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Abstract: Seismic and magnetotelluric field campaigns carried out across the 

Himalaya and the Tibetan Plateau show mid-crustal low resistivity and low velocity zones. 

Interpretation of these anomalous observations, either saline fluids or partial melts, is still 

largely debated partly because experimental data simulating crustal melting under relevant 

pressure, temperature and water content conditions have not been provided. We report 

laboratory measurements constraining the resistivity as a function of temperature and the 

viscosity at 800°C of natural metapelite during partial melting. Dehydration-melting of 

muscovite is simulated using a Paterson press at 300 MPa in the temperature range 600-

850°C. Electrical resistivity has been measured from the solid state (<650°C) to 25 vol. % of 

partial melt (>800°C) and viscosity has been determined at 800°C. Our results together with 

recent experimental constrains on seismic properties of partially molten rocks strongly 

suggest that the electrical and seismic anomalies measured underneath the Himalayan-Tibetan 

collisional orogen are best explained by partially molten rocks or local accumulation of pure 

melt bodies. This is also remarkably corroborated by the temperature-depth conditions of 

crustal partial melting and melt ponding expected from petrological surveys in the Himalayan 

range. However, our data suggest much higher melt fraction than previously thought and this 

implies regions in the middle crust having viscosities several orders of magnitude lower than 

previously assumed. High degree partial melting in the middle crust of the Himalayan-Tibetan 

orogenic system suggests revision of conceptual models on the development of mountain 

belts or that geophysical models addressing electrical resistivity at depth must be re-

evaluated. 

Keywords: Electrical resistivity; viscosity; partial melting 

1. Introduction 

The construction of mountain belts resulting from continental collisions involves 

crustal thickening, regional deformation and high-grade metamorphism. As observed in many 



ancient orogenic terrains, elevated temperatures locally induce melting and strain weakening, 

which may profoundly affect the rheology of the continental crust, its deformation regime and 

hence the development of these orogens (Jamieson et al., 2011; Sawyer et al., 2011).  

The Himalaya-Tibetan system is an active collisional belt allowing us to probe the 

three-dimensional thermo-mechanical distribution of an archetypal continent-continent 

orogen. The Himalaya-Tibetan orogenic system was initiated 70-50 My ago by the Indo-

Asian collision resulting in crustal thickening and uplifting of the Tibetan Plateau (Royden et 

al., 2008; Yin and Harrison, 2000). This vast plateau is separated from the Himalayan 

mountains by the Indus-Tsangpo suture. Two major faults are located south of this suture: the 

Main Central Thrust (MCT), which is a low angle high strain crustal shear zone, and the 

South Tibetan Detachment system (STDs), a low angle normal fault (Fig. 1). The MCT and 

the STDs bound the Greater Himalayan Sequence (GHS), composed of medium to high–

grade metamorphic rocks, migmatites (i.e. once partially molten rocks) and km-thick 

leucogranites pods (Law et al., 2004; Searle et al., 2006). These High Himalayan 

Leucogranites (HHL, Fig. 1), late Oligocene to Miocene in age (25-13 Ma), have been shown 

to be products of partial melting (750-800°C) of underlying metapelites (Law et al., 2004; 

Patiño Douce and Harris, 1998; Scaillet et al., 1995; Searle et al., 2006). However, north of 

the Indus-Tsangpo suture young granitoids (< 15 Ma) are typically biotitegranodiorites with 

3
He anomalies indicating a mantle contribution (Harrison, 2006; Hoke et al., 2000; Yokoyama 

et al., 1999). 

