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Abstract- 

 

Sulfate-dominated sedimentary deposits are widespread on the surface of Mars, which contrasts with 

the rarity of carbonate deposits, and indicates surface waters with chemical features drastically 

different from those on Earth. While the Earth’s surface chemistry and climate are intimately tied to 

the carbon cycle, it is the sulfur cycle that most strongly influences the Martian geosystems. The 

presence of sulfate minerals observed from orbit and in-situ via surface exploration within 

sedimentary rocks and unconsolidated regolith traces a history of post-Noachian aqueous processes 

mediated by sulfur. These materials likely formed in water-limited aqueous conditions compared to 

environments indicated by clay minerals and localized carbonates that formed in surface and 

subsurface settings on early Mars. Constraining the timing of sulfur delivery to the Martian 

exosphere, as well as volcanogenic H2O is therefore central, as it combines with volcanogenic sulfur 

to produce acidic fluids and ice. Here, we reassess and review the Martian geochemical reservoirs of 

sulfur from the innermost core, to the mantle, crust, and surficial sediments. The recognized 

occurrences and the mineralogical features of sedimentary sulfate deposits are synthesized and 

summarized. Existing models of formation of sedimentary sulfate are discussed and related to 

weathering processes and chemical conditions of surface waters. We also review existing models of 

sulfur content in the Martian mantle and analyze how volcanic activities may have transferred igneous 

sulfur into the exosphere and evaluate the mass transfers and speciation relationships between 

volcanic sulfur and sedimentary sulfates. The sedimentary clay-sulfate succession can be reconciled 

with a continuous volcanic eruption rate throughout the Noachian-Hesperian, but a process occurring 

around the mid-Noachian must have profoundly changed the composition of volcanic degassing. A 

hypothetical increase in the oxidation state or in water content of Martian lavas or a decrease in 

atmospheric pressure is necessary to account for by such a change in composition of volcanic gases. 

This would allow the pre mid-Noachian volcanic gases to be dominated by water and carbon-species 

but late Noachian and Hesperian volcanic gases to be sulfur-rich and characterized by high SO2 

content. Interruption of early dynamo and impact ejection of the atmosphere may have decreased the 
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atmospheric pressure during the early Noachian whereas it remains unclear how the redox state or 

water content of lavas could have changed. Nevertheless, volcanic emission of SO2 rich gases since 

the late Noachian can explain many features of Martian sulfate-rich regolith, including the mass of 

sulfate and the particular chemical features (i.e. acidity) of surface waters accompanying these 

deposits. How SO2 impacted on Mars’s climate, with possible short time scale global warming and 

long time scale cooling effects, remains controversial. However, the ancient wet and warm era on 

Mars seems incompatible with elevated atmospheric sulfur dioxide because conditions favorable to 

volcanic SO2 degassing were most likely not in place at this time. 
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1. Introduction 

A striking feature of the surface of Mars revealed by in-situ and remote sensing instruments is the 

overwhelming abundance of sulfur (Clark et al., 1979; Foley et al., 2008; Brückner et al., 2008; King 

and McLennan, 2010), predominantly in its oxidized mineralogical form –sulfate– that covers terrains 

dated from the late Noachian and Hesperian epochs (Gendrin et al, 2005). Sulfate minerals are most 

likely predominantly of sedimentary origin, although hydrothermal occurrences may also exist. The 

surface waters that produced such deposits were most likely acidic (Fairen et al., 2004; Chevrier et al., 

2007) and ultimately related to sporadic events possibly triggered by intermittent volcanic eruptions in 

a thin atmosphere. The emerging picture for Mars is that of a planet whose surface geochemistry and 

possibly its climate was dominated by the sulfur chemical cycle (e.g., Settle, 1979; Clark and Baird, 

1979; Wanke and Dreibus, 1994; King et al., 2004; Halevy et al., 2007; McLennan and Grotzinger, 

2008; Johnson et al., 2008; King and McLennan, 2010; McLennan, 2012). This picture contrasts with 

Earth for which the carbon cycle is believed to control the dynamics of chemical and climate 

processes in the near-surface environment (e.g., Berner, 1995). Yet, on Mars, the period conducive to 

widespread sulfate deposits was preceded by a period marked by sedimentary processes depositing 

clay minerals and possibly carbonates, although the overall importance of carbonate minerals remains 

to be defined (Ehlmann et al., 2008; Michalski and Niles, 2010). Such a sequence of mineralogical 

eras undoubtedly reflects a sequence of surface geochemical eras (Jakosky and Phillips, 2001; Poulet 

et al., 2007; Bibring et al., 2006), that in turn reflects complex and evolving exchanges between the 

various Martian reservoirs: mantle-crust-atmosphere-hydrosphere.  

The purpose of this paper is to summarize the most recent advances about Martian sulfur, from 

source to sink. We also attempt to step beyond a conventional review paper by suggesting links and 

hypotheses that allow several observations to be connected. Accordingly, we also propose a sequence 

of events relating igneous Mars to surficial Mars. Finally, we draw comparisons and highlight several 

differences between the surface chemistry of Mars and that of Earth.  
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Because we are concerned with the fate of a single element, sulfur, through the various Martian 

reservoirs, from the innermost core to the outermost sediments, various processes need to be 

considered, from early accretion, core formation and mantle differentiation, mantle melting and basalt 

eruption, to volcanic degassing and atmospheric processes, and finally to sedimentary processes. We 

believe this approach is justified because of the ubiquitous role of sulfur in surficial Martian processes 

and because sulfur in itself is a very complex chemical element, with many different redox states (–II, 

0, +I, +II, +IV, +VI). Depending on its redox state, sulfur would potentially have very different 

chemical behaviours as a function of redox conditions (Gaillard and Scaillet, 2009). Also noteworthy 

is that the behaviour of sulfur is influenced by other chemical elements or chemical parameters, which 

unavoidably requires us to deviate in places from the sulfur-only perspective. 

Accordingly, the paper is organized with an observation to model perspective. We first present 

and discuss sedimentary Mars, essentially based on numerous recent observations. This part of the 

paper characterizes the inventory of sedimentary sulfate deposits and evaluates of the processes that 

may have generated these deposits. We then discuss models of the deep martian interior and igneous 

Mars, including an examination of volcanic degassing of sulfur. The last sections discuss the 

exchanges of sulfur between the different reservoirs and how these exchanges may have varied 

through time and how they may have affected martian climate. 

 

 

1. Inventory and nature of sulfate deposits on Mars 

a. Overview 

The earliest surface exploration by the Viking spacecraft revealed high sulfur contents that were 

interpreted as evidence for sulfate minerals in a widely homogenized layer of regolith (Clark et al., 

1977; 1993). This interpretation was supported by analyses of surface chemistry by the Mars 
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Pathfinder and Soujourner Rover, which also detected relatively high levels of sulfur in regolith and 

on rock surfaces (Rieder et al., 1997). Since that time, sulfur and sulfate minerals have been detected 

in a number of geological settings on Mars using both orbital remote sensing and in-situ analyses 

(Figure 1 – global map) (Table 1 – list of detections) (Gendrin et al., 2005; Langevin et al., 2005; 

Clark et al., 2005; Bibring et al., 2006; Murchie et al., 2009a). Deposits can be categorized into one of 

5 groups: a) Hesperian layered sulfates (Squyres and Knoll, 2005; Clark et al., 2005; McLennan et al., 

2005), b) Interior Layered Deposits (ILDs), c) polar deposits, d) intracrater sediments, and e) as part 

of the global dust and regolith (Wang et al., 2006; Lane et al., 2008). Recent results suggest that a 

sixth type of deposit has been detected: sulfates as secondary vein minerals within silicate bedrock on 

the rim of Endurance Crater (Squyres et al., 2012). Taken together, these observations clearly 

illustrate that sulfur and sulfate minerals constitute a significant fraction of Mars’ aqueous geologic 

record, from pole to equator, and have played a major role in Mars’ sedimentary rock cycle (King and 

McLennan, 2010; McLennan, 2012).  

Below, we discuss the various deposits of sulfates in more detail. First, we provide summary of 

progress in detection and mapping of sulfates on Mars from orbital data. Then, we describe some 

interesting trends in mineral associations between sulfates and other minerals. Lastly, we discuss the 

geology of the various types of sulfate deposits, organized by deposit type. 

b. Orbital detection of sulfates 

Two instruments have provided unambiguous evidence for sulfate minerals on Mars from orbit. 

The first discoveries where reported using data from the Obervatoire pour la Minéralogie, l’Eau, les 

Glaces, et l’Activité (OMEGA) (Gendrin et al., 2005; Langevin et al., 2005) onboard the Mars 

Express spacecraft. OMEGA has now mapped a large fraction of the Martian surface at the scale of 

100s of meters/pixel (eg. Figure 2 – 4 panel figure) and revealed numerous sulfate deposits on the 

surface (Bibring et al., 2006; Poulet et al., 2007; Carter et al., 2011). Targeted observations with the 

Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance 
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Orbiter spacecraft have revealed additional sulfate deposits (Figure 3 – CRISM figure), and shown the 

detections at higher spectral and spatial resolution (~18 m/pixel) (Murchie et al., 2009a). Both 

spectrometers operate in the visible-near infrared (~0.5-4 µm) region and are therefore sensitive to 

spectroscopic absorptions that arise from S-O vibrational overtones and combination bands, vibrations 

associated with bound or adsorbed water, and electronic transitions associated with Fe, if present in 

the sulfate structure (Lane and Christensen, 1998; Cloutis et al., 2006 and references therein).  

From a mineralogical perspective, two major categories of sulfates have been detected from 

infrared remote sensing: monohydrated and polyhydrated sulfates (MHS or PHS, respectively). 

Specific sulfates such as kieserite, gypsum, jarosite, alunite, szomolnokite, and ferricopiapite have 

been detected from orbit with varying levels of confidence, but in many cases, it is not possible to 

distinguish specific minerals beyond PHS or MHS. Mg- and Fe-bearing sulfates are more common 

than Ca-bearing sulfates (e.g. Figure 3). 

The abundances of sulfate minerals are difficult to interpret from infrared remote sensing data 

because the interpretation depends not only on the actual abundance, but also the texture of the 

surface, grain size of particulates, crystallinity, and hydration state. Furthermore, thin rock coatings 

could potentially mask minerals present as bulk components of a substrate (e.g. Kraft et al., 2003). A 

simple baseline for sulfate abundances on Mars comes from observations of the Martian soils and 

dust. Surface chemical measurements suggest that 6-7% SO3 is typically present within the globally 

homogenized dusty soil, which may translate to ~5-10% sulfate minerals (McSween et al., 2010). 

These values are also consistent with global mapping of S concentrations in the upper few tens of 

centimetres of the Martian surface by the Mars Odyssey gamma-ray spectrometer experiment (King 

and McLennan, 2010). OMEGA and CRISM observations of the global dust/soil do not show the 

presence of sulfates, therefore, this abundance is the minimum detection limit for fine-grained sulfates 

on Mars from orbital data.  

In cases where sulfate is clearly detected, the data can be compared to mathematical mixtures 

that take into account fundamental spectral properties and estimates of grain size (e.g. Poulet and 
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Erard, 2004). For example, dunes in the north polar region of Mars can be modeled with a mixture of 

~35% gypsum and 65% siliciclastic material (Fishbaugh et al., 2007). In other cases, rocks that are 

known to be sulfate-bearing from in-situ analyses may contain little or no spectral evidence for 

sulfates from orbit (Figure 2). Yet, similar rocks in the same region clearly show evidence for sulfates 

(Figure 3 CRISM example). Such differences in detectability may be an example of the influence of 

rock texture and weathering style or surface exposure age on the spectral character of the deposits.  

Mineral abundances have also been modeled using orbital thermal infrared remote sensing data 

from the Thermal Emission Spectrometer (TES) and thermal infrared data from the Mini-TES 

instruments aboard the Mars Exploration Rovers. These analyses suggest that 20-40% sulfates are 

present in layered rocks at Meridiani Planum (Glotch et al., 2006), and ~15% sulfates in similar rocks 

in Aram Chaos (Glotch and Christensen, 2005). Chemical analyses of rocks at Meridiani Planum also 

point to abundances of ~20-30% sulfates (Clark et al., 2005). Taken together, all available data 

suggest that many “sulfate-rich” rocks on Mars may contain roughly 1/3 sulfate minerals by volume. 

A range is likely to exist, but it is unlikely that that the orbital detections of sulfates could correspond 

to sulfates that occur only as trace components. 

 

c. Mineral associations 

An important consideration for interpreting the geological significance of sulfate minerals on 

Mars is the associations among the various minerals.  In this sense, the most obvious association 

seems to be the co-occurrence of sulfate minerals with hematite. Coarsely crystalline gray hematite 

was originally detected in Meridiani Planum with TES data (Christensen et al., 2000), and it is now 

clear from surface observations that the hematite occurs as “blueberries,” or mm-scale spherules 

(Squyres et al., 2004, 2005), that have eroded out of sulfate-rich bedrock and are now found as a lag 

deposit on the surface. The thermal infrared observations of these spherules suggest that they contain 

c-axis-oriented hematite, always oriented away from the surface of the spherule (Glotch et al., 2006b). 
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This observation likely supports an interpretation of the hematite spherules as diagenetic concretions 

within the sulfates (McLennan et al., 2005; Sefton-Nash and Catling, 2008).  

Further work with TES and OMEGA data has shown that hematite is found in association with 

sulfates in many locations, including chaos terrains and within the ILDs (Christensen et al., 2001; 

Bibring et al., 2007; Weitz et al., 2008; Mangold et al., 2008; Le Deit et al., 2008). The nature of this 

association was investigated experimentally by Tosca et al. (2008), who demonstrated that low 

temperature oxidation of ferrous and ferric sulfates, in the presence of high ionic strength brines, leads 

ultimately to the precipitation of ferric oxides. These critical observations suggest that diagenetic 

hematite formation may be a critical component of sulfate formation on Mars (e.g. Roach et al., 2010; 

McLennan, 2012). 

