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Abstract

Sheet nacre (so called mother�of�pearl) is a hybrid biocomposite with a multiscale structure including

nanograins of calcium carbonate (97 wt.% � 40 nm in size) and two organic matrices: (i) the �intracrys-

talline� (mainly composed by silk��broin�like proteins), and (ii) the �interlaminar� one (mainly composed

of β−chitin and proteins). Micro/Nanotribological behaviour was investigated on sheet nacre displaying

various con�gurations (so-called face-on and edge-on), by varying the orientation of the matrices vs. the

sliding direction. Di�erent levels of frictional dissipated energy were observed as a function of both: (i) the

type of matrix which is involved in the dissipation mechanism (intracrystalline or interlaminar), and (ii) the

orientation of the matrices themselves vs. the sliding direction. These various dissipative ways can involve

either, multiscale wear processes entailing the both matrices, or irreversible deformation only, without any

wear process. They have been identi�ed and explained by considering the double composite structure of

sheet nacre.

Keywords: mother of pearl, biocrystal, modulus, strength, organic matrix, in situ wear assessment,

tribolayer

1. Introduction

Sheet nacre (the pearly internal layer of molluscan shells) is a hybrid biocomposite with a multiscale

structure including nanograins of calcium carbonate (97 wt.%) [1, 2, 3] and two organic matrices (3 wt.%)

[3, 4, 5]. At the nanoscale, biocrystals (ca 40 nm in size) are drowned in an �intracrystalline� organic

matrix (4 nm thick) in order to form a microsized �at organomineral aragonite tablet (thickness about

500 nm) [6, 7, 8, 9]. At a larger scale [10, 11, 12, 13, 14], these tablets are themselves surrounded by a

porous �interlaminar� organic matrix (thickness: 40 nm, porosity in-between 35% and 59%) building up a
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material displaying highly interesting properties [15, 16, 17, 18, 19, 20, 21]: low density, good biocompatibility

[22, 23, 24, 25] and osteogenic properties for human bone regeneration [22, 26, 27, 28]. Thus, this material

is currently being studied as small prostheses (eg, rachis and dorsal vertebra prostheses, which are both

subjected to microslip and fretting wear), or for the creation of new organic/inorganic bio-inspired hybrid

materials [29, 30, 31, 32, 33, 34, 35].

Recently, friction and wear behaviour of sheet nacre were studied in dry friction [36, 37, 38, 39] and in

liquid medium [36], respectively. Results have shown that:

� (i) the environment strongly in�uences the wear mechanisms of nacre by means of various physico-

chemical interactions on the water-soluble �intracrystalline� organic phase [36];

� (ii) the energy absorption ability of the matrix is drastically reduced in presence of nanoshocks generated

during friction by the dynamic solicitations. As a result, cracks migrate in the tablet involving the

formation of wear nano-debris [37];

� (iii) at high mean contact pressure, additional thermal-induced wear damage involves the degradation

of the organic matrices, that increases dramatically the wear rate of nacre [38, 39, 40];

Thus, for this kind of solicitations, nacre is clearly subjected to peculiar thermal [38, 41] and mechanical

[36, 37] damage processes, which occur at two order of magnitude, involving its double composite structure �

i.e both organic matrices are always directly involved in the friction-induced energy dissipation mechanisms

[42, 43, 44, 45, 46, 47, 48] and in the subsequent damage mechanisms, as well [42, 49, 50, 51, 52, 53]. So, the

orientation of the tablets [14, 54] � and especially the one of the matrices themselves � with respect to the

sliding direction seems to be a key parameter for understanding the dissipation mechanisms of sheet nacre

under dynamic solicitations, as met in tribological tests. Indeed, anisotropic speci�cities of sheet nacre under

quasi-static solicitations � (i.e, tension [15, 49, 55, 56], three� and four-point bending [44], shear [44, 57],

micro� [56, 57, 58, 59] and nano-indentation [37, 53, 60, 61, 62, 63]) have been actively studied or modelled

[45, 54] in the past. But, up to now, tribological results have been achieved with a face-on con�guration sheet

nacre only [36, 37, 38, 39] � i.e, when the tablets are oriented more or less parallel to the friction direction

�, leaving the study of the real in�uence of the tablets orientation on the wear mechanisms not investigated

yet.

