upright folds deforming S1 are identified. Both the chlorite and sericite 

schist matrix and the blocks exhibit a N-S to NW-SE stretching lineation (L1) marked 

by elongated recrystallized quartz and chlorite aggregates. Along the lineation, pressure 

shadows and sigma-type porphyroclasts indicate a top-to-the-NW sense of shear when 
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S1 lies subhorizontal or gently tilted (Fig. 10D). S2 is characterized by centimeter 

wavelength crenulations. At the microscope scale, a S3 subvertical cleavage cuts at a 

high angle the S1 foliation (Fig. 10E).  

The Ulan valley has been studied in detail since it is well exposed (Wang and Liu, 

1986; Xiao et al., 2003; Fig.9A). At the southern entrance of the Ulan valley, S1, 

generally N-S striking, contains a nearly E-W striking L1 mineral lineation. However, 

when moving northward, S1 turns to an E-W strike and dips to north or northwest. A 

conspicuous NW-SE trending stretching and mineral lineation is preserved on the 

gently dipping foliation (Figs. 8F and 9B). Crenulation wrinkles and asymmetric 

microfolds (F2) that intensively deform the S1 foliation and L1 lineation are commonly 

developed (Figs. 8G and H). F2 folds are scattered with subhorizontal axes (Fig.9B). An 

axial planar crenulation cleavage (S2) marked by the opaque material is well developed 

(Fig. 10F). S2 cleavage is tilted to the northwest due to the D3 antiformal upright 

folding. Locally, the intense F2 folding gives rise to well developed inverted limbs with 

some F2 folds apparently overturned to the SE (Fig. 8H). In thin sections cut parallel to 

the L1 lineation, asymmetric pressure shadows and sigmoidal porphyroclasts indicate a 

top-to-the-NW sense of shear (Figs. 10G and 10H).  

In conclusion, the Ondor Sum mélange unit is a terrigenous volcaniclastic 

block-in-matrix series with blocks of oceanic origin. It experienced three deformation 

phases: D1 was responsible for the S1 foliation and L1 stretching lineation coeval with a 

greenschist facies metamorphism. Taking S1 as a reference surface, two subsequent 

deformation events, D2 and D3 are recognized. The D2 event associated with the F2 
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asymmetric folds can be interpreted as the continuation of the top-to-the-NW shearing, 

that occurred by shortening at a low angle or subparallel to S1. After the deposition of 

the Late Carboniferous limestone, the D3 event gave rise to the general antiform to form 

the regional structural framework.  

 

5. Geochronological constraints 

New zircon dating is obtained by ICP-MS U-Pb analyses method. 

Cathodoluminescence (CL) images were performed by CAMECA SX-50 microprobe 

at Peking University in order to document zircon internal structures. Zircon laser 

ablation ICP-MS U-Pb analyses were conducted on an Agilent 7500a ICP-MS 

equipped with a 193 nm laser in China University of Geosciences, Beijing. Laser spot 

size was set to ~36μm for analyses, laser energy density at 8.5 J/cm
2
 and repetition rate 

at 10 Hz. Isotopic ratios and element concentrations of zircons were calculated using 

GLITTER (ver. 4.4, Macquarie University). Concordia ages and diagrams were 

obtained using Isoplot/Ex (3.0, Ludwig, 2003). The common lead was corrected using 

LA-ICP-MS Common Lead Correction (ver. 3.15), following the method of Andersen 

(2002). The summarized age data and our new measured isotopic data are given in 

Tables 1 and 2.  

An acidic volcanite block (Sample 090716-29; located at 42º59΄24˝N, 109º 

55΄20˝ E) embedded in the Hongqi mélange was dated. In thin section, the sample 

shows a mylonitic texture, with feldspar clasts surrounded by elongated recrystallized 

subgrain quartz aggregates. Most of the zircon grains from the acidic volcanite 



 20 

(090716-29) are weakly luminescent, and surrounded by a thin bright luminescent rim 

(Fig. 11A). Some analyzed spots have low Th/U ratios, generally close to 0.1. A few 

U-Pb isotopic compositions are discordant (Table 2), probably due to Pb loss during 

shearing in the mélange. 14 of 20 analyzed spots plot slightly on the right side of the 

Concordia curve, and define three populations around ca. 560~590 Ma, ca. 510-540Ma, 

and 485 ± 14Ma (n=4; Fig. 11B). 