 Other mineral associations are observed. In layered terrains on the plains around Valles 

Marineris, jarosite appears to occur along with hydrated amorphous silica (Milliken et al., 2008). This 

observation might point to a similar origin as the sulfate within Meridiani Planum deposits, which 

occurs within siliciclastic rocks that likely contain a component of amorphous silica (Clark et al., 

2005; Glotch et al., 2006a). Clay minerals are not commonly associated with sulfates from the orbital 

remote sensing perspective. However, in a few cases, interlayered sulfates and phyllosilicates are 

observed. In Columbus Crater, aluminous clays and sulfates are interlayered in crater-floor sediments 

(Wray et al., 2010). In the Mawrth Vallis channel, Fe/Mg-bearing clays occur stratigraphically above 

sulfates in certain cases (Wray et al., 2010). Also in the Mawrth Vallis area, aluminous clays occur in 

deposits that seem to be stratigraphically equivalent with jarosite-bearing deposits (Farrand et al., 

2009). The base of the mound within Gale Crater (Mount Sharp) may contain interlayered sulfates 

and clays, which await exploration by the Curiosity Rover (Milliken et al., 2010). 

 

d. Geology. 

Hesperian Layered Sulfates 
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 Layered sulfates of probable Early Hesperian age are found throughout the western Arabia 

Terra region, in the greater Sinus Meridiani area (Poulet et al., 2008a; Griffes et al., 2007; Wiseman et 

al., 2010). Also in this category are certain instances of layered crater fill, such as the sulfates found 

within Gale Crater (Milliken et al., 2010; Thomson et al., 2011). Exploration of such deposits by the 

Opportunity Rover shows that, in the Meridiani area, the rocks are layered at the decimeter scale, and 

laminated down to millimeter scale in places (Grotzinger et al., 2005, 2006). Sulfur contents were 

consistently measured in the range of 20-30% SO3, and chemical correlations suggest that Mg-sulfates 

are the most abundant group of minerals (Clark et al., 2005). However, jarosite was also directly 

detected from Mossbauer spectroscopy (Morris et al, 2006). The low amount of energy required to 

grind into the rocks with the Rock Abrasion Tool (RAT) aboard Opportunity indicates that most of 

the rocks are relatively soft (specific grind energies mostly less than 2 J mm
-3

), as might be expected 

for evaporites (Herkenhoff et al., 2008). Microscale imaging of the rock textures shows that they are 

composed of fine-grained material. Sand-sized particles are observed, and required for the formation 

of eolian cross bedding seen in the section (Grotzinger et al., 2005, 2006), however the sand grains 

themselves may in turn be composed of finer-grained materials, such as recycled sulfate-cemented 

muds (Grotzinger et al., 2005; McLennan et al., 2005; also see Niles and Michalski, 2009). Secondary 

porosity in the form of crystal molds and other vugs observed in parts of the section point to an 

extended and complex history involving diagenetic fluids (McLennan et al., 2005; McLennan and 

Grotzinger, 2008).  

 

Interior Layered Deposits (ILDs) 

 The ILDs are found throughout the Valles Marineris trough system, as well as within other 

chasmata (Chapman and Tanaka, 2001). The deposits consist of massive mounds of layered materials 

that can reach kilometers in height, rivaling the elevation of the canyon rims in places. They lie 

unconformably on canyon floor deposits (Quantin et al., 2004), drape onto the canyon walls, and do 

not exhibit massive extensional faults that would have been formed during tectonic formation of the 
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troughs (Okubo et al., 2008). Therefore, the deposits are interpreted to have formed after the final 

phase of formation of the Valles Marineris, which likely occurred in the late Noachian. The ILDs are 

challenging to accurately date due to their irregular geometry, but crater counting suggests a lower 

bound on their ages of Late Hesperian, and in rare cases, perhaps Early Amazonian (Quantin et al., 

2004). They are therefore of similar age to the Hesperian layered deposits and may have a similar 

origin. 

 Spectral imaging shows that the ILDs, where they are well exposed, contain evidence for 

sulfates (Figure 4), hematite, and locally, silica and phyllosilicates (Gendrin et al., 2005; Bishop et al., 

2009; Mangold et al., 2008; Le Deit et al., 2008 ; Murchie et al., 2009b ; Flahaut et al., 2010a; Roach 

et al., 2010a ; Feuten et al., 2011; Weitz et al., 2011). In the central Valles Marineris, crude 

compositional stratigraphy is observed where monohydrated sulfates overlie polyhydrated sulfates 

(Mangold et al., 2008).  

 

Polar sulfates 

 Gypsum deposits occur in the massive north polar dune field, Olympia Undae (Langevin et al, 

2005; Fishbaugh et al., 2007) (Figure 5 –polar). The dunes are Amazonian in age and are thought to 

have been derived from erosion of the Basal Unit beneath the north polar cap (Fishbaugh et al., 2007). 

However, there is no evidence to date for sulfates within the Basal Unit itself. One possibility is that 

the sulfate formed within the dunes, after the clastic material was derived from the Basal Unit by 

erosion. Another possibility is that the gypsum is more easily detectable in the sand-sized materials 

within the dunes than in the competent layers of the basal unit. Yet another possibility is that the 

sulfates occur within the basal unit, but in lower concentration and that they have been concentrated 

within the dunes due to their density. 

 Sulfates have also been detected within sedimentary deposits surrounding other parts of the 

north polar cap (Masse et al., 2010; 2012). These sulfates have a more subtle spectroscopic signature 

than those within the Olympia Undae dunefield. Their weaker spectral features could correspond to 
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lower absolute abundances, lower crystallinity, or different physical form (e.g. grain size, surface 

texture) compared to those in the dune sands. The deposits containing these sulfates are interpreted as 

sediments that weathered out of the polar cap, or as glacial sediments (Masse et al., 2010; 2012) and 

have formed in association with ice.  

 

Intracrater deposits 

 Intracrater sulfate deposits are relatively rare, but have been detected within craters in the 

Terra Sirenum region of Mars. Here, deposits within the floors of Columbus and Cross Craters 

contain poly- and monohydrated sulfates that are interbedded with aluminous phyllosilicates and 

associated with alunite, jarosite, Fe-oxides, and Fe/Mg-phyllosilicates (Wray et al., 2011). Alteration 

minerals occur within a ring in the interior of Columbus Crater, and within layered deposits exposed 

by erosion and impact degradation of the floor deposits. Such deposits are interpreted to have formed 

due to groundwater upwelling that may have fed a deep lake, or a transient, spring-fed environment 

(Wray et al., 2011).  

 

Sulfates within the soil and dust 

 Sulfur occurs with the Martian soil at all landing sites visited thus far at an average level of 

~6.8% SO3 (King and McLennan, 2010). The mineralogy of this sulfur is not well known, although 

recent results have shed some light. Results from the Wet Chemistry Laboratory (WCL) aboard the 

Phoenix Lander have demonstrated the presence of soluble sulfates within high latitude soils 

(Knounaves et al., 2010). At this site, the most likely salts are epsomite and gypsum. This is in 

contrast to some soils at the Gusev Crater site, which also contain significant levels of Fe-sulfates 

(Wang et al., 2006). At the Paso Robles site in Gusev Crater, the Spirit Rover exposed soils from the 

shallow subsurface with its wheels. Chemical and spectroscopic constraints on the bright soils suggest 

the presence of hydrated Fe-sulfate similar to ferricopiapite (Lane et al., 2008). 
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e. Summary of observed sulfate deposits 

 Sulfate deposits are observed or inferred to exist within the global regolith, as well as in discret 

geological deposits from pole to equator on Mars. Evidence to date suggests that the deposits can 

generally be considered siliciclastic materials, in some cases unconsolidated and in other cases, as 

somewhat competent sedimentary rock. By what geologic processes did these deposits form? Is there 

a common thread or have various deposits formed from disconnected processes at different times? It 

is almost certain that the ultimate source for sulfur in these deposits is volcanogenic. But, what were 

the aqueous conditions under which the minerals precipitated? How much water was involved and 

from what sources? We address these questions in the following section. 

 

2. Mineralization of sulfur at Mars surface. 

a. Chemical constraints 

There is a growing consensus that sulfates formed mostly during the late Noachian to Hesperian, 

succeeding the era of phyllosilicates in the early-middle Noachian. Since the Hesperian, there is little 

evidence for formation of water-related minerals, clays or sulfates.  Transformation of iron sulfates to 

iron oxides may be an ongoing, albeit very slow process (Tosca et al., 2008; McLennan, 2012). 

Alteration of mafic minerals on the Earth, Mars or elsewhere is the chemical response of 

desequilibrated water-rock systems, influenced, sometimes inhibited, by kinetic constraints. Silicate 

minerals, from the chemical point of view, are oxide mixtures having alkaline properties, mainly 

because of their alkali and alkaline-earth content. As an example, the pH value buffered by pure CaO 

is 12.7 at 25°C, near 12 for MgO and much more for Na2O and K2O. So substantial mineralogical 

transformations are generated by acid agents that can lead to huge deviations from equilibrium, and 

the amount of alteration phases can be compared, possibly correlated, to the amount of protons added 

to the system. Because the production of protons, and accompanying acidic fluids, always associates 
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with concomitant anions for the obvious constraint of charge balance, this anion can be implied in the 

secondary phases formed by the conjugate base of the acid and the conjugate acid of the oxide. The 

occurrence of sulfate in the Martian soils at Meridiani Planum or elsewhere, argues for the idea that 

the source of protons that drove the alteration is associated with the sulfur cycle. 

 

b. The Burns Formation example 

The presence of sulfur-rich sedimentary rocks at Meridiani Planum, termed the Burns formation, 

was a major discovery by the Mars Exploration Rover (MER) mission. The sediment contains up to 

60% secondary minerals (amorphous silica, Mg- and Ca-sulfates, jarosite, hematite and possibly 

chlorides). The presence of jarosite has been cited as prime evidence for low pH conditions since it is 

known to be stable at pH<4.   

The interpretation of the MER team is that sulfate-bearing sedimentary grains were derived from 

a weathered basaltic source and cemented by later sulfate-dominated secondary minerals (Squyres et 

al., 2004; Grotzinger et al., 2005, 2006; McLennan et al., 2005; Metz et al., 2009) with a variety of 

diagenetic features, including secondary porosity, multiple generations of cements and hematitic 

concretions. In this model, sulfates form through a variety of evaporative and later diagenetic 

processes. 

A number of alternative scenarios have also been proposed to explain the morphology and 

chemistry of the Burns formation sediments. Hynek et al. (2002) and McCollom and Hynek (2005) 

proposed that the Burns formation represented pyroclastic ash flows and air fall whereas Knauth et al. 

(2005) suggested that the layered deposits formed through debris flow following an impact. 

McCollom and Hynek (2005) interpreted the chemical composition of the Burns sediments as a 

mixture between a pristine basalt and a pure hydrated sulfur compound (with a composition within the 

SO2-O2-H2O ternary system), which is in contrast to the eolian-groundwater model that calls for a 

mixture of altered basalt and sulfate minerals. These two interpretations are presented in a ternary 
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diagram in Fig.6 where the trend formed by Meridiani sediments suggests a mixture between an 

aluminosilicate component and a Mg,Fe,Ca sulfate component. The aluminosilicate component does 

not match the exact composition of a martian basalt but rather appears consistent with an altered 

basalt. More recently, Niles and Michalski (2009) proposed another scenario in which the deposition 

at Meridiani Planum of massive ice/dust layered deposits during periods of high obliquity was 

accompanied by a cryo-concentration of volatile-bearing brines in ice that contained outgassed sulfur-

bearing species. In this model, alteration of fine-grained silicates by acidic brines in the ice produces 

vast quantities of alteration products with limited chemical mobility. In their model, the eolian 

textures formed from reworking of the sublimation lag during and after removal of ice. The diagenetic 

textures were generated by water released during dehydration of sulfate minerals that were originally 

highly hydrated. Such a model has some advantages in that it can explain the formation of layered 

sulfates in vast mounds that lack obvious provenance, such as the ILDs (Michalski and Niles, 2012). 

Some of the relevant geochemical issues were discussed by Tosca et al. (2005, 2008) for the 

chemistry of evaporating brines. On the other hand, Tréguier et al. (2008) and Berger et al. (2009) 

focused on the source of sulfur and its reaction with a pristine basalt in an in-situ alteration scenario. 

They argued that SO3, a strong acid gas resulting from the oxidation of volcanic SO2 in a dry 

atmosphere, may have produced a strong and pristine acid solution at the ground through interaction 

with water produced by ice melting. Based on the statistical analysis (PCA) of the Meridiani chemical 

compositions and weathering scenario tested by numerical modeling they reproduced the chemical 

and mineralogical data available for the Burns Formation sediments (Fig. 7), provided that the 

generated brine leaves the system after a short reaction time and evaporates elsewhere. The oxidation 

of SO2 can result from several atmospheric reactions and can be driven back to the surface by acid 

rains as reported by Schiffman et al. (2006) for the Earth, or can occur at the surface directly 

assuming a high penetration of the UV radiation through a thin and dry atmosphere. However, as 

pointed out by Zolotov and Mirenko (2007), the generation of sulfuric acid through oxidation of SO2 

and H2S is limited by the concentration of photochemically-produced atmospheric oxidants and these 



 16 

authors proposed impact-generated acid rainfalls as an alternative origin of SO3. But sulfur brought by 

impactors would nevertheless require an oxidation step to produce SO3. In both scenarios, volcanic 

SO2 or impact-generated sulfur can produce pristine acidic water covering the whole surface. In 

contrast, hydrothermal systems imply acid-base reactions occurring at depth and the resulting fluid 

reaching the surface is a brine being evolved and partially neutralized. The latter could account for the 

evaporitic processes suggested by the MER team while the surficial acid weathering scenario can 

account for the “Meridiani Trend” as described by McCollom and Hynek (2005), i.e. chemical mixing 

between a pristine basalt and a pure sulfur component, as suggested in Berger et al. (2009) or Niles 

and Michalski (2009).  

The acidic features of the Meridiani sediments were also discussed by Hurowitz et al. (2010). They 

suggested the oxidation of aqueous ferrous iron as an alternative process to generate acidic solutions 

at a local scale. However, this process also requires protons to get Fe
++

 in solution in a previous stage. 

For exemple, Figure 8 illustrates the effect of several acid sources on FeO (the ferrous component in 

mineral). The amount of released ferrous iron depends on the solubility of the conjugate anion salts 

(chloride, sulfate, carbonate) and the proportion of the complexed forms such as Fe(OH)
+
, FeCl2, 

etc… A general equation could be: FeO + H2O + HX <=> aFe
++

aq + bFeX
-
aq + cFeX2 aq + dFeX2solid. 

The calculations show that a substantial mobilization of Fe
++

 requires substantial addition of protons 

with a highly soluble conjugate anion. H2SO3 appears as the most efficient extracting agent. 