This work aims to compare friction and wear mechanisms of sheet nacre cut with a face-on and a edge-on

con�guration, respectively, in order to understand how the orientations of the organic phases vs. the sliding

direction can change the ways to dissipate the frictional energy. In order to avoid any additional thermal

e�ects, and to better control the environment around the contact, tribological tests have been carried out
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under low contact pressures, by using a multi-asperity nanotribometer [64, 65, 66] working in an environmental

glove box .

2. Experimental part

2.1. Samples

Samples are made of dry sheet nacre extracted from giant oyster Pinctada maxima [3, 4, 6, 7, 8, 36, 67] cut

with a face-on and edge-on con�guration, respectively (�g 1). Surfaces are polished with a RMS roughness

about 14.5 ± 0.6 nm. Three con�gurations have been tested with respect to the direction of sliding:

� a face-on con�guration parallel to the direction of sliding (�g 1a);

� an edge-on con�guration perpendicular to the direction of sliding (�g 1b);

� an edge-on con�guration parallel to the direction of sliding (�g 1c);

As mentioned previously, this type of sheet nacre has a multiscale structure [3, 68, 69]:

� On the one hand, aragonite tablet (500 to 700 nm thick) are surrounded by an �interlaminar� thin

network (about 40 nm thick) of a biological porous organic adhesive (average porosity 49±12% [63])

mainly composed of β−chitin and proteins [10, 11, 12, 13].

� On the other hand, each aragonite tablet is constituted by nanosized biocrystals of CaCO3 surrounded

by a water-soluble �intracrystalline� organic phase (mainly silk-�broin-like proteins) organised as a

foam with very thin walls and closed porosity (4 nm) [3, 4, 6, 7, 8, 36]. The average size of these initial

biocrystals is about 38±21 nm [62].

In addition, mechanical properties of each component � i.e biocrystals and organic matrices � have previously

been assessed by using SEM analysis, acoustic microscopy [63, 70], spherical and sharp nanoindentation tests

[37, 60, 62], combined with multiscale numerical simulations using FEM [37, 39] and homogenization approach

[62]. Main mechanical features are reported in table 1. The mechanical properties of the �interlamellar�

matrix are very close to the ones determined by Xu et al using more local assessments [71].

2.2. Nanotribological setup

2.2.1. in situ friction assessment

The experimental device (�g 2a) is constituted by a ball-on-disc nanotribometer manufactured by CSM

Instruments (Switzerland) [66, 72]. A pin is mounted on a sti� lever, designed as a frictionless force transducer

(Kx= 265.1 Nm-1; Kz = 152.2 Nm-1). The friction force is determined during the test by measuring the

de�ection of the elastic arm (low load range down to 50 µN). The ball (Si3N4 − Ø 1.5 mm) is loaded onto

a �at nacre sample with a precisely known force using closed loop. The load and friction resolutions are
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about 1 µN. Tribological tests are carried out in linear reciprocating mode at room temperature (22°C)

under ambient air (RH 35%), in an environmental glove box. The normal load varies from 10 to 80 mN

corresponding to a contact pressure varying from 0.15-0.65 GPa. The stroke frequency, the stroke length

and the stroke length resolution are respectively 10 Hz, ±0.5 mm, and 250 nm. The velocity and the sliding

distance are respectively 1 mm.s-1 and 0.2 m, corresponding to 100 cycles in order to reach the steady state

in friction.

Due to the level of the frictional energy really dissipated within the contact (few µJ/cycle), the thermal

contribution is greatly limited and clearly too low for melting the matrices [38, 39, 40, 41]. The energy

dissipated per cycle is computed as the work of the tangential force versus displacement loops recorded

on-line (�g 2b). In order to notice any e�ect of the nacre microarchitecture orientation on the tribological

behaviour, di�erence between the �forward� and �backward� friction is assessed by studying any asymmetry

along the y-axis of the friction loops with respect to ordinate origin (�g 2b). This di�erence is then compared

to the standard deviation of the friction coe�cient, extracted from the friction loop.