Several magnetotelluric (MT) and seismic field campaigns (INDEPTH, Hi-CLIMB 

and HIMPROBE projects) have identified low resistivity layers with well-constrained tops at 

a depth of 10-15 km in southern Tibet (3 Ω.m) and 20-25 km in northwestern Himalaya (10 

Ω.m), coincident with low seismic velocity zones (Arora et al., 2007; Brown et al., 1996; 

Caldwell et al., 2009; Hetényi et al., 2011; Li et al., 2003; Makovsky and Klemperer, 1999; 



Nábĕlek et al., 2009; Nelson et al., 1996; Unsworth et al., 2005; Wei et al., 2001; Zhao et al., 

1993). Such electrical anomalies have been interpreted as evidence of high fluid 

concentrations and two main hypotheses are still largely debated today: either aqueous fluids 

(Hetényi et al., 2011; Li et al., 2003; Makovsky and Klemperer, 1999) or melts (Arora et al., 

2007; Brown et al., 1996; Caldwell et al., 2009; Gaillard et al., 2004; Li et al., 2003; Nábĕlek 

et al., 2009; Nelson et al., 1996; Unsworth et al., 2005; Wei et al., 2001). However, both 

hypotheses remain poorly demonstrated (Harrison, 2006; Hetényi et al., 2011), each having 

considerable impact on the thermal structure of the thickened crust in the Himalayas. The 

melt hypothesis suggests low melt percentages, between 2 and 14 vol.%, from electrical 

constraints (Arora et al., 2007; Unsworth et al., 2005), which would be in agreement with 

seismic observations (Caldwell et al., 2009) (less than 10 vol.% for VS = 2.9-3.3 km.s
-1

). 

Recent experimental shear wave velocity measurements (Caricchi et al., 2008), however, 

indicate that such velocities better match 20-25 vol.% partial melting. Experimental studies on 

the electrical resistivity of partially molten rocks have been carried out on dry granulite 

samples at atmospheric pressures (Roberts and Tyburczy, 1999; Schilling and Partzsch, 

2001). Under these conditions, partial melting starts at temperatures higher than 1000°C, 

which is well above expected crustal temperatures in continent-collisional settings. Melts 

produced by crustal melting are hydrous (Scaillet et al., 1995), which implies lower melting 

temperatures and lower electrical resistivity of rocks and melts (Gaillard et al., 2004). 

Notwithstanding, resistivity values on hydrous partially molten metapelites are still not well 

constrained from electrical modelling such as SIGMELTS (Pommier and Le Trong, 2011).  

In this experimental study, we have performed electrical resistivity measurements as a 

function of temperature and determined the viscosity of metapelites undergoing partial 

melting at 800°C. These experiments were conducted using a Paterson-type deformation 

apparatus on partially molten metapelites. By using these types of rocks in this study, we have 



simulated the appropriate geological processes happening at depth according to previous 

petrological studies in the Himalayan-Tibetan range (Law et al., 2004; Patiño Douce and 

Harris, 1998; Scaillet et al., 1995; Searle et al., 2006). We therefore show here that the 

geophysical anomalies underneath this orogenic system must pinpoint high degree crustal 

melting and local melt accumulation, forming low-viscous regions, which are several orders 

of magnitude weaker than previously assumed (Beaumont et al., 2001, 2004, 2006; Jamieson 

et al., 2004; Medvedev and Beaumont, 2006). These results suggest revision of conceptual 

models on the development of mountain belts. 

2. Materials and Methods 

2.1. Starting Material 

The starting material is a natural metapelitic rock from the Sioule metamorphic series 

(two-micas paragneiss formation, Supplementary Fig. 1), which belongs to the central 

metamorphic domain of the European Hercynian Belt (Faure et al., 2002). The Hercynian 

chain resulted from the collision of Gondwana and Laurussia in the Late Devonian-Early 

Carboniferous. The Sioule metamorphic series show strong evidence of partial melting and 

leucogranite emplacements similar to the Himalayan systems (Faure et al., 2002). 

The composition of the Sioule sample we used (Table 1) is essentially similar to the 

Himalayan metapelite samples used by Patiño Douce and Harris (1998). The starting material 

contains Na-plagioclase, muscovite, biotite, quartz and K-feldspar in order of abundances 

(Table 1).  Its composition and texture indicate no involvement in partial melting events and 

did not suffer any associated chemical depletions (in alkalis and water). Small amount of 

graphite (<0.5 vol.%) has been observed in thin sections. The bulk composition, i.e. major 

elements and water content, was obtained from electron microprobe (EMP) and Fourier 

transformed infrared (FTIR) analyses, respectively, on a glass that has been rapidly quenched 

after total melting of this rock at high-pressure high-temperature (4 kb, 1170°C, 21 hours). 