Finally, the diversity of the proposed scenarios suggests that, despite the quantitative 

information collected by Opportunity, the origin of sulfur and the chemical constraints on water-gas-

rock interaction remains an important issue for understanding sulfate-bearing sediments at the Martian 

surface. For example, recently published experimental observations (Dehouck et al., 2012) indicate 

that alteration of sulfide-bearing basalts may produce mineral assemblies containing sulfate minerals 

that mimic those identified on Mars. In section 4 and 5, we present several pieces of evidence that 

volcanic gases can provide most of the sedimentary sulfate and can furthermore trigger the succession 

of different periods with contrasted surface chemistry.  
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c. SO2 versus CO2 in the sediments/soil records with time 

The formation of sulfate minerals during late Noachian and Hesperian suggests an alteration 

process driven by volcanic SO2. Even in early Noachian terrains where phyllosilicates rather than 

sulfates are detected, the source of protons for the alteration process, whether SO3/SO2 and/or CO2 is 

an open question. Carbon-based acids having lower dissociation constants (i.e., weak acids), typically 

have reaction by-products dominated by clays (Berger et al., 2009). The lack of widespread 

observations of carbonate minerals in the altered Martian sediments (this point is extensively 

discussed in the accompanying Niles’s paper, this issue) could be explained by the presence of 

another more acidic compound that precludes the precipitation of Ca,Mg,Fe carbonates. Significant, 

concentrations of SO2 in the atmosphere is a reasonable assumption, given the importance of sulfur 

during the Hesperian era. However, in the context of clay minerals, constraining the in-situ pH (and 

carbonate precipitation feasibility) is not trivial. Clays, such as smectite, have exchangeable cations in 

the interlayer positions of their structure, which confer to these minerals a large sorption capacity and 

make the clays an ion exchanger and pH buffer. Even in the case of low cationic exchange capacities 

(CEC), i.e. kaolinite, illite, or chlorites, the small particle size confers a huge specific surface area to 

the material and enhances the consequences of surface chemistry. However, although the acid-base 

properties of aluminosilicate surfaces and CEC of smectite material are now well known (see for 

example Tertre et al., 2006), other textural parameters and the accurate estimation of the reacting 

mineral surface make the prediction of reaction paths and rates difficult. 

Another parameter is the differential progression of an SO3 and CO2 front within soils and 

sediments when these two gases are present simultaneously in the lower atmosphere. When SO3 is not 

concentrated in the lower atmosphere, it will rapidly be consumed in the superficial layer of the soil, 

given the high silicate alteration rate at low pH, and will probably not influence the chemistry of the 

deep sediments. By contrast, CO2 is a less acidic gas (pH>4) and the solubility of its conjugate salt 

(carbonate) is highly pH sensitive. CO2 will not produce carbonate in the SO3 influenced zone and can 

subsequently diffuse deeper in the sediments, a process made easier given that rock alteration is slow 
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in the middly acidic pH-range. This simple analysis, illustrated in Fig. 9, leads to the suggestion that 

carbonate deposits may exist at depth in the regolith on Mars and, accordingly, could constitute a 

significant sink for CO2. 

The prediction of carbonate precipitation from atmospheric CO2 should also take into account 

the water:rock ratio. In the case of a high run-off (low residence time of water within the martian 

regolith) and/or under near neutral conditions (slow dissolution kinetics) and/or presence of another 

acid gas (high carbonate solubility at low pH) carbonate precipitation is not expected. An example is 

shown in Fabre et al. (2011) for the “Snow Ball Earth” aftermath during the Precambrian time where 

even 10% atmospheric CO2 may not have led to continental carbonates. 

In conclusion, the mineral evolution of the Martian soil/sediments over the geological time can 

be interpreted as resulting from a global atmospheric change from Noachian to Hesperian, with a 

decrease of the CO2/SO2 ratio. 
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3. Geochemical reservoirs of the interior of Mars 

 

Chondrites, from which terrestrial planets most likely accreted, contain several weight percent of 

sulfur as sulfide (S content ranging from 2 to 10 wt% for all varieties of chondrites, see Chabot et al., 

2004; Gaillard and Scaillet, 2009; Ebel, 2010). Geochemical observations, however, indicate a general 

depletion in volatile elements of planetary bodies with respect to chondrites (Righter et al., 2006). 

This depletion is generally related to the intense early solar activity and/or incomplete condensation 

during the earliest period of planetary accretion. In some cases, some form of planetary 

devolatilisation may have accompanied high temperature processes during the accretion process (e.g., 

giant impacts or volcanic degassing of planetary embryos) and therefore contributed to additional 

depletion in strongly volatile elements (C-O-H-S), but quantitative constraints on such processes are 

strongly model dependent. Existing geochemical models point towards sulfur content lower than 5 

wt% for bulk Mars (Wanke and Dreibus, 1994), whereas similar models for the Earth indicate less 

than 0.5 wt% sulfur (Dreibus and Palme, 1996). The emerging but still poorly constrained 

conventional wisdom is therefore that Mars must be enriched in sulfur in comparison to the Earth 

(Dreibus and Wanke, 1985; Stewart et al., 2007). Below, we review partitioning of sulfur between Fe-

metal, molten silicate, and fluid in order to assess both sulfur reservoirs and fluxes between core, 

mantle, basalt and evaluate net sulfur transfers by volcanic degassing into the atmosphere. 

 

a. Core-Mantle 

 

We discuss here existing studies on the behavior of sulfur during core-mantle equilibration in a 

magma ocean scenario. The conventional wisdom here is that sulfur contents of the core and mantle 

of Mars were inherited from a single (or last) equilibration step between metal and silicate at high P-T 
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conditions (Righter and Chabot, 2011). Such equilibration is classically addressed by models based on 

partitioning experiments performed under controlled thermodynamic conditions. Most assessments of 

partitioning of sulfur between silicate and metal and its application to core-mantle equilibration on 

planetary bodies are based on the assumption that molten FeS is a good analogue of Fe-metal 

containing little sulfur. Many influential experiments have indeed studied the partitioning of sulfur 

between molten silicate and nearly stochiometric FeS (Fei et al., 1995; Li and Age, 1996; Li and 

Agee, 2001; Holzheid and Grove, 2002) leading to the implicit analogy between chalcophile and 

siderophile tendencies. This useful simplification, however, ignores the strongly non-ideal 

thermodynamic behaviour of the Fe-S system, which implies that the energetics of sulfur in molten Fe 

metal with low S-content cannot simply be extrapolated from that of molten FeS (through a dilution 

factor, eg. Holzheid and Grove, 2002). The available experimental data bearing on S-partitioning 

between molten silicate and liquid, S-poor, Fe metal are scarce (Ohtani et al., 1997; Kilburn and 

Wood, 1997; Rose-Weston et al., 2009; Agee and Li, 2001). These data are reported in Figure 10. The 

simplest thermodynamic treatment that best approximates the partitioning of sulfur between Fe metal 

and molten silicate can be formulated as (e.g., Gaillard and Scaillet, 2009): 

S 
metal

 + O
2- silicate

  = S
2- silicate

 + ½ O2        (1) 

This equilibrium is the sum of the reaction of sulfur equilibrium between silicate melt and gas phases 

which reads as (O’Neill and Mavrogenes, 2002): 

S
2- silicate

 + ½ O2
gas

 = ½ S2
gas

 + O
2- melt

       (2) 

and the dissolution reaction of sulfur gas within molten Fe metal (Wang et al., 1991): 

½ S2
gas

 = S
metal

            (3) 

Combining reactions (2) and (3), and using appropriate equilibrium constants, we can write (Gaillard 

and Scaillet, 2009): 

23
2 ln

2

1
lnlnlnln O

silicate
S

metal
Smetal

S

silicate

S fCK
X

X
-++-=- g        (4) 
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Following the notation of O’Neill and Mavrogenes (2002) the fraction of sulfur in the molten 

silicate 
silicate

S
X

-2
 is expressed in wt ppm whereas the fraction of sulfur in the molten Fe-metal 

metal
SX  is 

given in atomic fraction. The sulfur capacity (Cs
silicate

) is a concept introduced by metallurgists 

(Fincham and Richardson, 1954), defining the ability of silicate melts to dissolve sulfur (by reaction 

2) and its variability with melt composition. Cs
silicate

 has been defined as (Fincham and Richardson, 

1954): 

22 ln
2

1
ln

2

1
lnln

2 SO

silicatesilicate

S ffXC
S




     (5) 

It is well established that the chemical parameter that exerts a prime control on sulfur solubility 

in silicate melts is their ferrous iron content (FeO). Ferrous iron-rich melts tend to dissolve more 

sulfur than those poor in FeO. The sulfur capacity, Cs
silicate

 for mafic and ultramafic melts has been 

extensively studied by O’Neill and Mavrogenes (2002) at 1400°C.  Ln K3 is the equilibrium constant 

of reaction (3) whilst (gama
metal

S ) 

   

gS

metal
is the activity coefficient of sulfur in the molten metal which, 

according to the interstitial model of Wang et al. (1991), incorporates the effect of temperature. At 

low S contents (i.e. 
metal
SX < 0.1), the activity coefficient of S in Fe metal is in the range 1-0.7 

decreasing down to 0.3 at 
metal
SX = 0.35. 

Equation (4) appears in the form of a partition coefficient between metal and silicate, a widely 

used concept in geochemistry to define the pressure and temperature dependence of partitioning 

properties. However the partition coefficient is here influenced by a large number of additional 

parameters that are also interdependent: (i) the strongly non-ideal behaviour of S in Fe-metal that 

makes (gama
metal

S ) 

   

gS

metal strongly dependent on the bulk S content; (ii) the dependence of eq.(4) on 

fO2; (iii) the dependence of Cs on FeO
melt

; (4) the dependence of FeO
melt

 on fO2 at Fe-metal saturation. 

In several studies, the fO2 dependence of sulfur partitioning between molten silicate and metal has 

been ignored because of the implicit assumption that liquid FeS and liquids in the S-poor region of the 

Fe-FeS binary are energetically broadly similar (Holzheid and Grove, 2002; Rose-Weston et al., 
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2009). In fact, metal-silicate S-partitioning data (Figure 10), display a considerable scatter that is 

poorly related to variations in pressure and temperature. Figure 10 also shows that increasing 

temperature and pressure makes sulfur slightly more siderophile, but this effect remains small, even 

debatable if error bars are considered.  

In contrast, when plotted as a function of oxygen fugacity (determined by the equilibrium Fe+ ½ 

O2 = FeO), the data define a single clear trend indicating that sulfur becomes more siderophile as 

conditions become increasingly oxidizing. The fundamental reason of such a trend is that sulfur 

dissolves in silicate melts as S
2-

 whereas it is in the S
0
 form in the molten Fe-metal. Redox conditions 

for core-mantle equilibration for Mars may be oxidizing (IW-1.5 for a Martian mantle with 18-20 

wt% FeO) relative to those for Earth (IW-2.2 for a Earth’s mantle with 8 wt% FeO) (see Righter et al., 

1996). Although no experimental data exist at fO2 relevant to Mars core-mantle equilibration, 

equation (4) predicts that sulfur should be less siderophile, as indicated by the dashed lines in Figure 

10.  

Figure 11 shows the expected relationship between sulfur in the mantle and sulfur in the core 

using equation (4) at 2100°C-14 GPa. For Mars, these P-T conditions of core-mantle equilibration are 

after Righter and Chabot (2011) (see also Debaille et al. (2009)). The strongly non-linear relationship 

is due to the non-ideal behaviour of sulfur in molten iron. If we adopt a sulfur content in the Martian 

core to be in the range of 14-18 wt%, as suggested by cosmochemical constraints (Dreibus and 

Wanke, 1985; Wanke and Dreibus, 1994: averaging ~14.2%) or as inferred from inversion of recent 

geodetic data (Rivoldini et al., 2011; estimated at 16±2%), the sulfur content in the Martian mantle is 

calculated to be 2000-2200 ppm. This corresponds to 10 - 20 times more sulfur than in the Earth’s 

mantle (assuming S-content in the Earth’s mantle at 120-250 ppm after Dreibus and Palme, 1996 ; 

McDonough and Sun, 1995 ; Allègre et al., 2001). It is interesting to note that 15 wt% sulfur in the 

Martian core corresponds to the eutectic composition at the pressure of the core-mantle boundary (23 

GPa) (as defined by Fei et al., 1997; see also Morard et al., 2008). As this eutectic has a very low 

temperature (1400K), we could expect that a Martian core with 15 wt% sulfur is presently liquid 
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(Stewart et al., 2007). This would also corroborate gravity constraints that imply an entirely fluid 

Martian core (Marty et al., 2009).    

There are however several reasons to question existing estimates of the sulfur content in the 

Martian core. Cosmochemical inferences are strongly model-dependent, especially for volatile and 

siderophile elements, and it is difficult to assess uncertainties. A major factor in suggesting a sulfur 

rich core is the depletion of chalcophile elements in martian meteorites, suggesting they were stripped 

into a S-rich core (Righter and Humayun, 2012). However, sulfide fractionation from S-rich Martian 

basalts may also lead to depletion in chalcophile elements and interpretation of element depletions in 

terms of core-mantle differentiation may be non-unique as increasingly recognized for the Earth 

(Righter et al., 2007). Geodetic constraints are less model-dependent, but the assessment of the 

Martian core sulfur content by Rivoldini et al. (2011) assumes ideal mixing for volume properties of 

sulfur in iron molten core. Recent experimental data collected at 4 GPa (Nishida et al., 2008) on liquid 

Fe-S mixtures show that the density of molten iron is weakly affected by the addition of up to 20 at% 

sulfur, which indicates strongly non-ideal volume of mixing. Thermodynamic analyses of the effect of 

increasing pressure on the liquidus of the Fe-rich side of the Fe-FeS system (Buono and Walker, 

2011) indicate that pressure would tend to make mixing properties more ideal (e.g. Gibbs free energy 

of mixing between Fe and FeS), but it is actually difficult to retrieve information about the partial 

molar volume of S from such thermodynamic treatment. If the volume mixing properties of Nishida et 

al (2008) still hold at higher pressure (see discussion in Buono and Walker, 2011), it is expected that 

density would be relatively insensitive to sulfur content in the core of Mars, making the Rivoldini et 

al. (2011) assessment provisional (maximum S-content). In contrast, if non-ideal volume of mixing of 

the Fe-S system vanishes at pressures higher than 4 GPa (i.e. 10 GPa), the core of Mars is expected to 

be S-rich and probably still fully molten (Stewart et al., 2007; Rivoldini et al. 2011).  