2.2.2. in situ wear assessment

As shown in the �g 2a, a real-time depth measuring optical sensor is used for studying any time-dependent

wear process [66, 72]. Its depth range varies from 20 nm to 100 µm with a resolution of about 20 nm. Results

is compiled as a triboscopic approach [72] giving simultaneously, and for each cycle:

� (i) the friction map (�g 3a), plotting the evolution of the friction coe�cient along the friction track ;

� (ii) the wear map (�g 3b) which reveals any time-dependent wear process and/or potential build-up

of a tribolayer within the contact. This map is computed from an in situ depth map by taking into

account the tilting and the initial deformation of the samples, respectively [72, 73]. Finally, an in situ

wear rate assessment can be directly extracted from this wear map (�g 3b) as a classical pro�le analysis

(�g 3c), by using a topographical software (eg. Gwyddion).

2.3. Atomic force microscopy

Topography of the friction tracks and elemental wear mechanisms are assessed using an AFM Dimension

3000 connected to aNanoscope IIIa electronic controller (Digital Instruments Santa Barbara, USA). Its spatial

and vertical resolutions are lower than 1 nm and the �eld depth is in-between 100 nm and 100 µm. Maps

were achieved at high resolution (512×512 pixels) using an intermittent contact mode (TappingModeTM )

and a Phase Detection Imaging. The silicon nitride probe displays a tip rounding lower than 10 nm. The

work frequency, the sti�ness and the cantilever amplitude are respectively: 270 kHZ, 42 Nm−1, and 25 nm.

According to the size of the images (between 0.25 µm2and 25 µm2) the scanning rates varies from 1 µms-1 to

4



E (GPa ν σy(GPa)
Aragonite biocrystals 96.75 (5.67)a 0.17 (0.05)d 13.4 (2.1)b

50% porous �interlaminar� organic matrix 13.4 (0.79)c 0.29 (1.7e-3) 0.118 (0.02)
�intracrystalline� organic matrix 3.81 (0.41)d 0.296 (1.4e-3)d �

a) assessed by sharp nanoindentation test [62]
b) computed by a Hertzian model [62]
c) assessed by combining acoustic microscopy and spherical nanoindentation test [63]
d) computed by a Mori-Tanaka model [62]

Table 1: Mechanical properties of elemental components of dry sheet nacre

Figure 1: Various con�gurations of the samples: (a) face-on orientation ; (b) edge-on perpendicular to the sliding direction, and
(c) edge-on parallel to the sliding direction

Figure 2: Nanotribological setup: (a) picture showing the two real-time measuring optical sensors (i) the horizontal one records
the friction force and (ii) the vertical one records the time-dependent wear properties; (b) typical view of the friction loop
allowing to compute the dissipated frictional energy, and the di�erence between the forward and backward friction force
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Figure 3: Typical views resulting from the in situ triboscopic approach giving simultaneously and for each cycle: (a) the
evolution of the friction coe�cient along the friction track (friction map); (b) the evolution of the time-dependent wear process
and/or potential build-up of a tribolayer within the contact (wear map); and (c) the in situ wear rate assessment by using a
classical pro�le analysis
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2.4 µms-1. The size of the wear debris and the initial biocrystal nanograins respectively, were determined from

the phase contrast maps with a speci�c algorithm developed for the SPM data analysis software Gwyddion

(http://gwyddion.net).

3. Results and discussion

3.1. Nanotribological results in the face-on con�guration parallel to the direction of sliding

As shown in the �g 4a and b, there are two di�erent frictional regimes for the same range of normal loads

(10 to 80 mN), :

� (i) a high level regime (�g 4a) displaying a high level coe�cient of friction, which is very close to the

one observed in our previous macrotribology experiments [36, 37]. As expected (�g 5), these high

friction values are connected to a high wear rate (20 nm.cycle−1.N−1). Wear (�g 5a) was computed

by integrating the height distribution histograms (�g 5b) assessed, for each normal load, by using a

phase-shifting interferometric pro�lometer on the inverted friction scars (�g 5c) [74].

� (ii) a low level regime (�g 4b) which is, in contrast, speci�c to the micro/nanotribology experiments,

and never observed before.