This melting experiment was conducted in an internally heated pressure vessel at Institut des 

Sciences de la Terre d’Orléans (ISTO) (see Iacono-Marziano et al., 2012). The total water 

content of the glass analysed by FTIR is 1.75 wt. % and a large amount of dissolved CO2 has 

been observed (1000 ppm CO2). This CO2 most likely derives from graphite oxidation during 

high temperature melting. 

Oxygen fugacity of all the experiments presented in this paper was buffered by the 

coexistence of graphite and CO2 in the sample (observed after the runs). This corresponds to 

redox conditions close to FMQ-2 and mimics natural conditions of crustal melting that also 

occurs at graphite saturation (Pichavant et al., 1996). 

Published experiments (Patiño Douce and Harris, 1998) and our results show that the 

dehydration-melting of muscovite starts at 650°C at 300 MPa. Previous experimental work 

established the following reaction (Patiño Douce and Harris, 1998): 

22 Ms + 7 Pl + 8 Qz → 25 Melt + 5 Kfs + 5 Sil + 2 Bt Reaction 1 

with Ms standing for muscovite, Pl for plagioclase, Qz for quartz, Kfs for K-feldspar, Sil for 

sillimanite and Bt for biotite. 

Reaction 1 indicates that water, liberated upon muscovite breakdown, induces partial 

melting and incorporates into the melt, with about 1.14 volume of melt produced for 1 volume 

of muscovite. As our sample contains 23 vol. % Ms, completion of reaction 1 induces 26.2 

vol. % melt in the rock. 

2.2. Electrical resistivity measurements 

The conventional Paterson assembly was modified in order to measure the resistance 

of the samples (Fig. 2). The sample-electrode geometry is similar to the configuration used by 

Caricchi et al. (2011). For resistivity measurements, an inner Ni electrode was inserted in the 

centre of the sample (perpendicularly to the layering configuration) and an outer Pt foil was 



placed around the samples. The resistance of the samples was measured along their radii, 

between the inner Ni electrode and the outer Pt foil. The compositional difference between 

the two electrodes had no effect on the collected resistance values. The electrical resistivity, ρ 

(Ω.m), was obtained from the resistance, R (Ω), using (Caricchi et al., 2011; Gaillard, 2004; 

Pommier et al., 2008): 

ρ = (2*π*L*R) / (ln (dext / dint) (1) 

with L the length of the sample (m), dext the outer diameter of the sample (m) and dint the 

diameter of the inner electrode (m). 

Electrical resistivity measurements were collected solely under static conditions (i.e. 

without applied deformation) in the temperature range of 500 to 850°C at 300 MPa and at 

frequencies between 1 Hz and 1 MHz. Error on the calculated resistivity values is estimated to 

less than 7% except for run PP216 where the maximum error is of about 28% for 

temperatures < 690°C (Table 2). These estimations are based on the geometrical constraints 

of the samples (width, length, inner diameter) and on repeated electrical measurements at the 

same experimental conditions.  

The electrical response of the samples is plotted at each frequency in the Nyquist 

plane (-Z’, Z’’) since the complex impedance (Z) can be written as the sum of real (Z’) and 

imaginary (Z’’) components (where Z = Z’ + jZ’’ and j
2
 = -1). In this plane, the electrical 

response is an arc centred on the real axis where the first part of this arc (high frequencies) 

represents the electrical response of the sample whereas the second low-frequency arc is 

related to the sample/electrode interactions (Huebner and Dillenburg, 1995; Supplementary 

Fig. 2). The impedance arcs from this study can be fitted by a parallel circuit of a resistance 

and a capacitance (Huebner and Dillenburg, 1995; Roberts and Tyburczy, 1991). 