Gaillard and Scaillet (2009) preferred to ignore the high sulfur content of Mars suggested by 

cosmochemical considerations and instead assumed that the bulk sulfur content of terrestrial bodies 

are similar. If we consider that Mars has a sulfur content similar to bulk Earth, metal-silicate 
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partitioning calculations shown in Figure 11 would then indicate likely sulfur contents of 700-900 

ppm for the Martian mantle and 1-3 wt% for its core. We can therefore conclude that the sulfur 

content of the Martian mantle must be in the range of 700-2000 ppm. It is worth noting that, even if 

large uncertainties for the sulfur content of the core persist, the uncertainties for the sulfur content of 

the Martian mantle are comparatively much smaller, because of the flattening of the metal-silicate 

partitioning for high sulfur content. All in all, the S content of the Martian mantle remains well above 

the sulfur content on the Earth’s mantle (Table 2). 

 

 

b. Mantle melting, basalts and the crust 

 

Adopting a sulfur content in the mantle of Mars in the range 700-2000 ppm permits a mass-

balance calculation for the maximum content of sulfur in basalts formed upon mantle melting. 

Assuming 10-20 % of partial melting and considering that sulfur is perfectly incompatible during 

melting, then between 3,500-18,000 ppm sulfur can be expected in primary mantle Martian basalts 

(0.35 to 1.8 wt% S). However, the sulfur content in basaltic liquids produced by mantle melting is 

limited by the saturation in sulfide (FeS). The sulfur content of basalt formed upon mantle melting at 

sulfide saturation therefore provides the maximum sulfur content that basalts can convey upon ascent 

to the surface.  

The equilibrium between sulfide and basaltic melts can be written as: 

FeS
sulfide

 + ½ O2
 
= FeO

basalt
 + ½ S2        (6) 

O’Neill and Mavrogenes (2002) reformulated the above equilibrium and combined it with eq. (5) so 

that the sulfur content of basalt at sulfide saturation can be formulated independently of both fO2 and 

fS2: 

Ln (XS2-)
ppm-basalt

 = G°(6) / [ RT ] + ln Cs – ln aFeO      (7) 
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The sulfur capacity Cs is the same as in eq. (5), aFeO stands for the activity of ferrous iron in silicate 

melts (Gaillard et al., 2003a) and G°(6) is the Gibbs free energy of equilibrium for eq. (6).  

Such a concept (i.e., that the sulfur content at sulfide saturation does not depend on fO2) remains 

valid provided that one considers only ferrous iron in eq. (7) and not total iron as obtained using 

standard analytical procedures. Accordingly, eq. (7) is strictly fO2 independent only when conditions 

are sufficiently reducing (<FMQ) to neglect the presence of ferric iron in the melt, which is indeed 

likely for Martian basalts. Keeping this restriction in mind, the sulfur content of Martian basalts at 

sulfide saturation is therefore a function of pressure and temperature, but also a function of melt 

composition, particularly its iron content.  

Gaillard and Scaillet (2009) used equation (7) to show that Martian basalts can contain up to 

4000-7000 ppm sulfur upon mantle melting under the P-T conditions inferred from multiple saturation 

experiments (Monders et al., 2007; Musselwhite et al., 2006). Experiments done by Righter et al. 

(2009), confirm these calculations, suggesting sulfur contents at the low end of the Gaillard and 

Scaillet (2009) calculated range (Figure 13). These studies illustrate how the sulfur content of basaltic 

compositions increases as a function of total iron content (reported as FeO). Shergottite-like basaltic 

compositions have FeO in the range 16-20 wt%, which compares favorably to an estimate of the FeO 

content for the overall Martian crust of 18.2% (Taylor and McLennan, 2009). According to the 

experiments of Righter et al. (2009) (1-8,000 bar and 1200-1500°C; that are shown in Figure 13 by 

the empty red circles), such iron-rich melts can dissolve up to 3000-5000 ppm sulfur at sulfide 

saturation. Considering the likely P-T conditions of mantle melting on Mars, as inferred by Monders 

et al. (2007) and Musselwhite et al. (2006), Righter et al (2009) concluded that primary martian 

basalts must contain 3000-4000 ppm dissolved S. Under similar conditions, Earth’s mantle-derived 

basalts can dissolve about 1000-1500 ppm, which was the value adopted by Johnson et al. (2008) as 

the sulfur content in Martian basalts. The latter value would imply that Martian basalts are 

undersaturated in FeS during mantle melting, a view which conflicts with simple mass balance 

arguments. Indeed, given the Martian mantle sulfur concentration inferred above (700-2000 ppm S), 
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and assuming that 10-20% of mantle partial melting is needed to produce Martian basalts, Martian 

basalts with 4000 ppm S would not exhaust the mantle in sulfur. 

The Martian crust is dominated by basaltic compositions and Taylor and McLennan (2009) 

concluded that a large fraction of the crust (~70-90%) was “primary” and thus formed or was strongly 

influenced by magma ocean processes (Elkins-Tanton et al., 2005). The sulfur content of the Martian 

crust can therefore be estimated via the concept of sulfur content at sulfide saturation. We therefore 

conclude that the Martian crust has a bulk sulfur content of 3500-4000 ppm. This should nevertheless 

be regarded as a maximum S-content.  

 

3. Volcanic degassing, redox state and water content of Martian basalts 

Upon magma ascent, the decrease in pressure acts against FeS saturation, whereas cooling 

should promote FeS stability (Mavrogenes and O’Neill, 1999; Holzheid and Grove, 2002). For fast 

rising magmas, such as hot martian basalts, cooling must be limited during ascent. We therefore make 

the simplifying assumption that all sulfur dissolved in the basalt formed at mantle conditions is 

entirely conveyed to the surface. 

a. Degassing trends in the C-H-S-O system 

Based on the above considerations, we adopt the average sulfur content of primary Martian 

basalts as 3500 ppm, which is admittedly a conservative estimate, and further assume that this amount 

of sulfur is conveyed by the melt throughout the Martian crust. This simplification may also apply to 

~80% of the primary basaltic Martian crust likely formed as a result of magma ocean processes (e.g., 

Elkins-Tanton et al., 2005; Taylor and McLennan, 2009). The amount of sulfur eventually released 

into the atmosphere during magma degassing is complex and depends on a variety of parameters that 

we discuss below. Degassing of a magma ocean has been addressed in Gaillard and Scaillet (2009) 

and shown to be unimportant for S-species and instead dominated by CO and H2 species. We 
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concentrate hereafter on extrusive post-magma ocean magmatism, as defined by Craddock and 

Greeley (2009), which is dated from the middle Noachian to late Amazonian. Our approach differs 

from Righter et al. (2009) who considered that most degassed shergottites have between 1500-2000 

ppm S and subtracted this number from the sulfur content of primary mantle basalts (3500-4000 ppm) 

to obtain averaged degassed sulfur. Here, following Gaillard and Scaillet (2009), we simulate 

equilibrium degassing of primary shergottitic basalts. During degassing variable amount of sulfur is 

lost into the atmosphere, in equilibrium with different gas species, whose relative abundances depend 

on pressure, oxygen fugacity, water content, as observed on Earth (Gaillard et al., 2011).  

Since volatile solubilities are primarily pressure dependent (e.g., Behrens and Gaillard, 2006), 

the pressure at which degassing occurs is of prime importance. We can, for example, distinguish 

intrusive magmas, which degas at depth, from extrusive ones that release gases directly into the 

atmosphere. More degassing is expected for the extrusive regime than for the intrusive one, but 

variations in atmospheric pressure, which possibly occurred throughout Mars’ history, must have also 

greatly influenced the nature and amount of volatiles expelled by sub-aerial volcanic eruptions. We 

could also consider the influence of the eruptive dynamics as addressed by Wilson and Head (1994). 

If explosive basaltic eruptions have been facilitated on Mars compared to the Earth due to low 

atmospheric pressure and lower gravity (Wilson and Head, 1994), we may expect that the gas 

composition of subaerial emissions is inherited from melt-gas equilibria occurring at pressures 

different (higher) than the atmospheric pressure. Overall, it is probable that Martian eruptive 

dynamics are not so critical if volatile contents in Martian basalts are small (see below). Plinian or 

strombolian basaltic eruptions, as occurring in subduction settings on Earth, are associated with pre-

eruptive volatile contents generally exceeding 3 wt% H2O and more than 1 wt% CO2 (e.g., Aiuppa et 

al., 2010). Evidence for such elevated concentration levels, typical of arc-volcanoes on Earth, have 

been so far lacking for Martian basalts.   

Table 3, which provides calculations of the amount of volcanic volatiles emitted in ppm-wt of 

magma erupted (for a sulfur content of the primary basalt of 3500 ppm), illustrates the effect of the 
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pressure of degassing (500 bar for intrusive magma emplacement; 1, 0.1, 0.01 bar for atmospheric 

degassing under an atmosphere of variable density). Calculations are performed here in the C-O-H-S 

system and the mass fraction of the following species are shown: CO2, CO, H2O, H2, SO2, S2, H2S. It 

is noteworthy that, in all cases, calculated CH4 concentrations are negligible at the pressure-

temperature of volcanic degassing even under strongly reduced conditions (Gaillard and Scaillet, 

2009). It appears that degassing occurring at elevated pressure (500 bar, intrusive magma) emits only 

C-species. Subaerial degassing occurring at variable pressures, from 1 to 0.01 bar, shows major 

differences. At 1 bar, little sulfur is emitted in comparison to degassing at 0.01 bar. This means that 

sulfur mostly remains in the lava in the case of eruption in an atmosphere of 1 bar, whereas if the 

same lava flows in an atmosphere at 0.01 bar, most of its sulfur will outgas. We emphasize here that 

such calculations are not aimed at equilibrating the composition of volcanic gases with that of the 

surrounding atmosphere. The atmosphere is not chemically participating in the process of volcanic 

degassing but it is physically controlling the final pressure of melt-gas equilibration. Equilibration of 

the melt with the composition of the atmosphere is impossible as the rate of redox equilibration and 

diffusion of volatiles into a cooling lava is far too slow (Berhens and Gaillard, 2006; Pommier et al., 

2010).   

Table 2 also shows some chemical effects, which are also important and may interfere with the 

effect of degassing pressure. The most studied chemical parameter is oxygen fugacity. Under reducing 

conditions, similar to IW, sulfur is only moderately volatile, and it tends to remain in the basaltic melt 

even at low pressure. Under oxidizing conditions, similar to FMQ, within the oxygen fugacity range 

indicated by Martian meteorites (Herd et al., 2002; Herd et al., 2005), sulfur is more volatile and more 

sulfur can be degassed to the atmosphere (Gaillard and Scaillet, 2009). The positive effect of oxygen 

fugacity on the efficiency of sulfur degassing at atmospheric pressure is shown in Figure 13, which 

also illustrates the role of water: for low pre-eruptive water contents, sulfur degasses weakly whereas 

water-rich melts (by martian standards) efficiently lose much of their sulfur (Gaillard and Scaillet, 

2009). As for the previous set of calculations, the starting S content is fixed at 3500 ppm. The impacts 
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of changes in fO2 or water content on the amount sulfur outgassed are both positive and comparable in 

magnitude. Reduced hydrated (IW, 0.4 wt% water) Martian basalts would degas sulfur as efficiently 

as oxidized dry ones (FMQ-0.5, 0.1 wt% water). Maximum sulfur degassing is obtained for hydrated-

oxidized melts (0.4 wt% water, FMQ-0.5) which release into the atmosphere 75% of their initial S-

content. All this discussion is related to Figure 13 showing degassing at 0.1 to 0.01 bar. 

 

b. Defining fO2-water content of basaltic shergottites 

 

To date, there are insufficient data in hand to constrain the initial average water content of Martian 

basalts. Martian meteorites may have contained 140-260 ppm water (McCubbin et al., 2010) and there 

is evidence that their parental melts may have contained more water (McCubbin et al., 2012). One 

estimate (McSween et al. 2001) suggests a water content <1.8 wt%, which is likely an upper limit, and 

which falls within the range of terrestrial magmas: arc-basalts, among the most hydrated magmas on 

Earth, have about 3 wt% water (e.g., Wallace, 2005); MOR-Basalts (Mid Ocean Ridge), which 

constitute 75% of the Earth’s volcanism, have 0.1 wt% water (e.g., Saal et al., 2002) and hotspot 

basalts have broadly 0.2-1 wt% (e.g., Dixon et al., 1997).  

Since the efficiency of sulfur degassing is being essentially controlled by pre-eruptive water 

content and fO2 conditions, it follows that constraints on the sulfur content of degassed Martian 

basalts can be used to infer the fO2 - water content prevailing during lava emplacement and degassing. 

To this end, Figure 13 shows the range of sulfur content analysed in shergottites (source data 

compiled Meyers 2008; see in addition Gibson et al., 1985; Zipfel et al., 2000; Lorand et al., 2005; 

and references in Righter et al., 2009). The figures yield a range from 1300 to 2700 ppm sulfur. A 

potential limitation of such an approach is that Martian meteorites may not represent the composition 

of a melt, but instead reflect the effect of cumulate processes. Righter et al. (2009) nevertheless 

considered that a basaltic shergottite with sulfur content at 1600 ppm, provides a reasonable estimate 
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for degassed Martian basalts. If we assume that 1500-1800 ppm sulfur remains in the shergottite lava 

after degassing, the fO2-water content conditions needed to yield such S-content after degassing at 

final pressure 0.1-0.01 bar are as follows: IW / 0.4wt% H2O; FMQ-1.5 / 0.2 wt% H2O; FMQ-0.5 / 0.1 

wt% H2O. Given that the upper range of fO2 estimated for Martian meteorite (FMQ for nakhlites and 

chassignites; Herd et al., 2002; Herd et al., 2005) does not apply to shergottites, we can eliminate the 

uppermost fO2 conditions. We hence conclude that water content of at least 0.2 wt% is required by the 

sulfur left over in Shergottite magma after degassing. Water content of 0.2 wt% is a minimum 

because it matches the uppermost fO2 recorded for Shergottites. Mc Cubbin et al. (2012) also recently 

provided geochemical indications based on melt/apatite water partitioning that are consistent with 

water content for the parental melts of shergottites close to 0.2 wt%. If IW is representative of the 

redox state of shergottite magmas, then Figure 13 indicates that 0.4 wt% water is needed: more water 

would be required if more reduced conditions prevailed, which cannot be excluded given that the 

lowermost fO2 for shergottite parental melts is IW-0.5 (Herd et al., 2002). Therefore, the range of 

oxygen fugacity recorded for shergottites, which spans over 4-log units, can be used along with Fig.13 

to infer the corresponding variation in water contents of Martian primitive basalts, from 0.2 to 0.6 wt 

%, in the fO2 range FMQ-1.5 to IW-0.5, respectively.   

c. Changing fO2 during degassing of basaltic shergottites 

There is no consensus on the origin of oxygen fugacity variations for Martian shergottites. 