However, whatever the frictional regime, a load bearing capacity is clearly developed by increasing the normal

load (�g 4a and b): the higher the normal load, the lower the coe�cient of friction. So, an in situ approach

is needed for explaining what is happening within the contact.

3.1.1. in situ tribological behaviour in the face-on high level regime

Fig 6 displays the in situ tribological behaviour in the face-on high level regime, for two typical normal

loads (20 mN and 70 mN), respectively. Whatever the normal loads, the friction maps (�g 6a and b) are very

unstable along the friction track and with time, because a heterogeneous tribolayer is continuously built-up

and removed within the contact, as shown in the wear maps (�g 6c and d).

In order to estimate the amount of wear debris trapped within the contact, the tribolayers' thickness is

computed, in both cases, from the pro�le analyses (�g 6e) carried out on the respective wear maps (�g 6c

and d). After a �rst deformation due to the initial contact (�g 6e), a gradual build-up of the tribolayer is

clearly observed, starting after the ten �rst cycles. Its thickness evolves with the number of cycles but, it

increases with the normal load and even overshoots several micrometers for the highest normal load. Thus,

this thickness is always higher than a single tablet's thickness (about 500 nm), revealing that several layers

of tablets are probably involved in the wear process. Besides, successive jumps and drops observed on the

wear pro�le (�g 6e) are always in the same order of magnitude as the tablets' thickness, suggesting some

tablets' movement under the slider: hence, pieces of tablets are directly involved by the wear mechanism. As

7



Figure 4: Evolution of the coe�cient of friction with the normal load in the face-on con�guration: (a) high level regime, and
(b) low level regime

Figure 5: Wear assessment in the face-on high level regime: for each applied normal load, wear (a) is computed by integration
of the height distribution histograms (b) from the topographical features of the inverted friction scar (c)
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a result, the amount of the wear debris trapped within the contact is very important and so, the size of the

wear debris itself, as reported in the typical SEM views after sliding (�g 7).

� For the lowest load (�g 7a), the contact occurs mainly on the �rst bodies. The size of the huge debris

clearly involves the cracking of tablets and so, the fracturing of the �interlaminar� organic matrix as a

main wear mechanism.

� For the highest normal load (�g 7b and c), the tribolayer appears more continuous due to a much more

important amount of debris. In addition to the initial tablets' fracturing, the wear behaviour involves

the crushing of the initial huge debris (�g 7b). Hence, their progressive compaction as a continuous

tribolayer (�g 7c) is probably connected to the development of the mentioned load bearing capacity, as

observed in �g 4a. This process can be attributed to the nanograined-structure of the hybrid biocrystal

which does not undergo brittle fracture, but ductile deformation at this scale.

As expected, the main wear mechanism in high level regime is then similar to the one reported in macrotri-

bological tests carried out with face-on sheet nacre samples [36]: (i) the initial fracture of the �interlaminar�

organic matrix, (ii) the crumbling of the aragonite tablets and �nally, (iii) the agglomeration and compaction

of the crumbled particles within the contact. Besides, the load bearing capacity e�ect observed as a function

of the normal load seems only connected to the amount of compacted ductile debris trapped within the con-

tact, which act on the frictional behaviour as a negative feedback loop [75]. In addition, no e�ect due to the

nacre microarchitecture orientation has been observed in this regime: the frictional behaviour is completely

controlled by the thick tribolayer. So, what is the di�erence with the low level regime?

3.1.2. in situ tribological behaviour in the face-on low level regime

In contrast to the previous regime, the low level regime has never been observed in macrotribological

tests. As shown in �g 8a for the same range of normal loads, the level of the dissipated frictional energy

is only the quarter of the one observed in the high level regime. Nevertheless, this behaviour is connected

with a signi�cant wear process, as shown on the typical SEM views observed after sliding (�g 8b and c).

It is worth of noting that this di�erence of dissipated energy is similar to the ratio between the strengths

of the organic matrices (table 1). So, a change of wear mechanism � which would involve the fracturing of

�intracrystalline� instead of �interlaminar� organic matrix � is probably expected.