Our analysis paid much attention to detect youngest ages of the volcanite, thus 

spots focus on zircon rim. The low Th/U (<0.1) ratio, a common geochemical feature of 

high-grade metamorphic zircons (Williams et al., 1996), are present in both younger 

and older populations (Table 2). It is worth noting that no distinct high-grade 

metamorphic minerals are observed in thin section. Globally, the mélange unit 

experienced a green schist facies metamorphism. Therefore, we consider that these 

zircons are magmatic ones possibly slightly suffering metamorphism. The youngest 

population at 485 ± 14Ma represents the age of the acidic volcanism.  

 

6. Discussion  

6.1 Deformation comparison between the Hongqi and Ondor Sum areas 

    During our field work, we did not find HP rocks, all the microstructures described 

in this paper are coeval with a greenschist facies metamorphism. The three phases of 

deformation of the Ondor Sum mélange can be roughly compared with those of the 

Hongqi mélange as follows: 1) the main event, D1, is responsible for the development 

of the S1 foliation, NW-SE striking stretching lineation (L1), and intrafolial folds (F1) 
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with axes parallel to L1. In the Hongqi area, D1 is coeval with a green schist facies 

metamorphism whereas, in the Ondor Sum area blue schist facies relicts, such as 

glaucophane, phengite are locally preserved (Tang et al., 1993; De Jong et al., 2006). 

Our kinematic observations show a top-to-the-NW sense of shear in both study areas. 

F1 folds corresponding to a-type folds formed during the ductile shearing in the Hongqi 

area. The D1 structural elements are subsequently deformed by the D2 event represented 

dominantly by numerous NW-verging asymmetric folds associated with an axial-planar 

crenulation cleavage (S2). Due to the subsequent deformation (D3), S2 dips to either the 

SE or the NW in the Ondor Sum area whereas, dips to the NE or the SW in the Hongqi 

area. The blueschist and quartz mylonites with age ranging from 453 to 426Ma (Tang et 

al., 1993; De Jong et al., 2006) recorded the Ondor Sum subduction event. In the 

Hongqi area, the deformed Late Silurian fossiliferous limestone blocks mark the 

youngest age of the Hongqi mélange.  

 

6.2 Crustal scale structure framework  

A N-S oriented interpretative crustal scale cross section is proposed on the basis of 

structural, lithological and geochronological data presented above (Fig. 12). The Early 

Paleozoic Hongqi mélange belt, is unconformably overlain by the Early Devonian red 

sandstone and Late Carboniferous limestone.  

The mélange belt displays a top-to-the-NW thrusting, indicating a southeastern 

oceanic subduction. The volcanic rocks exposed in the Bater Obo area are comparable 

with the rocks in the Bainaimiao area. The mafic plutonic rocks exposed in the Tulinkai 
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unit might represent the deep plutonic part of the Bainaimiao arc. The age of the 

volcanite block dated in the Hongqi mélange, similar to those of the Bainaimiao arc 

suggest that the magmatic blocks in the mélange might derive from the arc rocks of the 

upper plate.  

At depth, a possible crustal basement is inferred here on the basis of the following 

points. Firstly, in order to terminate the oceanic subduction before Early Devonian, 

some buoyant material, such as huge seamount, large oceanic plateau, or 

microcontinent, underneath the Hongqi mélange, is needed. The collision of this feature 

will allow the oceanic subduction and the coeval arc magmatism to stop. Secondly, 

Precambrian crystalline basement rocks are recognized, in the Hutag Uul terrane 

(Badarch et al., 2002), Totoshan Ulanul block (Yarmolyuk et al. 2005; Demoux, et al., 

2009), Tsagan Khairkhan massif (Wang et al., 2001) and Hunshandake microcontinent 

(Xu et al., 2012). Precambrian middle to high grade metamorphic paragneiss are also 

recognized in the north of the Ondor Sum, near Sunityouqi (Fig. 1; BGMRIM, 1991; 

Hsu et al., 1991; Li et al., 1995; Zhang et al., 1999) or in the Xilingele (or Xinlin Gol) 

complex near Xilinhot (Zhu et al., 2004). Though an oblique subduction of the 

underlying plate, accommodated by strike-slip faulting can be proposed to terminate a 

subduction (Choulet, 2012), in the study area, no strike-slip fault of Early Paleozoic age, 

and associated ductile deformation are observed. Therefore, we argue that the structural 

features presented above, and particularly the syn-metamorphic ductile shearing can be 

explained by the subduction of a microcontinent below the North China block. 
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6.3 A possible geodynamic evolution model 

On the basis of our geological data presented in the previous sections, a possible 

Early Paleozoic geodynamic scenario for the evolution of the eastern part of the CAOB 

in Inner Mongolia is proposed here.  