Assimilation of crustal material has been suggested (Wadhwa, 2001; Herd et al., 2002), but such 

oxidized crustal material remains to be identified. At the low oxygen fugacity of Martian basalts 

(relative to Earth’s basalts), only a very small amount of ferric iron is present in the melt and the 

buffering capacity of such melts is low. Furthermore, varying oxygen fugacity from IW-0.5 to IW+3 

as recorded in Shergottite rocks implies only moderate changes in ferric-ferrous ratio, with the 

implications that such fO2 changes do not require significant redox transfers (or mass transfer of 

oxygen). In Figure 14, the fO2 changes (see also Burgisser and Scaillet, 2007; Gaillard et al., 2011) 
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resulting from the degassing of Martian basalts have been calculated for different initial water 

contents, and two representative initial fO2 (IW; FMQ-1.5). The initially oxidized melt does not 

change much in fO2 for degassing in the range 10-1000 bar, but for pressures lower than 10 bar, SO2 

degassing from S
2-

 in basalts causes a strong fO2 decrease. The initially reduced melt exhibits a more 

complex pattern. A severe oxidation in the range 1-1000 bar is calculated and the magnitude of this 

oxidation correlates with pre-eruptive water content. This is due to the outgassing of water and CO2 

which both decompose into the fluid as H2 and CO species respectively (which both have very low 

solubility in the melt, Gaillard et al., 2003b; Morizet et al., 2010). Degassing of H2S, which is 

dominant in the pressure range 1-1000 bar (see also Zolotov, 2003 for computation of the gas phase) 

produces no effect on fO2 (Gaillard et al., 2011). At pressures lower than 10
-1

 bar, sulfur degassing as 

SO2 (SO2 being the dominant S-species in the gas, see also Zolotov, 2003) decreases fO2 as described 

above. It is noteworthy that reduction trends associated with degassing of sulfur may well explain 

mineralogical and geochemical observations in nakhlites too (Righter and Humayun, 2012; Chevrier 

et al., 2010). It thus appears that the simple process of volatile degassing upon magma ascent implies 

fO2 variations that reproduce the range recorded by shergottites and to a lesser extent in nakhlites. In 

essence, such results can be used to argue that all shergottites initially derived from parental melts at 

an fO2 close to IW and with water and sulfur contents of 0.4-0.6 wt% and 0.35 wt%, respectively. 

McCubbin et al (2010) reported a range of water content, 0.4-0.8 wt%, for Chassigny parental magma 

that are broadly compatible with such estimates. Nakhlites are slightly more oxidized than shergottites 

and might have experienced degassing with similar impacts on redox state (eg. SO2 degassing leading 

to reduction). It is, however, difficult to provide any estimates of redox state and water content of 

their source regions or parental melts. Our approach, which only assumes equilibrium degassing, is 

relatively robust and the resulting inverse approach can account for the available observations. 

Equilibrium degassing, like equilibrium crystal fractionation or equilibrium melting (Baratoux et al., 

2011), provide us essential constraints as it pinpoints which chemical fractionation trend should have 

occurred under the sole assumption of thermodynamic equilibrium. It constitutes an essential 
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approach since many of the relevant chemical parameters controlling Martian magmatic processes 

(e.g., water content, fO2, source vs. shallow status) are poorly known, largely because of the paucity 

of direct petrological observations, and also because Martian meteorites may not be straightforwardly 

reflective of the Martian magmatic processes (McSween et al., 2009).  

 

4. Sulfur emissions from volcanic vent to exosphere. 

 

a. Sulfur degassing and speciation: Ancient vs. recent Mars 

 

The calculations described above indicate that a melt with 0.35 wt% sulfur (this study), 0.4 wt% 

water (this study), 200 ppm CO2 (Stanley et al., 2011) and fO2 close to IW (this study) may be 

representative of primary shergottitic basalts. During subaerial volcanism, such melts degas mixtures 

whose composition depends significantly on venting pressures (Zolotov, 2003; Gaillard and Scaillet, 

2009). Ancient volcanism/magmatism on Mars, such as that associated with crust formation, was 

voluminous (Taylor and McLennan, 2009), intense and likely to have conveyed to the atmosphere an 

amount of gas sufficient to produce an atmospheric pressure close to 1 bar (Grott et al. 2011). On the 

other hand, present-day atmosphere on Mars has a low pressure and the shift from a dense to a 

tenuous atmosphere remains enigmatic (Barrabash et al, 2007). 

Shergottites (and thus the various parameters inferred above) might not be representative of the 

Martian crust as a whole (McSween et al., 2009; Taylor and McLennan, 2009). Nevertheless, 

calculated gas compositions (Table 3 and figure 15 as a function of pressure), reveal several trends 

that are independent of the pre-eruptive melt chemical (volatile-free) features. For instance, degassing 

at a pressure slightly above but of similar magnitude to present day conditions (0.01 bar) produces 

volcanic gases that are dominated by sulfur species, even if the absolute amount of S emitted per gram 



 33 

of lavas erupted remains small at low fO2 and low pre-eruptive amount of water (Table 3). 

Furthermore, sulfur emissions in a tenuous atmosphere (0.01 bar) could have been greatly increased if 

either basalt water content or its oxidation state, or both, were higher. In detail, an increase in both fO2 

and water content also produces an increase of SO2 with respect to H2S and S2 species.  

If degassing occurred at 1 bar, the total sulfur species (SO2+S2+H2S) amount to << 1000 ppm 

whatever the conditions of water content and fO2. In most cases, at 1 bar degassing conditions, sulfur 

is a minor component of the fluid phase and H2S is the most abundant sulfur species on a molar basis 

(Fig. 15, Table 3). Such a high atmospheric pressure scenario applies to the earliest and intense phase 

of magmatism and degassing that triggered formation of the basaltic crust (Grott et al., 2011). It 

follows that sulfur emissions during this earliest and abundant volcanic phase on Mars were low with 

most sulfur being emitted as H2S (Gaillard and Scaillet, 2009; see also Zolotov, 2003). We may also 

consider that a large part of this early magmatism was intrusive and therefore degassed at crustal 

pressures, even if this is difficult to demonstrate. As shown in Fig.15 and Table 3, intrusive 

magmatism is characterized by very low sulfur emissions, all sulfur being expelled as H2S, whereas 

the CO and CO2 emissions are, in contrast, similar irrespective of whether extrusive or intrusive 

magmatism occurs. Further complications for C-species may arise if magma cooling at depth triggers 

graphite saturation, but this should only moderately alter the above conclusion on extrusive vs. 

intrusive degassing of CO and CO2. It seems likely therefore that the earliest pre-Noachian Martian 

magmatism associated with the formation of the crust, while voluminous, was associated with only 

moderate sulfur yields to the atmosphere because conditions of degassing were unfavorable to the 

release of S-species, and the small amount of S released was emitted as H2S. In contrast, C-species 

and water-species, probably dominated early magmatic emissions.  

The Tharsis region contains, by mass, a significant fraction of the volcanic material on Mars 

(Phillips et al., 2001), yet the outgassing of this structure is difficult to quantify because it is unknown 

what fraction of Tharsis’ mass was emplaced as extrusive versus intrusive material (Phillips et al., 

2001). Furthermore, while volcanoes in Tharsis may have remained active far beyond the intense 
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early period of magmatism forming >90% of the crust (Greeley and Schneid, 1991; McEwen et al., 

1999; Phillips et al., 2001; Fasset and Head, 2011; Craddock and Greeley, 2009), it is not well known 

how much magmatism occurred in this province on early Mars. In fact, due to the low erosion rates 

that have occurred on Mars since the Hesperian (Golombek et al., 2006), much more is known about 

younger volcanism than is for the most ancient volcanic crust (Craddock and Greeley, 2009). If such 

subaerial volcanism occurred in an atmosphere similar to that of the present-day, then venting 

pressures in the range 0.1-0.005 bar are expected. Under such conditions, much more sulfur is 

introduced into the atmosphere by volcanic degassing than at high atmospheric pressure conditions 

(≥1 bar). Table 3 indicates that on average 2000-2600 ppm S would be injected by subaerial basaltic 

eruption at low venting pressure. Furthermore, H2S constitutes only a minor part of sulfur species 

(typically <5% of total S) whereas SO2 becomes important (typically 30-50% of total S), if not 

dominant, for hydrous and oxidized conditions (75% of total S). Sulfur in the S2 form is also a major 

emitted species.  

So far we have considered here that the fO2 of Martian basalts did not significantly vary through 

time. The suggestion that oxygen fugacity during Martian mantle melting is buffered by graphite 

saturation (Stanley et al., 2011) calls for limited changes in fO2 in the mantle source of basalts. At first 

sight, this contrasts somewhat with the fact that the redox states of Martian meteorites span over 4 

orders of magnitude, which suggests that secular changes in Martian mantle redox state cannot be 

excluded. Secular variations in oxygen fugacity (mantle oxidation state increasing with time) could 

indeed induce a change in sulfur outgassing and speciation released by volcanic activity. However, 

figure 14 shows that degassing can also account for most of these fO2 variations. Finally, Zolotov 

(2003) and Gaillard and Scaillet (2009) have shown that even for reduced basalts, SO2 is the dominant 

degassed sulfur species released at low pressure (0.01 bar). 

To summarize (Figure 16), we can distinguish two eras with different amounts and types of 

volcanic sulfur injected into the atmosphere. (i) Ancient Mars (early to mid-Noachian), with higher 

fraction of intrusive magmatism and / or with extrusive emissions occurring in a relatively dense 
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atmosphere and / or characterized by a more reduced mantle source, resulting in volcanic gases with 

low sulfur content, dominated by H2S; and (ii) recent Mars, Hesperian to Amazonian, dominated by 

extrusive magmatism and / or degassing within a low density atmosphere and / or more oxidized 

basaltic eruptions that produced gases dominated by sulfur (SO2+S2+H2S) with H2S constituting a 

negligible fraction. This change in the regime of S delivered by volcanoes assumes the acceptance of 

several successive geochemical eras on Mars: The early clay period and the more recent sulfate 

period.  

b. Estimates of sulfur fluxes 

An important question is what is the total amount of sulfur that has been degassed over Martian 

geological history? Among other things, constraining this value constrains in turn the size of the 

sedimentary reservoir on Mars (McLennan, 2012). On Earth, a significant part of near-surface sulfur 

is recycled back into the mantle by plate tectonic processes leading to a complex S-cycle (Canfield, 

2004). On Mars, the absence of plate tectonics imposes that degassed S remains at or near the surface, 

where it has progressively accumulated. Nevertheless, estimating the total S flux is a daunting task. 

As described above, S degassing speciation and efficiency is highly variable depending on 

atmospheric (venting) pressure, mantle oxygen fugacity and the overall composition of magmatic 

gases, all of which are uncertain and likely to have changed over geological time (e.g., Fig. 16). In 

addition, the S contents of the Martian mantle and mantle-derived magmas (e.g., representativeness of 

shergottite magmatism for all of Mars), magmatic production rates over geological time, and the 

relative roles of explosive versus effusive volcanism (Wilson and Head, 1994) are still all imperfectly 

understood. 

A number of studies have recently estimated global Martian volcanic degassing rates, in each 

case constrained to be lower limits, and the wide range of derived values clearly illustrate some of the 

difficulties. Using various constraints on planetary degassing models (see original papers for details), 

Gaillard and Scaillet (2009) estimated that 5.4×10
21

 g of S had been degassed by subaerial volcanism 
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over geological times whereas Righter et al (2009) and Craddock and Greeley (2009) estimated S 

amounts are 1-2 orders of magnitude lower, from 4.5×10
19

 g to 1.7×10
20

 g, respectively.   

The estimates of Righter et al. (2009) and Craddock and Greeley (2009) rely on volcanic 

production rates determined by Greeley and Schneid (1991), which do not consider the early 

Noachian. McEwen et al. (1999) estimated Noachian volcanic rates and suggested that total Martian 

volcanism may have been more than a factor of 7 higher than that given by Greeley and Schneid 

(1991) due to much higher Noachian rates of volcanism. This in turn would lead to comparable 

increases to the S-degassing estimates of Righter et al. (2009) and Craddock and Greeley (2009).  

Accordingly, recent estimates, if recalculated to be consistent with the volcanic production rates of 

McEwen et al. (1999), agree to within about an order of magnitude, falling in the range ~5×10
20

 g to 

~5×10
21

 g. These values are still likely to be minimum estimates because volcanic production 

estimates of McEwen et al. (1999), corrected for a reasonable intrusive/extrusive ratio (<10), do not 

account for the entire Martian crust (Taylor and McLennan, 2009), the formation of which must have 

contributed some sulfur to the surface. 

Attempting to constrain the size of the Martian sedimentary mass, McLennan (2012) used an 

entirely different approach by assuming that the proportion of S degassed from the Martian mantle 

during crust formation and evolution was comparable to the Earth, which Canfield (2004) estimated to 

be ~11%. The rationale for this approach is that during mantle melting, S is incompatible and Mars is 

more differentiated (i.e., larger proportion of planet’s inventory of incompatible elements reside in the 

Martian crust compared to terrestrial crust) than Earth (Taylor and McLennan, 2009). The overall 

efficiency of S extraction from crust to exosphere, integrated over geological time was simply 

assumed to be comparable for the two planets. Correcting for differing masses and likely S 

concentrations of the terrestrial and Martian primitive mantles, McLennan (2012) arrived at a value of 

2.2×10
22

 g of degassed sulfur, about an order of magnitude greater than estimates based on magma 

degassing (Righter et al., 2009; Gaillard and Scaillet, 2009; Craddock and Greeley, 2009). 
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In the discussion above, it was concluded that the “best estimate” for Martian S-degassing rates 

were <1,000 ppm for high venting pressures (~1 bar), ~2,000-2,600 ppm for low venting pressures 

(<0.1 bar) and, at most, a few ppm S for the intrusive components of the magmatism. From the 

perspective of estimating a global flux, it should be kept in mind that these values were derived in a 

similar manner to those of Gaillard and Scaillet (2009). The magnitude of S degassing that took place 

during early magma ocean processes (that led to the primary crust), which could represent as much as 

80% of the total crust (Taylor and McLennan, 2009), is shown in Gaillard and Scaillet (2009) to be of 

minor importance in comparison to the more recent extrusive volcanism.  