To check this assumption, in situ tribological behaviour is reported in �g 9, for two normal loads (20 mN

and 70 mN). In contrast to what is observed in high level regime (�g 6), friction maps are very smooth along

the friction track and with time, whatever the normal load (�g 9a and b). Similarly, wear maps are also

quite homogeneous and reveal that cohesive tribolayers are continuously built-up during the test (�g 9c and

d). They are never removed during the tests, in contrast to what is observed for the high level regime (�g

9



Figure 6: in situ tribological behaviour in the face-on high level regime for two applied normal loads: (a) friction maps at 20
mN, and (b) at 70 mN; (c) wear maps at 20 mN, and (d) at 70 mN; (e) corresponding in situ wear pro�le assessment carried
out in the center of the friction track

Figure 7: Typical SEM views of the friction track in the face-on high level regime: (a) at low applied normal load (20 mN � bar
is 10 µm);(b and c) at high applied normal load (70 mN � bar is 10 µm and 20 µm, respectively)
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Figure 8: Tribological features in the face-on low level regime: (a) evolution of the dissipated energy with the applied normal
load vs. that of high regime; (b) and (c) typical SEM views of the friction track at low (20 mN) and high normal load (70 mN),
respectively (bars are 50 µm)
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6). The cohesion ability of tribolayers being generally linked to the size of the elemental wear debris which

constitute them [75], AFM image analysis (�g 9e) con�rms that this size is very close to the one of the initial

biocrystals.

Wear pro�les (�g 10a) extracted from wear maps (9c and d) also con�rm the presence of a very thin

tribolayers whose thicknesses are never over the initial tablet's thickness (above 500 nm). That means that

only one layer of tablets is here involved in the wear process. This result is also observed on typical SEM

views (�g 10b).

Thus, in face-on low level regime, the wear mechanism would be mainly a fracturing within the tablet

involving the �intracrystalline� organic matrix only. That would explain the reduction of the frictional

dissipated energy mentioned above (�g 8a). Besides, this wear mechanism is clearly observed after sliding,

on typical SEM (�g 10c) and AFM views (�g 10d), which both reveal the crumbling of the tablets instead of

a clear cutting (�g 7a). This observation is also in good agreement with the distribution of wear debris' size

(�g 9e). So, the main wear mechanism is due here to a detachment of initial biocrystals from the top row of

tablets by breaking of the �intracrystalline� organic matrix. However, why are there two frictional levels in

this face-on con�guration?

3.1.3. Transition from low to high level regime

Typical pro�lometrical view of the friction track after the sliding test (�g 11a) reveals that the high level

regime is always observed when the friction track has passed through an initial scratch, deeper than the

tablets' thickness. In order to check this assumption, tribological behaviour of initially scratched surfaces

is compared to the one of virgin surfaces (�g 11b). As expected, whatever the normal load, the coe�cient

of friction strongly increases and stays at the high level in presence of an initial scratch. Thus, in face-on

con�guration, friction and wear appear very sensitive to the track smoothness, as shown in �g 11c. As long

the scratches are still below the critical depth, i.e, close to the tablets' thickness, fracturing occurs within

the tablets involving the �intracrystalline� matrix only. But as soon as the scratch's thickness overshoots

the critical size (here around 35 cycles), the fracturing location moves from the �intracrystalline� matrix

to the �interlaminar� one. As a result, the frictional dissipation energy suddenly increases because the two

matrices are involved, but, at that time, the in�uence of the �intracrystalline� matrix is almost imperceptible,

completely hidden by the �interlaminar� one.

As expected, the in�uence of nacre microarchitecture controls the tribological behaviour in low level

regime, only. Because in high level regime, the formation of a tribolayer is su�cient for controlling the

frictional and wear behaviour in the place of the initial nacre structure. So, what is now the e�ect of an