2.3. Rheological measurements 



Deformation experiments were performed at a pressure of 300 MPa and at a 

temperature of 800°C. During dynamic experiments, strain rates, γdot, range from 1·10
-5

 to 

2.5·10
-4

 s
-1

 and bulk finite strain, γ, reaches a maximum value of 0.91 (Table 2). Strain rates 

were controlled by applying a continuous torque during the experiments. Stepping strain rate 

experiments were also conducted in order to calculate the stress exponent, n, enabling us to 

calculate the stress τ (MPa) from the applied torque (Nm). Stepping strain rate consists of 

increasing strain rate in a stepwise manner once steady state stress conditions were achieved 

for a given strain rate (Paterson and Olgaard, 2000). Apparent viscosities, ηa (Pa.s), of our 

samples were calculated for a given strain rate by using the following equation (Paterson and 

Olgaard, 2000): 

ηa = τ / γdot (2) 

with τ the shear stress (Pa) and γdot, the strain rate (s
-1

). 

2.4. Analytical techniques and imaging 

After the static and dynamic experiments, the samples were cut along longitudinal 

axial sections (Fig. 7 in Paterson and Olgaard (2000)) and then mounted in epoxy. A scanning 

electron microscope (SEM) was used for microscopic observations at back-scattered electron 

mode at ISTO (see Supplementary Figs. 3, 4 and 5). Melt distribution and volumetric 

percentages were determined by manually selecting the melt phase (consisting of glass and 

crystals formed from reaction 1) on SEM images of the radial faces of the samples 

(Supplementary Figs. 3 and 4). Binary images were created with solely the melt appearing in 

black. Volumetric percentages were then calculated using a ratio of pixels of melt over the 

total pixels of the studied binary image (Table 2). 

Chemical compositions of bulk rock and mineral phases as well as the melt produced 

by dehydration-melting of muscovite crystals were obtained by EMP analyses. The water 



content (in the glass) of the bulk rock was analysed by FTIR following Iacono-Marziano et al. 

(2012). 

3. Experimental Strategy 

To better constrain electrical resistivity values during our Paterson experiments, we 

have conducted partial melting experiments in internally heated pressure vessels at ISTO (PM 

experiments, Supplementary Materials). These partial melting experiments have enabled us to 

constrain the onset of partial melting in the temperature range 650-700°C (Supplementary 

Table 1; Supplementary Fig. 5), which is in agreement with published phase equilibria 

experiments on similar mineralogical assemblages (Patiño Douce and Harris, 1998). In the 

latter study, the associated melt production, via reaction 1, is completed at T = 820°C.  

Partial melting of metapelites has also been shown to be an extremely slow process. 

Previous studies reveal that run durations of one week are not sufficient to achieve 

equilibrium melt percentages at temperatures lower than 800°C (Rubie and Brearly, 1990). 

Indeed, Rubie and Brearly (1990) have shown that the melting kinetics of a reaction involving 

muscovite, quartz and H2O is controlled by diffusion of Si, Al and K through the melt for 

temperatures < 760°C. The width of the reaction zone between muscovite and quartz is a 

square root function of time and is modelled by a parabolic law, which indicates that at least 

two weeks are required to fully dissolve small muscovite grains. Textural and crystal-melt 

chemical equilibrations at T < 800°C thus operate at rates that are not compatible with the 

duration of experiments in Paterson apparatus. 

Our time-series resistivity measurements performed at temperatures ranging from 650 

to 825°C (PP187, PP202, PP205; Table 2) didn’t show any clear electrical stabilization. We 

have interpreted this behaviour as a record of slow chemical and textural evolution of the 

samples during partial melting (Supplementary Fig. 6). To counteract this effect and obtain 

chemical and textural equilibrium, the temperature was increased to 850°C (PP213, PP214, 



PP216; Table 2), enhancing reaction kinetics and leading to nearly electrical steady state 

within ~ 300 min (Supplementary Fig. 7). Such high temperature ensured the rapid and total 

melting of muscovite. For the reason explained below (see section 5.1), the results used in this 

study for interpreting MT anomalies beneath the Tibetan-Himalayan range are essentially 

based on those from experiments with peak temperatures of 850°C (PP213, PP214 and 

PP216; Table 2). During these experiments, we linearly increased the temperature to 500°C 

and then increased by 50°C steps up to 850°C, enabling us to perform resistivity 

measurements at different constant temperatures. After annealing the samples at 850°C, the 

temperature was decreased to 800°C, which corresponds to established temperatures of melt 

extraction as suggested by geochemical, experimental and field observations in the Himalayas 

(Patiño Douce and Harris, 1998; Searle et al., 1997). Long static resistivity measurements or 

viscosity experiments were thus conducted separately at 800°C after the annealing stage. 