What do these values imply for total sulfur degassing? A simple model, again likely to be a 

lower limit, can be constructed in which younger volcanism (Hesperian and Amazonian; 1.97×10
23

 g 

extrusive magma; Greeley and Schneid, 1991) is taken to occur at low atmospheric pressure and thus 

result in 2,000 ppm S degassing and early volcanism (Noachian; 1.45×10
24

 g extrusive magma; 

Greeley and Schneid, 1991; McEwen et al., 1999) is taken to occur at high atmospheric pressure 

resulting in 200 ppm S degassing. Since reliable values are unavailable for combined intrusive- and 

(especially) magma ocean-related magmatism (1.97×10
25

 g using crustal mass estimate of Taylor and 

McLennan, 2009) we adopt another order of magnitude lower value of 20 ppm sulfur (calculated after 

Gaillard and Scaillet, 2009). This leads to a lower limit total S degassing estimate of 1.1×10
21

 g, 

which is intermediate to the range for previous S-degassing calculations given above and about an 

order of magnitude less than the estimate of McLennan (2012). 

 

c. Global volcanic C/S ratio: Mars vs. Earth 

An important suggestion connecting the sedimentary records on Mars and its history of volcanic 

degassing is that ancient volcanic gases must have had high carbon/sulfur ratios possibly similar to 

those on Earth (see Symonds et al., 1994), whereas recent Martian volcanic gases had C/S ratios ≤ 

0.1, which is about 10 times lower than their terrestrial counterparts. This simple mass balance 
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consideration is probably the most likely explanation for the growing body of evidence for Martian 

surface chemistry dominated by sulfur whereas the Earth’s surface is more balanced between 

hydrogen-carbon-sulfur related chemical processes (Berner, 1995; 2005; Halevy et al., 2007; Gaillard 

and Scaillet, 2009). This in turn suggests that the sulfur driven surface chemistry of Mars is a 

somehow relatively recent evolution, i.e. it operated when the atmospheric pressure dropped below 

0.1 bar. If, as often proposed (Melosh and Vickery, 1989; Jakosky and Phillips, 2001), ancient Mars 

had a denser atmosphere, then the C/S ratios of magmatic gases were high and more similar to those 

of the modern Earth. The timing of interruption of the Martian core dynamo may have triggered the 

loss into space of the early dense atmosphere (Fassett and Head, 2011). The Martian dynamo ceased 

early, but no consensus has been established about the exact timing (Early Noachian to late Noachian, 

see discussion in Fassett and Head (2011) and also Milbury and Schubert (2010)). Impact erosion of 

the atmosphere has occurred throughout the Noachian (Melosh and Vickery, 1989) and it may 

therefore have also contributed to the decreases in atmospheric pressure demanded by numerous 

observations. Alternatively, carbonate formation in ancient sedimentary or hydrothermalised rocks 

(Ehlmann et al. 2008; Michalski and Niles 2010), whose importance is not yet clearly identified, 

might have contributed to a decrease in atmospheric CO2 pressure down to below 0.1 bar. 

The low H/S, low C/S ratios and high SO2 content of volcanic gases on Mars contrast with 

extrusive emissions on Earth. It is noteworthy that most extrusive rocks on Earth are emplaced in 

submarine conditions (average pressure 400 bar). Gases emitted by degassing at 400 bar are sulfur-

poor and CO2 dominated. Only subaerial volcanism significantly contributes to sulfur emissions into 

the Earth’s atmosphere. Gaillard et al. (2011) suggested an increasing amount of subaerial volcanism 

on Earth is the cause of a major change in composition of volcanic gases that became increasingly 

sulfur-rich and SO2-rich, with major impacts on surficial biogeochemistry. The Archean era on Earth 

has been clearly shown to display limited sulfur cycling whereas through time, sulfur increasingly 

invaded the exosphere (Lyons and Gill, 2010). As summarized in Figure 16, there are good reasons to 

believe that ancient Mars (early Noachian) had limited sulfur cycling and was wetter and warmer 



 39 

(Bibring et al., 2006). The large sulfate deposits now widely observed on the Martian surface, and the 

surface waters from which they were deposited, occurred during the late Noachian-Hesperian times 

(Figure 16). To some extent, it is possible that increasing contributions of sulfur to surficial chemical 

processes is a feature common to both Mars and Earth. 

To summarize: (1) most extrusive volcanic degassing on Mars globally occurred at low pressure 

(<0.1 bar) in contrast to the Earth (where submarine volcanism dominates), (2) Martian basalts must 

contain more sulfur than terrestrial basalts, and (3) under the reduced conditions prevailing in the 

Martian mantle, enhanced graphite stability implies low CO2 content in basalts (Stanley et al., 2011), 

which is 3-10 times lower than the CO2 content of Earth’s basalts. All this contributes to the low C/S 

of gases emitted on Mars, which can be lower by a factor of 10 compared to Earth.  

The consequences for the chemistry of Martian surface waters are also significant. Low C/S, 

with sulfur mostly injected as SO2, would likely create aqueous systems dominated more by some 

form of a sulfur cycle (i.e., formation of strong S-based acids such as sulfurous and sulfuric acid) than 

the carbon cycle (weak C-based acids such as carbonic and organic acids). The acidic nature of 

Martian surface waters and the lack of carbonate minerals in late Noachian-Hesperian sediments in 

turn may be related to the composition of volcanic gases that for the reasons discussed above were 

different from those emitted on Earth.    
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5. Sulfur cycling: volcanoes, atmosphere, climate, and prospective. 

 

a. Sulfur and climate models 

Farquhar et al. (2000) have shown that some sulfur found in certain SNC meteorites has mass-

independent isotopic fractionation, interpreted as evidence of an atmospheric source for sulfur. In 

detail, atmospheric SO2 that carries the isotopic mass independent fractionations must be involved in 

the sulfur transfer from atmosphere to the Martian regolith. Martian atmospheric SO2, deriving from 

volcanic activity, may have well influenced the climate on early Martian. Halevy et al (2007) and 

Bullock and Moore (2007), following the pioneering study of Wanke and Dreibus (1994), suggested 

that an SO2 greenhouse effect may have maintained warm conditions on early Mars that in turn could 

be reconciled with the clay deposits of the early-mid-Noachian and the formation of valley networks. 

This warm period goes along with wet conditions and may imply atmospheric pressures greater than 

about 0.5 bar. Atmospheric simulations performed in several studies corroborated the possibility of 

warming by SO2. Johnson et al. (2008) performed calculations showing that atmospheric temperature 

could increase above +10°C if a concentration level of ca. 100s ppmv SO2 is reached in a CO2 

atmosphere of 0.5 bar. But, Johnson et al. (2008) did not consider that SO2 could react in the 

atmosphere and produce H2SO4 and S8 aerosols (Settle, 1979; Tian et al., 2010). These factors 

subsequently were considered by Johnson et al (2009) and imply that the SO2 lifetime in an ancient, 

reduced, denser, wetter Martian atmosphere is on the order of 100s years. This may allow transient 

warm periods to occur after volcanic eruptions, provided that volcanic eruptions supplied enough 

atmospheric SO2. The period of warming is however interrupted, and under certain circumstances, 

compensated by a period of cooling mainly due to H2SO4 and S8 aerosols being formed by 

photochemical processes from SO2 and successive reactions with H2O to form sulfuric acid (Tian et 

al., 2010). Like Johnson et al. (2009), Tian et al. (2010) used photochemical models but they found 
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SO2 lifetimes much shorter than predicted by Johnson et al., (2009), typically on the order of several 

months. It is thus possible that intensive SO2 emission due to volcanic eruptions produced warm-wet 

conditions that lasted 1 to 100 years which were followed by cooling and glaciations due to formation 

of atmospheric S-aerosols. All this may well be consistent with various geomorphological features of 

Mars (Andrews-Hanna and Lewis, 2011).  

The overall atmospheric processes are, however, complex and, accordingly, no consensus has 

yet emerged. The warming effect and the SO2 lifetime correlate with the amount of atmospheric SO2 

and the total atmospheric pressure (i.e. PCO2). The redox state of the ancient Martian atmosphere as 

well as its humidity also influences SO2 lifetime and the extent of H2SO4 formation (Johnson et al., 

2009; Tian et al. 2010). A possible way to resolve this complexity would be to construct an integrated 

Martian model in which the initial status of atmospheric models would be imposed by volcanic inputs 

similar to those calculated here (Table 2).  

Johnson et al. (2008) attempted such an integrated approach but their estimates of volcanic 

sulfur emissions did not consider the high sulfur content in Martian basalts due to their high iron 

content (see Section 3.b.). In addition, their inference that SO2/H2S ratio equals 1, taken from Halevy 

et al. (2007), is not consistent with the arguments put forward in this review (see also Gaillard and 

Scaillet, 2009). Accordingly, Johnson et al. (2008) may have underestimated volcanic SO2 production 

by a factor 4-6.  

Most atmospheric models neglect species other than CO2-H2O. All volcanic gas compositions 

shown in Table 2 indicate that carbon monoxide is present at concentration levels as high as carbon 

dioxide and that the fraction of H2 is significant, whereas these species are generally not taken into 

account. In addition, all atmospheric simulations allow SO2 concentration and atmospheric pressure to 

vary independently whereas the above analysis clearly shows that high volcanic SO2 emissions would 

occur only if the atmospheric pressure is low (0.1 bar or less). Volcanic degassing in an atmosphere of 

1 bar would produce gas dominated by C and H-species with little sulfur (and all sulfur as H2S). 

Hence, if ancient warm and wet Mars existed with an atmosphere similar to 1 bar or higher, it follows 
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that SO2 from volcanic sources is an unlikely candidate to trigger warm conditions. Furthermore, 

phyllosilicate deposits that dominated at this time (early-middle Noachian) do not require high 

activity of sulfur species in the exosphere. Instead, sulfate deposits that appeared later, during the late 

Noachian and the Hesperian, reveal high activities of oxidized S-species, which further generated 

acidic surface waters (see parts 1 & 2 and below). There is therefore incompatibility between the 

period of warm and wet Mars and the conditions conducive to high SO2 emissions by volcanic 

eruptions. The early wet-warm Mars must have had atmospheric pressures compatible with CO2-H2O 

+/- H2S volcanic emissions, whereas the late Noachian, with sulfate deposits, was more likely in a low 

pressure atmosphere allowing volcanic emissions dominated by SO2 (Fig. 17). Accordingly, the 

analysis provided in this paper lends support to the conclusion of Tian et al. (2010) that early Mars 

must have been kept warm by mechanisms other than volcanic SO2 greenhouse warming.  

It is, however, conceivable that the middle-late Noachian Mars had short episodes of warm 

periods due to high volcanic SO2 emissions and its relatively long residence time in a dry atmosphere. 

If we assume that flood basalts on Mars were comparable to those on Earth, 100 km
3
/yr of lava 

eruption rates is a reasonable estimate (Keszthelyi et al., 2006). Using gas compositions in Table 3, 

this implies SO2 degassing of about 10
17

 g per year and total sulfur (SO2+S2+H2S) emissions of more 

than twice this value. Tian et al (2010) suggested that such a value is necessary to elevate the average 

surface temperature above the freezing point of water. Intermittent warming due to sporadic outbursts 

of volcanic SO2 may well be possible during the late Noachian-Hesperian epochs: however, 10
17

 g of 

SO2 in an atmosphere with 4 bar CO2 suggested by Tian et al. (2010) is incompatible with elevated 

volcanic SO2 emissions. 

To conclude, atmospheric models involving S-species are a fascinating issue for future research 

on the ancient climate on Mars. The expected efforts will require volcanic emissions and atmospheric 

chemical physical processes to be related. 
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b. Sulfur cycling models 

The sulfur-rich character of sedimentary deposits on Mars (see Section 2), apparent dominance 

of sulfate minerals over carbonate minerals (see Section 1) and evidence at both Meridiani Planum 

and Gusev crater for extensive low pH environments in the form of widespread Fe
3+

 mobility under 

oxidizing conditions have led to suggestions that some form of a sulfur cycle dominated surficial 

processes over much of Martian geological history. Such a sulfur cycle would likely produce strong 

S-based acids (e.g., sulfuric acid) and thus surficial processes would be characterized by widespread, 

relatively low pH conditions (~pH2-pH5). This is in contrast to terrestrial settings, where the carbon 

cycle, characterized by relatively weak C-based acids (e.g., carbonic acid, organic acids) and modest 

pH conditions (~pH5-8), dominates. McLennan (2012) recently reviewed the nature of such a 

potential Martian sulfur cycle and parts of that discussion are briefly summarized below. 

Any Martian sulfur cycle would likely be divided into early and late phases with a transition 

occurring approximately at the time of loss of widespread aqueous conditions and reduction of 

magmatic rates, and thus sulfur degassing into the atmosphere, sometime >3Gyr. In addition to being 

a time of voluminous magmatism (McEwen et al., 1999), the early (>3Gyr) history of Mars was also 

characterized by widespread aqueous conditions, possibly facilitated by an early greenhouse effect 

(but see discussion above). Results from experiments, thermodynamic models, and direct 

measurements of Martian soils and rocks suggest that a variety of sulfur reservoirs and sulfur cycling 

processes may have been involved (Fig. 17a). 

Acid alteration of basaltic rocks and minerals is now well established for the Martian surface, at 

least during parts of its early history (McLennan and Grotzinger, 2008). Among the major processes 

that have been documented are low temperature alteration (i.e., weathering) that produced the brines 

that in turn gave rise to evaporitic minerals such as those in the Burns formation, and higher 

temperature epithermal to hydrothermal fluids, such as those that have been identified in the 

Columbia Hills of Gusev crater.  Extensive occurrences of sulfate and possible chloride minerals 

identified from orbit and by in situ techniques on rocks and soils also point to widespread formation 



 44 

of a variety of evaporite minerals across the Martian surface, dominated by Ca-, Mg- and Fe-sulfates 

of varying hydration states.  

Correlations between occurrences of sulfate minerals and iron oxides on the Martian surface 

identified from orbit and also inferred for the Burns formation sulfate-rich outcrops (i.e., occurrence 

of hematitic concretions) further suggest a possible genetic link between iron and sulfur cycling 

(McLennan et al., 2005; Bibring et al., 2007; Tosca et al., 2008). Thus, Tosca et al. (2008) carried out 

experiments and modeling that evaluated diagenetic oxidation and ageing of iron sulfates to form iron 

oxides. These oxidation-ageing processes are almost certainly irreversible under Martian surficial 

conditions and also result in the liberation of sulfur that in turn may be recycled back through the 

sedimentary system. 