orientation change on the tribological behaviour?
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Figure 9: in situ tribological behaviour in the face-on low level regime, for two applied normal loads: (a) friction maps at 20
mN, and (b) at 70 mN; (c) wear maps at 20 mN, and (d) at 70 mN. (e) Comparison of the particles size distribution curves of
wear debris with that of nanograins in the initial biocrystal
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Figure 10: Wear features in the face-on low level regime: (a) in situ wear pro�le assessment carried out in the center of the
friction track; (b) typical SEM view of the friction track; (c) and (d) typical views of the wear mechanism occuring the in face-on
low level regime in SEM and AFM, respectively (bar is 5 µm, 2 µm and 5 µm, respectively)
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Figure 11: (a) Typical view of the friction track after sliding in the face-on high level regime ; (b) Evolution of the friction
coe�cient in absence and in presence of scratch;(c) example of transition from low to high level friction regime due to the
occurence of a critical crack around 35 cycles (Normal load 30 mN):
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3.2. Nanotribological results in the edge-on con�guration perpendicular to the direction of sliding

3.2.1. Variation of the friction coe�cient: virgin polished surface vs. polished surface with scratches

The experiments are conducted now with the tablets edge-on and perpendicular to the sliding direction.

Fig 12a and b show the evolution of the coe�cient of friction vs. number of cycles for various normal loads,

in absence (�g 12a) and in presence of an initial scratch (�g 12b), respectively.

� In absence of scratch (�g 12a), the frictional behaviour is similar to the one observed in the previous

face-on low level regime. A load bearing capacity e�ect is also observed as a function of the normal load

revealing a possible feedback e�ect of a tribolayer on the friction coe�cient behaviour. As expected for

low level regime, there is no e�ect of the initial microarchitecture orientation: �forward� and �backward�

friction coe�cient are quite similar (i.e the di�erence stays lower than the friction coe�cient's standard

deviation).

� As expected too, the coe�cient of friction strongly increases and stays at a high level regime in presence

of an initial scratch (�g 12b).

Thus, similarly to the previous face-on con�guration, there are two antagonistic friction regimes, which are

sensitive to the presence of critical cracks or scratches. But, in contrast the wear behaviour appears very

di�erent because it does not change with the friction regimes � i.e, in absence or in presence of an initial

scratch.

3.2.2. in situ tribological behaviour

Indeed, in contrast to what is observed in face-on con�guration, only few debris are observed within the

friction track (�g 13a): the coarse ones come from the initial scratch and are not agglomerated together, so

they are quickly ejected on the friction track edges and beyond the ends. Besides, an enlargement on the

friction track (�g 13b and c) reveals that a very thin and discontinuous tribolayer is observed even so. Its

thickness is computed by triboscopic analyses (�g 14), respectively in absence (�g 14b), and in presence (�g

14c) of the initial scratch, for two typical normal loads (30 and 50 mN).

After an initial deformation, a tribolayer is gradually built-up with time (�g 14a). It appears very

heterogeneous along the friction track, whatever the applied normal load (�g 14b). The amount of debris is

quite low, even in presence of an initial scratch (�g 14a and c): thus,

� in absence of scratch (i.e in low level regime), the tribolayer's thickness (�g 14a) is in the same order

of magnitude as the size of the nanograins (50 nm);

� and is lower than ten layers of biocrystals in presence of initials scratches (i.e in high level regime).
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Figure 12: Evolution of the friction coe�cient in the edge-on con�guration perpendicular to the sliding direction (a) in absence,
and (b) in presence of initial scratch

Figure 13: (a) Typical SEM views of the friction track after 100 cycles, in presence of initial scratch; (b) enlargement on the
friction track (c) typical view of the discontinuous tribolayer (bar is 500 µm, 5 µm and 5 µm, respectively)
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Hence, the main wear mechanism does not change from low to high level regime: it involves the �intracrys-

talline� matrix only, as also reported for the face-on low regime con�guration (� 3.1.2). The main di�erence

between these con�gurations (see �g 10a and 14a) seems just linked: (i) to the amount of trapped wear

debris, and (ii) to the type of generated tribolayers � rather heterogeneous and discontinuous here (�g 13c) �

instead of homogeneous and continuous in �g 10b. This di�erence can appear obvious by considering that the

presence of a much more important number of vertical organic/mineral interfaces (�g 15) is able to change

a continuous wear phenomenon (face-on) into a discontinuous one (edge-on).