The Ordovician to Silurian Subduction: An Early Paleozoic SE-dipping 

Paleo-Asian Ocean subduction zone developed along the northern margin of North 

China Craton from the Hongqi to the Ondor Sum area. It is supported by the consistent 

top-to-the-NW sense of shear indicators. This oceanic subduction gave rise to the 

Bainaimiao magmatic arc, and the Hongqi and Ondor Sum mélange units (Fig. 13A). 

Both the Hongqi and the Ondor Sum areas experienced two ductile deformation phases 

before the Early Devonian. Moreover, the north dipping schists at the Ulan valley, 

which constitute the northern limb of the antiform, show a top-to-the NW sense of shear 

that is unconsistent with a Precambrian northward subduction.  

The Late Silurian Collision: The collision likely occurred in Late Silurian, since 

the Early Devonian red sandstones unconformably cover the Hongqi mélange. 

Moreover, the basal conglomerates of the Early Devonian sediments contain pebbles of 

the underlying litho-tectonic units. Accretionary tectonics and magmatism must have 

been stopped at that time. This scenario is supported by the undeformed pegmatite of 

411±8Ma that cuts the low P/T metamorphic complex in the Bainaimiao area (Zhang et 

al., 2012), and the ca. 417Ma tonalite interpreted as due to collision magmatism near 

the Hongqi area (Jian et al., 2008). Subsequently, a Late Carboniferous platform 

limestone developed in a vast area, extending throughout the eastern part of Inner 
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Mongolia (BGMRIM, 1991). In our study area, the most likely is that a microcontinent, 

entered in the trench and collided with the Andean active margin of the North China 

Craton (Fig. 13B). This hypothetical microcontinent might be connected with the South 

Gobi microcontinent (Sengor and Natal’in, 1996) or the Hunshandake block (Xu et al., 

2012). But, the size and distribution of this hypothetic microcontinent are not 

documented yet, and the correlations with other microcontinental blocks between North 

China Craton and Siberia remains hypothetic.  

 

7. Conclusion 

i) The mélange belt exposed in the Hongqi and Ondor Sum areas, is characterized 

by two phrases of ductile deformation and a top-to-the-NW sense of shear, suggesting a 

southeastward subduction during the Early Paleozoic. 

ii) The ductile deformations in the Ondor Sum-Hongqi mélange belt are coeval 

with greenschist facies metamorphism. The unconformably overlying Early Devonian 

sedimentary rocks indicate that subduction and collision should terminate before the 

Early Devonian. 

iii) In the present knowledge, the South-directed of a microcontinent below the 

North China Craton appears as the most likely geodynamic scenario to account for the 

structural evolution. 
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Fig. 1 Tectonic sketch map of central Inner Mongolia modified from Badarch et al. 

(2002), Xiao et al. (2003) and Xu et al. (2012). The late Mesozoic-Cenozoic formations 

are omitted for clarity. SME = Southern Margin of Ergun block; NOB = Northern 

Orogenic Belt; HB = Hunshandake block; SOB = Southern Orogenic Belt; NCC = 

North China Craton. The double spot dash line representing the Solonker Suture and the 

names in brackets and italics are from Xiao et al. (2003).  

 

Fig. 2 Geological map of the Hongqi area in Inner Mongolia showing litho-tectonic 

units distribution. Modified after IMBGMR (2002, 2008). 

 

Fig. 3 Geological map (A), cross section (B), and structural elements of the Hongqi 

mélange (C-F; lower hemisphere projection). Modified after IMBGMR (2002, 2008). 

 

Fig. 4 Field pictures in the Hongqi mélange unit. (A) Blocks of limestone and volcanite 

embeded in the matrix; (B) Early Devonian basal conglomerates cropping out close to 

the mélange ; (C) Foliated limestone containing elongated Silurian fossils included as 

block in the Hongqi mélange; (D) Undeformed Early Devonian basal conglomerates 

including rounded pebbles of volcanic rocks, greenschist, chert and quartzite. 

 

Fig. 5 Field pictures in the Hongqi mélange unit. (A) Stretching lineation in chlorite 

quartz schist; (B) Intrafolial fold (F1) with SE-NW striking axis; (C) Pinch-and-swell 

structure within quartz schists; (D) Flattened and elongated pillow lavas block in the 
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mélange; (E) asymmetrical fold (F2) with SE-dipping long limb indicating northwest 

vergence; (F) Asymmetric kink bands F2 refolded L1 stretching lineation; (G) Northeast 

striking upright fold (F3) developed in quartz chlorite schist; (H) Upright fold formed in 

quartz-rich layer.   

 

Fig. 6 Microscope scale kinematic indicators in the Hongqi mélange. A~G thin sections 

are cut perpendicular to the main S1 foliation, and parallel to the L1 stretching lineation. 