As described above, Halevy et al. (2007) have proposed an even earlier version of the sulfur 

cycle to account for early widespread occurrence of clay minerals, but dearth of carbonates, in the 

earlier Noachian (e.g., Fig. 7). In this model, relatively reducing atmospheric conditions resulted in 

inhibition of oxidation of atmospheric SO2 and thus formation of sulfurous, rather than sulfuric, acids 

leading to low but more modest pH conditions (~pH4.5-pH5.5). These conditions might allow for the 

formation of clay minerals while at the same time inhibit precipitation of carbonates. This model 

predicts formation of widespread sulfite minerals in the early Noachian for which there is no evidence 

but on the other hand, if formed, would be unlikely to survive later oxidizing conditions. 

With the precipitous decline of aqueous activity and volcanic rates sometime before about 3 

Gyr, the rate at which sulfur was degassed into the surficial environment likely also diminished. 

Nevertheless, there is evidence that surficial processes continued to be influenced by some form of a 

sulfur cycle after this time and through essentially to the present (Fig. 17b). Thus, the chemical 

compositions of relatively altered present-day rock surfaces and their relatively fresh interiors 

(exposed by the rock abrasion tool, RAT), analyzed by Spirit in Gusev crater, point to continued low 

water/rock ratio acid alteration, albeit likely at greatly reduced rates and scales (Hurowitz et al., 2006; 

Hurowitz and McLennan, 2007). The origin of acidity in younger environments is less clear. Although 
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rates of magmatism are minimal during most of the Amazonian, volcanism is generally accepted to be 

continuing through to the present. As discussed above, under low atmospheric pressures, sulfur 

degassing is more efficient. Other possible sources include recycling of surface sulfate deposits by 

impact processes (McLennan et al., 2006; Zolotov and Mironenko, 2007) and continued slow 

recycling of sulfur related to ferrous iron sulfate oxidation processes (Fig. 17). 

 

6. Conclusion. 

a. Secular changes in sulfur outgassing rates 

Numerous deposits of sulfate-bearing, ancient sedimentary rock, as well as the presence of a sulfur-

rich global regolith demonstrate that a large cache of S of likely volcanogenic origins is sequestered in 

the crust. The mineralogy of these deposits generally suggests they formed under water-limited, acidic 

aqueous conditions. In this review, we provide some constraints on how and when sulfur was 

delivered to the surface environment. 

Our review makes it clear that volcanic sulfur may have been delivered by volcanoes on Mars but 

only as a consequence of subaerial volcanism that occurred in a low pressure atmosphere (ie. < 0.1 

bar). The apparent shift on Mars from an early phase, where clay minerals and carbonates formed 

more widely to a younger period seemingly dominated by sulfate-bearing sedimentary rocks might be 

linked to a decrease in atmospheric pressure, consistent with elevated sulfur emissions. We must 

recognize that interpretation of such secular changes on Mars may be non-unique and degassing 

simulations show that a change in Martian basalt redox state (increasingly oxidizing) or an increase in 

their water content could also result in enhanced volcanic sulfur outgassing. Changes in source 

processes might be expected with cooling of the mantle (Baratoux et al., 2011) but our current 

understanding of Martian igneous petrology is not sufficient to identify secular changes in water 

content or redox state with any confidence. Accordingly, we conclude that a decrease in average 
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venting pressure due to a decrease in atmospheric pressure better explains the emission of significant 

volcanic sulfur in the atmosphere. 

The parallel with the Earth is tempting. Like early Mars, early Earth also had limited surficial 

sulfur activities. Archean oceans on Earth are believed to be nearly sulfur free whereas the 

Proterozoic is marked by an increase in the sulfur content of surface waters. Sulfate is the second 

most abundant anion of modern terrestrial seawater (Lyons and Gill, 2009). Gaillard et al. (2011) 

suggested that such secular changes in sulfur delivery on Earth must have been related to 

modifications of the conditions of volcanic degassing rather than to a change in the volcanic source 

processes. We may adopt a similar model in the case of Mars. Enhanced volcanic sulfur emissions 

due to changes in atmospheric pressure (Gaillard and Scaillet, 2009) are then likely to have modified 

the composition of volcanic gases from carbon-dominated to sulfur-dominated. This in turn may have 

triggered major changes in the surface chemistry and in the nature of sedimentary processes.  

b. Sulfur on Mars, what’s next? 

In spite of the overwhelming abundance of sulfate on Mars’s surface, relatively few studies have 

addressed the fate of this element in the various Martian reservoirs (except for sedimentary deposits, 

see review and references in this paper and in McLennan, 2012). Igneous sulfur, volcanic sulfur, 

atmospheric sulfur and climatic sulfur have each been addressed in some studies, which contrasts with 

numerous investigations on the fate of CO2 or water and its relationships with ancient climate and 

surface chemistry (See Forget and Pierrehumbert, 1997; Phillips et al., 2001; Grott et al., 2011). The 

examination of our current understanding of sulfur cycling and its impact on climate indicates a need 

of studies that thoroughly integrate igneous fluxes and atmospheric processes; studies that to date are 

missing. 

Fluids that deposited sedimentary sulfates on Mars also deposited chlorine-bearing minerals 

(Clark et al., 2005; Squyres and Knoll, 2005). The fate of chlorine, like that of sulfur, seems to be 

connected to acidic brines, abundant and common in the late Noachian. Both sulfur and chlorine most 
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likely originate from volcanic emissions (Gaillard and Scaillet, 2009; Filiberto and Treiman, 2009). 

The volcanic degassing of chlorine is however poorly known. Future work will therefore need to 

address the systematics of multi-component (C-O-H-S-Cl) volcanic degassing from Martian basalts.  

The environmental conditions responsible for sulfate deposits on Mars have been addressed 

recently (King et al., 2004; Tosca et al., 2005; Berger et al., 2009; McLennan, 2011) but our review 

reveals that many of the driving processes remain to be determined. Combined experimentation and 

thermodynamic/kinetic modeling will allow for the most significant progress. But it remains uncertain 

the degree to which evaporation or acidic alteration or both are responsible for sedimentary sulfate 

deposits. The relationship between acidity and redox state of surface waters is also controversial. 

Finally, the possibility of sulfurous acids rather than sulfuric acids needs to be addressed in greater 

detail. The occurrence of acidic conditions in water expelled from mines, that are related to elevated 

discharge of sulfuric acidic (Nordstrom, 2011), may be interesting to further investigate as an 

analogue to Martian brines (Burns, 2003; King and McSween, 2005). The sulfuric acids in such water 

nevertheless derive from oxidation of pyrite. This is an important difference with the Martian context 

where most, if not all, of the sulfuric acid may derive from volcanic SO2 (Berger et al., 2009). 

In spite of the many uncertainties, an emerging picture is that martian basalts are poor in CO2 

and poor in water (McCubbin et al., 2010), whereas they are rich in S (Gaillard and Scaillet, 2009) 

and in Cl (Filiberto and Treiman, 2009), in comparison to Earth’s basaltic rocks. This conclusion 

needs confirmation but it may indeed explain the S and Cl-rich nature of Mars’s surface, which 

contrasts with the H2O and CO2 rich Earth’s surface. The implications for the emergence of life and 

conditions favorable to that emergence need to be discussed in light of these fundamental 

geochemical differences, whose origin is intimately tied to planet formation and how volatiles (C-O-

H-S-Cl) have been accreted to and/or lost during planetary accretion and evolution.  
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Table. 

Table 1: Detections of sulfate minerals on Mars from orbital data. 

Description Lat Long Elev Minerals References 

Noctis Labrynthis -11 261,7 3500 PHS, MHS, S, P Weitz et al. 2011 

Gale Crater mound -5 137,5 -4000 PHS, MHS, P Thomson et al., 2011; Milliken et al., 2010 

Ophir Chasma -4,2 286 -2000 PHS, MHS, FeOx Wendt et al. 2011 

 -4,5 287 -600 PHS, MHS, FeOx Wendt et al. 2011 

 -3,5 287,1 -2500 PHS, MHS, FeOx Wendt et al. 2011 

 -4,4 288,4 -4500 PHS, MHS, FeOx Wendt et al. 2011 

Coprates Chasma -13 295,1 80 PHS, MHS Fueten et al. 2011 

Columbus Crater -29,4 194 900 PHS, MHS Wray et al., 2011 

Cross Crater -30,1 202,4 700 PHS, MHS Wray et al., 2011 

Capris Chasma -13,3 312,6 -1500 PHS, MHS Flahaut et al., 2010b; Gendrin et al. 2005 

polar till 82 115 -4500 PHS Masse et al. 2010 

polar dunes 82 200 -4200 PHS Langevin et al., 2005; Fishbaugh et al., 2007 

Mawrth Vallis 24,2 341,6 -3000 PHS, MHS Wray et al., 2010 

Mawrth Vallis 22,9 341,5 -3200 PHS, MHS Wray et al., 2010 

Mawrth Vallis 25,4 339,7 -3350 J Farrand et al., 2009 

Mawrth Vallis 25,5 340,7 -3585 J Michalski et al., 2011 

layered plains deposits -8,16 307,3 1824 FeSO4 Le Deit et al. 2010 

Opportunity landing site -1,95 354,5 -1383 J, PHS Glotch et al., 2006a 

Meridiani Plaunum 1 4 -1300 PHS, MHS Wiseman et al., 2010; Poulet et al., 2008; Wray et al., 2009 

 1 1 -1200 PHS, MHS Wiseman et al., 2010; Poulet et al., 2008 

 2 358,5 -1380 PHS, MHS Wiseman et al., 2010; Poulet et al., 2009 

Aram Chaos 3 339,2 -2700 PHS, MHS Lichtenberg et al. 2010; Glotch and Christensen, 2005; Masse et al., 2008 

Phoenix landing site 68,2 234,25 -4115 MgSO4, CaSO4 Kounaves et al. 2010 

Noctis Labrynthis -7,3 263,9 2000 MHS/PHS/? Mangold et al. 2010 

Ius Chasma -8,5 280,6 -3950 PHS, MHS, S  Roach et al., 2010 b 

layered plains deposits -8,3 274,8 4280 S, FeSO4 Weitz et al. 2010; Le Deit et al., 2010; Milliken et al., 2008 

layered plains deposits -9,6 280,8 3880 S, FeSO4 Weitz et al. 2010; Le Deit et al., 2010; Milliken et al., 2008 

layered plains deposits -6,8 283,5 4448 S, FeSO4 Weitz et al. 2010; Le Deit et al., 2010; Milliken et al., 2008 

layered plains deposits -4 296,5 2320 S, FeSO4 Weitz et al. 2010; Le Deit et al., 2008 

Juventae Chasma -4,4 297,6 -857 PHS, MHS Bishop et al., 2009 

 -4,6 296,9 -1357 PHS, MHS Bishop et al., 2009 

S. Highlands -49,2 14,5 500 S-Z Wray et al., 2009 

 -63,2 18,2 2247 PHS, MHS Wray et al., 2009 

Candor Chasma -5 283,5 550 PHS, MHS Murchie et al., 2009b; Mangold et al., 2008; Bibring et al., 2007 

 -6 283,8 3000 PHS, MHS Murchie et al., 2009b; Mangold et al., 2008; Bibring et al., 2007 

 -6 286 910 PHS, MHS Murchie et al., 2009b; Mangold et al., 2008; Bibring et al., 2007 

Miyamoto Crater -3,2 352,5 -1954 PHS, MHS Wiseman et al., 2008 

Gusev Crater -14,57 175,5 -1920 FeSO4 Lane et al., 2008; Johnson et al., 2007 

Melas -10,5 285,2 -100 PHS, MHS Gendrin et al., 2005 

 -12,5 290,3 -2500 PHS, MHS Gendrin et al., 2005 

Ophir Chasma -4,3 288,3 -4500 PHS, MHS Gendrin et al., 2005 

Candor Chasma -6,4 288,8 -2300 PHS, MHS Gendrin et al., 2005 

Hebes Chasma -1,2 284,8 -3052 MHS  Gendrin et al., 2005 

Capris Chasma -13,9 310 -3690 PHS, MHS Gendrin et al., 2005 

Iani Chaos -1,3 342,3 -2000 PHS, MHS Gendrin et al., 2005; Glotch and Rogers, 2007 

Aureum Chaos -3,5 332,5 -3780 PHS, MHS Gendrin et al., 2005; Glotch and Rogers, 2007 

Arisinoes Chaos -7,3 331,6 -3090 PHS, MHS Gendrin et al., 2005; Glotch and Rogers, 2007 
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Table 2: Sulfur content in the Martian core, mantle and basalts as deduced from partitioning 

modelling and comparison with Earth. For Mars, estimations are from this study for the Earth, see text 

for references. 

Reservoirs Mars Earth 

Basalt / basaltic crust 3000-5000 ppm 1000-1500 ppm 

Mantle 700-2000 ppm 100-250 ppm 

Core 2-16 wt% 0-5 wt% 
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Table 3: Calculated compositions of volcanic gases in ppm wt of Martian magmas. T = 1300°C. Gas 

compositions are computed following Gaillard et al., (2011), using solubility laws of Iacono-Marziano 

et al. (2012) for H2O-CO2, the work of Gaillard et al (2003b) for H2 and the sulfur capacity 

formulation from O’Neill and Mavrogenes (2002). Speciation in the C-O-H-S gas phase is computed 

following Shi and Saxena (1991).   