So, in the edge-on high level regime (i.e in presence of initial cracks), the frictional energy is probably

dissipated within the cracks themselves and not by any additional wear mechanism, as reported in the face-

on high level regime (cf. � 3.1.1). That is in good agreement with the low amount of wear debris observed

within the contact (�g 13b). To check this assumption, tribological tests are now carried out in the edge-on

con�guration parallel to the direction of sliding.

3.3. Nanotribological results in the edge-on con�guration parallel to the direction of sliding

3.3.1. Tribological behaviour on virgin polished surfaces and in presence of an initial scratch

Fig 16a shows the evolution of the coe�cient of friction vs. number of cycles, for various normal loads, in

the edge-on con�guration parallel to the direction of sliding. Apart some instability at low load, its behaviour

is similar to the previous con�guration one. The frictional dissipated energy is even reduced by a factor 1.5

(�g 16b). Besides, the di�erence between the �forward� and �backward� friction coe�cient is now greater

than the standard deviation of the friction coe�cient, while the nacre microarchitecture does not even change

as a function of the direction of sliding. That means that something, which is connected to the reduction of

the frictional dissipated energy, could have changed in the main wear mechanism. So, what is the frictional

behaviour in presence of an initial scratch? (�g 17)

Surprisingly, the friction coe�cient stays low whatever the direction of the initial scratch � perpendicular

or parallel � to the direction of sliding (�g 17a and b). Besides, no debris is observed within the contact,

even in presence of scratch (�g 18).

3.3.2. in situ tribological behaviour

Results are con�rmed by the wear pro�le analyses whatever the orientation of the initial scratch vs. the

sliding direction (�g 19 a and b). No signi�cant tribolayer is built-up within the contact. No wear is observed

either, because the continuous drop of the wear pro�le corresponds in fact to a deformation of the tablets

squeezed under the slider. Indeed, an irreversible deformation induced by a possible plastic deformation of

the �interlaminar� matrix is also observed on the typical AFM view of the friction track after sliding (�g

19c). As shown in this topographical view, the value of the �nal deformation is quite similar to the one of

the in situ wear pro�le assessed just before unloading (eg. 19b). Thus, the �nal elastic recovery is very low
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Figure 14: in situ tribological behaviour in the edge-on con�guration perpendicular to the sliding direction, for two applied
normal load (30 mN and 50 mN): (a) various in situ wear pro�les carried out in the center of the friction track, in absence and
in presence of initial scratch, respectively; Corresponding wear maps (b) in absence, and (c) in presence of initial scratch
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Figure 15: E�ect of the vertical organic/mineral interfaces on the frictional dissipation mechanism in the edge-on con�guration
perpendicular to the sliding direction

Figure 16: Frictional features in the edge-on con�guration parallel to the sliding direction: (a) Evolution of the friction coe�cient
with the number of cycles ; (b) Evolution of the frictional dissipated energy with the applied normal load

Figure 17: In�uence of the presence of an initial scratch (a) perpendicular and (b) parallel to the direction of sliding on the
frictional behaviour
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and quite negligible compared to the plastic deformation. Besides, since this irreversible deformation already

appears at beginning of the test, one can think that the reduction of the friction dissipated energy � with

respect to the previous con�guration (�g 16b) � is probably connected here to the absence of any wear process.

So, fracturing the organic matrices needs more energy than their deformations alone: the �intracrystalline�

matrix needs only 1.5 times more energy for being fractured in contrast to the �interlaminar� one, which

needs at least 4 times more. This is in-line with recent results obtained by a di�erent approach [76]

3.4. Discussion � Various friction-induced energy dissipation mechanisms of sheet nacre

In the face-on con�guration, there are two tribological regimes. The lower regime is obtained on a polished

surface. The transition to the upper regime occurs if the track crosses scratches or cracks with a critical depth

higher than the thickness of a tablet (more than 500 nm). Thus, any signi�cant change in the roughness

can involve this transition, which is clearly controlled by the shear resistance of the �interlaminar� matrix

(polysaccharides in-between the tablets), as reported in the �g 11c.