(A) Geometric relationship between bedding (S0) and foliation (S1) in the hinge of an 

intrafolial fold in metapelite; (B) oriented alignment of amphibole and anhedral quartz 

indicating top-to-the WNW shearing; Am = Amphiolite, Pl = Plagioclase, Qtz = Quartz, 

Chl = Chlorite; (C), (D) asymmetrical chlorite fibers developed as pressure shadows 

constitutes oriented chlorite fibers around the end of a feldspar clast, showing a 

northwestward shearing; (E) oblique fractured carbonate grains showing a 

top-to-northwest NW shearing; (F) Boudinage of feldspar clast with recrystallized 

chlorite fibers in the interspace, suggesting SE-NW stretching direction; (G) Mica 

bands defined by curved recrystallized mica aggregates and insoluble material, 

showing northwest ward shearing; (H) Sigmoidal clast indicating top-to-N shearing.  

 

Fig. 7 Sketch map (A), cross section (B), and structural elements of Ondor Sum area (C, 

D; lower hemisphere projection). modified after IMBGMR (1976). The Cenozoic trap 

basalts must not be confused with the basaltic blocks included in the mélange.  
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Fig. 8 Field pictures in the Ondor Sum area. (A) Typical field aspect of the Ondor Sum 

colored mélange due to various blocks of pillow basalts, chert, limestone, sandstone 

enclosed in a greenschist sandy-silty matrix; (B) Colored conglomerate with red chert, 

white limestone, green lava or volcanic-sedimentary material in the Ulan Valley; 

(C)(D) Amphibolite and gneissic granite dykes in the Tulinkai and Ulan Obo areas; C: 

amphibolite-acidic gneiss metre-sized alternation; D: folded amphibolite cross cut by a 

granitic dyke; (E) Vertical foliation (S1) and mineral lineation (L1) in green 

chlorite-epidote schist in the southern part of the Ondor Sum mélange unit. (F) Mineral 

and stretching lineation (L1) folded around an F2 fold, Ulan valley; (G) L1 stretching 

lineation deformed by an SE-verging F2 fold axis (L2:F2 fold axis), Ulan valley; (H) 

Microfold associated with a crenulation cleavage (S2) in Ulan valley  

 

Fig. 9 Structural map of the microtectonic data observed in the Ulan valley (modified 

after Xiao et al., 2003). 

 

Fig. 10 Microscope scale kinematic indicators in the Ondor Sum mélange. All cross 

sections are cut perpendicular to the main S1 foliation, and parallel to the L1 stretching 

lineation. (A) (B) (C) Sigmoidal feldspar and carbonate porphyroclast showing 

top-to-the-NW shearing, southern limb of Ondor Sum mélange; (D) Sigmoidal feldspar 

porphyroclast showing a top-to-the-NW sense of shear in the middle part of the Ondor 

Sum mélange; (E) subvertical S3 cleavage cutting the S1 foliation; (F) Crenulation 

cleavage oblique to the main foliation S1. Syn-S1 chlorite is deformed by D2 folding; 
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(G) Asymmetric pressure shadow around quartz aggregates showing a top-to-the NW 

sense of shear, Ulan valley; (H) Carbonate sigmoidal porphyroclast showing a 

top-to-the-NW sense of shear, Ulan valley;  

 

Fig. 11 (A) Representative CL image of dated zircons. (B) U-Pb Concordia diagrams 

for sample 090716-29 of acidic volcanite (The data ellipses are defined by standard 

errors (1 sigma) in 
206

Pb/
238

U, 
207

Pb/
235

U and 
207

Pb/
206

Pb. Grey ellipses represent 

inherited zircons. The data with age concordance >10% are not projected in the 

concordia diagram. 

 

Fig. 12 Interpretative crustal scale cross section of the Southern Orogen of Inner 

Mongolia, showing the Early Paleozoic accretion-collision belt. The position of this 

cross section is shown in Figs. 1 and 2. 

 

Fig. 13 Tentative Paleozoic geodynamic evolution model of the southern belt of Inner 

Mongolia (see text for detail).  

 

Table 1 Summary of geochronological data for the Hongqi-Ondor Sum area. The 

number in the parentheses corresponds to those in Fig. 2, Fig. 7 and Fig. 9 respectively.  

 

Table 2 ICP-MS U-Pb data for the magmatic zircons.  



Figure 1 



 
Figure 2 



 
Figure 3 



 
Figure 4 



 

Figure 5 



 

Figure 6 



 
Figure 7 



 

Figure 8 



 
Figure 9 



 

Figure 10 



 
Figure 11 

Figure 12 



Figure 13 