Pressure of degassing (bar) 500 1 0.10 0.01 

Conditions of magma emplacement Intrusive magmas Subaerial ancient Mars Subaerial recent Mars Subaerial present-day Mars 

IW, 0.01 wt% water, 0.02 wt% carbon dioxide     

H2O ppm wt 0 3 15 24 

H2 0 0 1 3 

H2S 0 1 3 4 

SO2 0 0 3 20 

S2 0 2 21 165 

CO 141 168 167 177 

CO2 75 96 98 82 

IW, 0.1 wt% water, 0.02 wt% carbon dioxide     

H2O 0 274 427 363 

H2 0 14 23 33 

H2S 0 49 70 50 

SO2 0 6 74 156 

S2 0 23 262 770 

CO 141 134 138 164 

CO2 74 147 142 100 

IW, 0.4 wt% water, 0.02 wt% carbon dioxide     

H2O 7 2323 2302 1952 

H2 1 58 86 115 

H2S 1 334 244 131 

SO2 0 238 616 1027 

S2 0 339 957 1595 

CO 142 93 114 140 

CO2 73 206 172 133 

FMQ-1.4, 0.01 wt% water, 0.08 wt% carbon dioxide     

H2O 0 9 34 39 

H2 0 0 1 2 

H2S 0 2 5 4 

SO2 1 166 332 404 

S2 1 176 548 1078 

CO 112 181 262 365 

CO2 559 640 513 352 

FMQ-1.4, 0.1 wt% water, 0.08 wt% carbon dioxide     

H2O 1 389 536 462 

H2 0 7 16 26 

H2S 0 63 69 44 

SO2 0 233 480 625 

S2 0 251 744 1338 

CO 78 132 188 252 

CO2 361 435 346 247 

FMQ-1.4, 0.2 wt% water, 0.08 wt% carbon dioxide     

H2O 4 1076 1173 999 
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H2 0 18 35 52 

H2S 1 154 126 72 

SO2 1 431 771 1053 

S2 0 417 966 1544 

CO 98 169 237 309 

CO2 479 553 446 334 

FMQ-1.4, 0.4 wt% water, 0.08 wt% carbon dioxide     

H2O 16 2533 2512 2178 

H2 0 42 69 96 

H2S 3 298 200 102 

SO2 1 781 1324 1910 

S2 1 601 1140 1562 

CO 113 184 251 320 

CO2 552 619 513 405 

FMQ-O.5, 0.1 wt% water, 0.08 wt% carbon dioxide     

H2O 1 469 605 538 

H2 0 6 14 23 

H2S 0 63 60 36 

SO2 14 783 1095 1319 

S2 4 503 1004 1521 

CO 50 160 250 345 

CO2 692 739 599 448 

FMQ-O.5, 0.2 wt% water, 0.08 wt% carbon dioxide     

H2O 6 1164 1271 1112 

H2 0 15 30 46 

H2S 1 140 108 60 

SO2 276 975 1387 1766 

S2 31 599 1095 1542 

CO 22 168 251 338 

CO2 749 725 595 459 

FMQ-O.5, 0.4 wt% water, 0.08 wt% carbon dioxide     

H2O 17 2669 2668 2350 

H2 0 36 61 87 

H2S 3 264 171 85 

SO2 15 1357 1981 2667 

S2 4 704 1137 1404 

CO 50 170 243 318 

CO2 692 713 598 480 
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Figure Captions: 

 

 

Figure 1.  A survey of sulfate detections to date is shown over a global map of surface albedo 

measured by TES. The detections are grouped into 3 categories shown symbolically, corresponding to 

layered Hesperian-Noachian sulfates (Yellow circles), polar sulfates (green circles), and sulfates 

measured or inferred within soils at landing sites (Red crosses).  
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Figure 2. MOLA topographic data are shown in for the Meridiani Planum area in “A.” THEMIS 

nighttime thermal infrared data are draped over daytime infrared data in “B.” Warm colors correspond 

to surfaces containing coarser grained or more well indurated materials.  In “C,” OMEGA spectral 

index maps are shown. Orange colors correspond to the 1.9-micron index that maps bound water; blue 

colors correspond to pyroxene minerals (after Poulet et al., 2009); and the green colors correspond to 

2.4-micron index values that correlate with sulfates. In “D,” TES hematite index data are shown 

draped onto THEMIS daytime infrared. The scale is from 10% to 18% hematite (after Christensen et 

al., 2001). 
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Figure 3. CRISM cube frt00016f45_07_if165l_trr3 shows sulfates in the Meridiani Planum area. The 

annotations “PHS” and “MHS” indicate the locates where spectra were extracted to show examples of 

polyhydrated and monohydrated sulfates, respectively. The spectra were ratioed against a spectrally 

unremarkable terrain. 
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Figure 4. OMEGA spectral index maps of the central Valles Marineris area are shown. The 2.1 

micron index (BD21) corresponds to detections of monohydrated sulfates and the BD24 map 

corresponds to polyhydrated sulfates.  

 

 

 

Figure 5. An OMEGA 2.4 micron spectral index map shows the location of sulfates in the northern 

polar region of Mars. The locations of the sulfates correspond roughly to locates mapped as the 

Olymbia Undae unit (Tanaka et al. 2003), and to unique regions in MOLA surface roughness maps.  
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Figure 6. Evaporite model (MER team, A) against by McCollom & Hynek, 2005 (B) analysis of the 

Burns formation composition. The evaporite model focuses on the “Meridiani trend” assuming a 

mixture between an altered basalt (pink square) and a sulfate salt. The McCollom and Hynek model 

assumes a mixture between a pristine basalt and a pure sulfur component. 
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Figure 7. SO3-basalt-water kinetic model (Berger et al. 2009) accounting for the “Meridiani  trend”. 

Small amount, ephemeral, but strongly acid brine reproduces the chemical and mineralogical  features 

of the Burn Cliff Formation. The variation of mineral composition with time is reported in the right 

graph. The chemical composition of the solid fraction (red) and brine (blue) is also showed with time 

in the left ternary diagram, and compared to the Meridiani compositions (black triangles). The best fit 

is obtained when assuming a concentrated sulfuric acid reacting with the rock for a short time, without 

in-situ evaporation of the resulting brine.  
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Figure 8. Aqueous concentration of free Fe
++

 species during dissolution of 1 mole of FeO (the ferrous 

component in mineral) by fluids of various acidity. The pH of the resulting solution depends on the 

concentration and also the nature of the acidic reactant. The conjugate anions strongly influence the 

amount of the aqueous ferric specie following a general equation: FeO + H2O + HX  aFe
++

aq + 

bFeX
-
aq + cFeX2 aq + dFeX2 solid.  
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Figure 9. A possible differential consumption of SO3 and CO2 with depth. SO3 first reacts  with the 

surface of the basaltic regolith, excluding the CO2 mineralization. CO2 reacts deeper, below the zone 

altered by SO3. 
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Figure 10. Sulfur partitioning between molten silicate and molten Fe-metal (D silicate / metal). The 

fraction of sulfur in the silicate melt is in ppm-wt S and the fraction of sulfur in the metal is in molar 

fraction (see eq. 4). Top panel shows sulfur partitioning as a function of temperature and indicates that 

sulfur becomes slightly more siderophile as temperature increases. Middle panel shows sulfur 
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partitioning as a function of pressure and indicates that sulfur become slightly more siderophile as 

pressure increases. Bottom panel shows sulfur partitioning as a function of oxygen fugacity 

_expressed in log-units relative to oxygen fugacity buffered by the iron-wustite, IW, assemblage_ and 

indicates that sulfur becomes increasingly lithophile as conditions are increasingly reducing. The 

combination of the three panels clearly indicates that oxygen fugacity (fO2) is the prime parameter 

controlling sulfur partitioning between molten metal and molten silicate. Changes in fO2 explains the 

large scatter that partitioning data otherwise shows when plotted as a function of pressure or 

temperature. In the bottom panel, the dashed line indicates sulfur partitioning calculated using 

equation (4). In agreement with existing experimental data, it predicts that S is increasingly 

siderophile as fO2 increases but it also predicts an inversion of the trend as fO2 is higher than IW-2. 

Above this fO2 value, increasing FeO content in the silicate (with increasing fO2 at metal saturation) 

implies that sulfur becomes increasingly lithophile with increasing fO2. There is however, no 

experimental data existing in this range of redox conditions, which however corresponds to that 

expected for Mars core-mantle equilibration. Experimental data from Ohtani et al. (1997), Kilburn et 

al. (1997) and Rose-Weston et al. (2009); Calculation after Gaillard and Scaillet (2009). 
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Figure 11. Likely ranges of sulfur content in the core and mantle of Mars. The red and blue curves 

show sulfur content calculated from the metal – silicate partitioning (eq.4) at 1900°C, 20 GPa and 

considering variable bulk sulfur content in the core-mantle system. The red curve shows calculation 

for a Martian core-mantle case (mantle FeO = 18 wt%) and the blue curve illustrate an Earth-like 

core-mantle case (FeO = 8wt%). The boxes indicate S-content suggested by previous studies: G&S 

refers to the estimation of Gaillard and Scaillet (2009) on S content in the mantle and core of Mars; a 

sulfur content in the Martian core in the range of 14-18 wt% has been suggested by cosmochemical 

constraints (D&W, Dreibus and Wanke, 1985; Wanke and Dreibus, 1994: averaging ~14.2%) or 

inferred from recent inversions of geodetic data (R, Rivoldini et al., 2011; estimated at 16±2%). 

Variations by a factor of 8 on estimations of sulfur content in the core between G&S and R only 

translate into a factor of 3 in mantle S content because of the strongly non-ideal activity-composition 

of sulfur in molten Fe-metal. 
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Figure 12. Sulfur content in basalts saturated in FeS as a function of FeO content in basalts. The red 

dots are experimental data taken from Righter et al. (2009) _ 0.1 MPa to 800 MPa, 1200-1600°C. The 

dashed line is a line drawn for visual guidance. Coloured boxes represent estimations of sulfur content 

in Martian basalts by Gaillard and Scaillet (G&S), Righter et al. (R), and Johnson et al. (J et al). The 

likely range of Martian sulfur content defined by the saturation in FeS upon mantle melting is 3500 

ppm (this study).  
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Figure 13. The efficiency of sulfur degassing from basalts as a function pre-eruptive water content 

and oxygen fugacity. Pre-eruptive sulfur content in basalts is shown by the horizontal pink line at 

3500 ppm S. Undegassed sulfur contents in basalts are represented by horizontal bars whose top and 

bottom values respectively correspond to 0.1 and 0.01 bar of degassing conditions. Values are taken 

from Table 2. Top panel shows undegassed sulfur in basalts as a function of pre-eruptive water 
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contents for two pre-eruptive oxygen fugacities (IW; FMQ-1.7). Bottom panel shows undegassed 

sulfur content in basalts as a function of pre-eruptive oxygen fugacity for three pre-eruptive water 

contents (0.1; 0.2; 0.3 wt% H2O). Pre-eruptive CO2 content in basalts varies with oxygen fugacity in 

agreement with experimental constraints on CO2 content in basalts at graphite saturation (Stanley et 

al., 2011). Horizontal boxes show the range of sulfur contents reported in SNC meteorites (see Meyer 

(2008) _1300-2600 ppm_ and the sulfur content in basaltic shergottites as evaluated in Righter et al. 

(2009)_1600 ppm_. These sulfur concentration ranges must be considered with cautions as many of 

the SNC rocks are cumulates and their sulfur content is poorly representative of that of the parental 

basaltic melts (Lorand et al., 2005). Nevertheless, degassed basalts with sulfur content at 1600 ppm 

are obtained if degassing from melts with pre-eruptive water content of 0.4 wt% and pre-eruptive fO2 

at IW and/or if degassing from melts with pre-eruptive water content of 0.2 wt% and pre-eruptive fO2 

at FMQ-1.7. Because FMQ-1.7 represents the upper most fO2 ranges for shergottites, it implies a 

minimum water content of 0.2 wt% for their parental melts if we admit that 1600 ppm S is a 

reasonable estimates for degassed mafic basalts on Mars’s surface. 
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Figure 14. Changes in oxygen fugacity during degassing of Martian basalts. As degassing occurs in 

response to decompression, the oxygen fugacity changes are shown as a function of pressure. Two 

conditions of pre-eruptive oxygen fugacity are considered: IW, the lower range, and FMQ-1.7, the 

upper range of fO2 (for Shergottites). From these two initial fO2 conditions, we also computed several 

possible pre-eruptive water contents (0.01 to 0.8 wt%). Pre-eruptive CO2 contents are taken following 

Stanley et al. (2011). Degassing from oxidized sources produces almost no effect on fO2 as melts rise 

through the crust, but near venting conditions, ie. 2-5 bars, fO2 strongly decreases as sulfur degases as 

SO2. Degassing from reduced sources produces a strong fO2 increase at crustal depth, which 

correlates with the pre-eruptive water contents. At venting conditions, SO2 degassing decreases fO2. 

See Burgisser and Scaillet (2007), Gaillard and Scaillet (2009) and Gaillard et al. (2011) for methods. 
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Figure 15. The composition of Martian volcanic gases as a function of pressure. Two simulations of 

basalt degassing in the COHS system are shown, representing two pre-eruptive conditions (Top panel: 

FMQ-1.7, 0.2 wt% H2O, 800 ppm CO2; Bottom panel: IW, 0.4 wt% H2O, 200 ppm CO2). These 

choices are based on observations in figure 4 that such pre-eruptive conditions conduct to degassed 

basalts with 1600 ppm S. Globally, C-species (CO2 and CO) dominate at pressure higher than a few 

tens bar. At lower pressure, water-species (H2O and H2) dominate. Both simulations show that total 

sulfur species (SO2+S2+H2S) concentration in the gas increases as pressure decreases. In detail, 
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however, there is a fundamental change in sulfur speciation at pressure of 0.2 - 3 bar depending on 

pre-eruptive conditions. At higher pressure, nearly all sulfur is present as H2S and at lower pressure, 

all sulfur is in SO2 and S2 forms. This shift in S-speciation is well-known from thermodynamic studies 

on basalt degassing (see Gaillard et al., 2011 and references therein).  

 

 

Figure 16. Schematic flowchart summarizing the timing of volcanic degassing in a general Martian 

time-framework. Interruption of the core dynamo and impact ejection of the atmosphere are the 

causes of a pressure decrease of the initial (primordial) atmosphere. Extrusive volcanism is not 

believed to have significantly decreased from the early Noachian to the late Hesperian. But in 

response to a decrease of degassing pressure (atmospheric pressure from ca 1 to ca 0.05 bar), the C/S 

ratio of volcanic gases severely decreased and their SO2 fraction became dominant over H2S. By the 

processes described in part 6 and 7, this led to extensive acidification of surface waters, and may have 
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influenced climate in a complex way. The phyllosilicate – sulfate shift may constitute the sedimentary 

record of such a change in gas compositions.   

 

 

Figure 17.  Simplified model for a possible Martian sulfur cycle. (a) Early Mars when abundant sulfur 

was delivered to the surface through magmatic and related processes. (b) Recent Mars after reduction 

of rated in magmatism and sulfur degassing. During this, sulfur species taking part in surficial 

processes were likely dominated by sulfur recycling processes with only minor contributions related 
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to magmatic degassing. The possible link between the sulfur and iron cycles at the Martian surface 

through oxidation of iron sulfates to iron oxides is shown by the grey arrow. After McLennan (2012). 