Electrical resistivities were then measured during cooling cycles (Fig. 4 and Supplementary 

Fig. 8). 

4. Results 

4.1. Chemical composition of the produced melt  

EMP analyses show that the melt produced during our partial melting experiments is 

granitic in composition and analogous to the High Himalayan Leucogranites (Scaillet et al., 

1995; Table 1). It has typical high SiO2 contents (>70 wt. %) and high water contents (>6 wt. 

% based on the difference to 100%, see Table 1). This composition was analysed in run 

PP214 after equilibration at a peak temperature of 850°C. Liquid compositions analysed in 

other experiments were relatively similar, but the low melt fraction did not allow us to obtain 

precise chemical analyses. 

4.2. Electrical resistivity 



Replicated experiments showed a good reproducibility during heating stages (Fig. 3) 

in spite of the variable sample geometries (length, layering configuration). As temperature 

increases from 550 to 825°C, the electrical resistivity of the metapelites decreases 

dramatically from ~ 2000 to 20 Ω.m. The onset of partial melting, optically identified from 

the PM-experiments presented in section 3, is also indicated by a slope shift (i.e. a change in 

electrical properties) between 650 and 700°C on Fig. 3. 

Figure 4 presents the resistivity measurements from experiment PP216 during both 

heating and cooling cycles (after a peak T at 850°C). As illustrated on this figure, the 

resistivity/temperature path is shifted toward less resistive values during cooling cycles. The 

difference between heating and cooling cycles is significant but remains reasonably low 

except for temperatures < 650°C, where this discrepancy reaches at least one order of 

magnitude. Furthermore, between 850 and 550°C during the cooling cycle, melt percentage 

remains constant at 23 vol. %. 

4.3. Viscosity 

Image analyses (Supplementary Figs. 3 and 4) revealed no migration and 

accumulation of melt throughout the deformed samples. The samples deformed 

homogeneously since no strain localization was observed. 

We have determined the stress exponent, n, of our material, corresponding to the slope 

of a logarithmic plot of shear strain rate versus maximum measured torque (Supplementary 

Fig. 9). Despite our small strain rate/torque data set, the calculated n (n = 5.44) is in good 

agreement with a previous study on the rheology of synthetic metapelitic samples undergoing 

partial melting (n = 5.15; Misra et al., 2009). 

The mechanical behaviour of our metapelitic samples is summarized in a shear stress 

versus shear strain plot (Fig. 5). These rheological measurements show a rapid linear increase, 

corresponding to the elastic response of the stressed sample, followed by either steady state 



flow or moderate weakening during plastic deformation (Fig. 5). Peak stress values vary with 

peak temperature: as temperature increases, melt percentage increases, thus weakening the 

metapelitic sample. The significant peak stress value difference between runs PP187–PP202 

and runs PP213–PP216 is therefore directly related to their corresponding peak temperatures 

(825°C and 850°C, respectively). Figure 5 and Table 2 also indicate good reproducibility for 

equivalent strain rates and peak temperatures (experiments PP213 and PP216 for Tpeak = 

850°C and γdot = 2.5·10
-4

 s
-1

). 

Experiments PP187 and PP202 (Tpeak = 825°C and γdot = 1·10
-5

 – 1·10
-4

 s
-1

) present 

calculated apparent viscosities, ηA, ranging from 10
12.32

 to 10
11.38 

Pa.s, whereas experiments 

PP213 and PP216 (Tpeak= 850°C and γdot = 1·10
-5

 – 2.5·10
-4

 s
-1

) present ηA ranging from 

10
11.69

 to 10
10.56 

Pa.s (Table 2).  