� The low level regime (�g 20a) occurs in abscence of any critical cracks or scratches. The friction coef-

�cient and the wear rate are low because only one layer of tablets is involved during the tribological

process. The wear mechanism involves (i) the deformation of the tablet and (ii) the fracturing of the

�intracrystalline� organic matrix as a continuous shear process. Besides, the di�erence between the

friction �forward� and �backward� is signi�cant vs. the standard deviation of the friction coe�cient. So,

an e�ect of the sliding direction is then observed due to the microarchitecture of nacre. Consequently,

the low frictional energy is dissipated by fracturing the �intracrystalline� organic matrix after deforma-

tion of the tablets. The tribolayer is rather continuous and consists of nanograins torn away from the

surface.

� The high level regime (�g 20b) occurs in presence of critical cracks. The friction coe�cient and the

wear rate are quite high. The wear mechanism involves the fracturing of the both organic matrices as

a continuous process. Nevertheless, the high frictional energy is mainly dissipated by fracturing the

�interlaminar� matrix, 4 times stronger than the �intracrystalline� one. Consequently, the e�ect of the

direction of sliding (�back� and �forward�) is not relevant here, because the di�erence is greatly lower

than the standard deviation of the friction coe�cient. The tribolayer is constituted by very huge debris

and pieces of fractured tablets.

In the edge-on con�guration, there are two tribological behaviours which depend on the orientation of the

tablets with respect to the direction of sliding:

� In edge-on con�guration perpendicular to the direction of sliding (�g 20c), the friction coe�cient is

very sensitive to the presence of scratches or cracks. So, this way, roughness controls two antagonistic

21



Figure 18: Typical views in the edge-on con�guration parallel to the sliding direction: (a) friction track after sliding and, (b)
enlargement: No tribolayer is really observed in this con�guration (bar is 50 µm and 5 µm, respectively)

Figure 19: in situ wear pro�le assessments carried out in the edge-on parallel direction in absence and in presence of initial
scratch (a) perpendicular and (b) parallel to the sliding direction, respectively; (c) Typical AFM view of the friction track after
sliding
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friction regimes. In contrast, wear � as a discontinuous process due to the orientation of the tablets � is

always low: the tablets are never really damaged, even in presence of critical cracks, as schematized in

�g 20c. The frictional energy is probably dissipated within the two matrices during the low level regime,

and within the cracks themselves (without additional wear process) during the high level one. Besides,

all the low levels are similar whatever the orientation of the tablets (face-on or edge-on). As suggested

by the arrows in �g 20c, frictional energy is mainly dissipated at the location of the vertical interfaces

between the tablets and the �interlamellar� organic matrix, as successive tension/compression events

(cf. �g 15).

� In the edge-on con�guration parallel to the direction of sliding (�g 20d), the friction coe�cient and the

wear rate are extremely low, even in presence of scratches or cracks � parallel or perpendicular to the

direction of sliding. However, a residual strain is clearly observed after the tests. The frictional energy

is here dissipated by plastic deformation of the matrices instead of their fracturing. The di�erence in

dissipation � 1.5 times greater when the tablets are perpendicular (�g 16) � can be explained by the

absence of a real damage process.

4. Conclusion

Micro/nanotribological behaviour of sheet nacre, displaying various con�gurations, have been studied by

varying the orientation of the tablets vs. the sliding direction. Results reveal various dissipative mechanisms

controlled by the matrices orientation, which is able to involve a multiscale wear process or not. Thus, in

order of importance,

� the plastic deformation of the �interlaminar� organic matrix � as observed in the edge-on orientation

parallel to the sliding direction � is the less dissipative way. Dissipation is made by friction on the

edge-on tablets only, after an irreversible deformation of the matrices ;

� the fracturing of the �intracrystalline� matrix � as observed both (i) in the face-on low level regime

and (ii) in the edge-on orientation perpendicular to the sliding direction � which involves a much more

dissipative energy due the generation of nanosized wear debris ;

� and, the fracturing of the �interlaminar� organic matrix, which is the greatest dissipative way. It

involves the generation of huge wear debris, and is mainly observed in the face-on con�guration when

the roughness reaches a critical value.
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Figure 20: Various friction-induced energy dissipation ways of sheet nacre as a function of its orientation: (a) face-on low level
regime; (b) face-on high level regime ; edge-on perpendicular (c) and parallel (d) to the sliding direction
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