5. Discussion 

5.1. Equilibrated melt percentage/temperature/resistivity paths 

At 300 MPa during heating cycles, melt percentage increases continuously from 0 vol. 

% at 550°C to 23 vol. % at 850°C (Fig. 4; Supplementary Table 1), indicating slow melting 

kinetics because melt fraction is expected to abruptly increase once muscovite breakdown 

temperature is exceeded. Likewise, during cooling cycles, the low resistivity/temperature 

paths were interpreted as slow kinetics of crystallization, as melt percentage remains at 23 

vol. % even at the lowest temperature (500°C, Fig. 4). We have thus calculated the variations 

of equilibrium melt percentage as a function of P and T by creating a P-T pseudosection 

(Supplementary Fig. 10), using the collection of thermodynamic modelling programs 

Perple_X 6.6.6. (Connolly, 1990, 2005; Connolly and Kerrick, 1987; Connolly and Petrini, 

2002). The bulk composition of the system used for calculations is that of our metapelitic 

sample together with 1.75 wt. % water. Melt percentage is modelled by using the program 

PyWerami (http://petrol.natur.cuni.cz/~ondro/pywerami:home, Fig. 6). At 300 MPa, the 

http://petrol.natur.cuni.cz/~ondro/pywerami:home


calculated equilibrium melt percentage increases from 0 to more than 15 vol. % within a few 

degrees as a consequence of the dehydration-melting of muscovite in fluid absent conditions. 

This strong and abrupt increase in melt mode is not observed during heating cycles of the 

present study due to a sluggish melting rate. The P-T pseudosection (Supplementary Fig. 10) 

indicates that above the solidus temperature (TS = 650°C at 300 MPa), the partially molten 

samples in our experiments are in disequilibrium, thus overestimating the electrical resistivity 

values. Measurements collected during the cooling cycles therefore represent a very close 

assessment of the resistivity of equilibrated partially molten metapelites at temperatures just 

above the temperature of muscovite dehydration-melting (650°C < T < 700°C at 300 MPa). 

Therefore, in our experiments (P = 300 MPa), we considered that the equilibrated 

resistivity/temperature path should follow the solid-state path during the heating cycle until 

the solidus temperature is reached (650°C < TS < 700°C). Above TS, resistivity should be 

shifted within a few degrees Celsius to values corresponding to 23 vol. % partial melting 

during the cooling cycle (bold dashed line at 300 MPa for T > 650°C in Fig. 4). The 

equilibrated resistivity/temperature path varies with pressure, as TS increases with increasing 

pressure (from 675°C at 500 MPa to 745°C at 900 MPa; Fig. 6). This TS/pressure-dependence 

therefore shifts the abrupt decrease in electrical resistivity to higher temperatures. As an 

example, the equilibrated resistivity/temperature path at 700 MPa is shown to abruptly 

decrease by 1-log unit at TS = 720°C (Fig. 4). 

5.2. Electrical resistivity of solid and liquid end-members 

Since HHL pods are presently outcropping in the GHS (Fig. 1), we have calculated the 

electrical resistivity of crystal-free leucogranite magma bodies as extrapolated from our 

partial melting experiments. Electrical resistivity is commonly estimated by using mixing 

models where the bulk resistivity of the sample depends on the electrical resistivities of the 



present phases (in this study, melt and solid), as well as their relative volumes and 

geometrical distributions in the sample. 

We were able to extrapolate the electrical resistivity of the produced melt by using our 

experimental and previously published data and mixing models (Table 3; Gaillard and 

Marziano, 2005; Yoshino et al., 2012). For brevity, only a few mixing models were used in 

this section: Archie’s law, which is an empirically derived relation (Archie, 1942); the 

modified Archie’s law, which is derived from the Archie’s law using geometrical constraints 

(Glover et al., 2000); Hashin-Shtrikman upper bound (Hashin and Shtrikman, 1962); the 

cubes model (Waff, 1974) and the tubes model (Grant and West, 1965; Schmeling, 1986). 

The electrical resistivity of the solid was adjusted from the low temperature data 

(<650°C) collected during our experiments as follows:  

ln ρs = - ln ρ0 + (-Ea / (RT)) 

with 

ρ0 = 2.90 ± 0.20 and Ea / R = - 8581.80 ± 600.73 

(3) 

where ρS is the resistivity of the solid rock in Ω.m; ρ0, the pre-exponential term in Ω.m; Ea, 

the activation energy in J; R, the gas constant; T, the temperature in K. 

The graphite in our sample shows no noticeable effect on the electrical resistivity of 

our solid-state samples during heating stages (Fig.4). Indeed, measured conductivities are 

typical of solid-state crustal rocks (Ferri et al., 2013; Schilling and Partzsch, 2001), whereas 

interconnected graphite in our sample should enhance conductivities by several orders of 

magnitude (Shankland et al., 1993; Yoshino and Noritake, 2011). This experimental 

observation on natural metapelite is in agreement with previous experimental studies 

performed on graphite-rich xenoliths (Ferri et al., 2013) and C-rich synthetic quartz 

aggregates (Yoshino and Noritake, 2011). 



We used the bulk resistivity value collected at 800°C during the cooling cycle, once 

the samples presented an electrical steady state (ρB= 11.97 Ω.m) to calculate the resistivity of 

the melt. Image analyses showed that this sample contained 23 vol. % partial melting. 

Calculations show that melt resistivities are essentially similar for Archie’s law, the 

Hashin-Shtrikman upper bound and the cubes model (between 1.87 and 2.13 Ω.m, Table 3). 

Melt resistivity values calculated using the tube model and the modified Archie’s law are 

however slightly lower and higher, respectively (0.97 and 2.71 Ω.m, respectively, Table 3). 

Electrical resistivity of hydrated granitic melts was also calculated following equations by 

Gaillard (2004): 

ρ = (σ0 * exp (-Ea / (RT)) 
-1

 (4) 

with 

σ0 = - 78.9 * ln (H2O) + 754 and Ea = - 2925 * ln (H2O) + 70132 

where T is the temperature in K and H2O the water content in wt. % (natural logarithm). For 

granitic liquids containing 6 wt.% of dissolved H2O at 800°C, equation (4) yields 2.35 Ω.m, 

which is in remarkable agreement with the liquid resistivity independently estimated from 

partial melting experiments and mixing models. 

5.3. Cross-checking petrological, geophysical and laboratory constraints 

Laboratory work and thermobarometric studies (Patiño Douce and Harris, 1998) 

indicate that melting of the Himalayan metapelites occurred at a pressure equivalent to 18-24 

km depth and a temperature of 750-800°C (Fig. 7), which according to our experimental data 

correspond to a resistivity of 10 Ω.m (Fig. 8). As shown in Fig. 7, such resistivity-depth-

temperature conditions are fully compatible with the northwestern Himalayan electrical 

anomaly. Furthermore, the high melt percentage deduced from our study yields the 



appropriate shear wave velocities observed in this region (Caldwell et al., 2009; Caricchi et 

al., 2008). 

Electrical resistivity was calculated during cooling and crystallization of leucogranites 

(Fig. 8; Scaillet et al., 1995). Due to the near-eutectic composition of such magmas, the 

resistivity moderately increases to ~ 15 Ω.m as temperature decreases to 650°C (i.e. 30 vol.% 

crystals), whereas in the temperature range 650-645°C, where the bulk crystallization occurs, 

the resistivity increases by several orders of magnitude (Fig. 8). Experimental studies show 

that HHL were emplaced as near-liquidus magma with a depth of ~ 12 km and a temperature 

of about 800°C (Fig. 7; Scaillet et al., 1995), which yields a resistivity of 3 Ω.m (Fig. 8). Such 

resistivity-depth-temperature conditions remarkably match the electrical anomaly detected 

beneath Southern Tibet (Fig. 7). Since shear waves do not propagate through liquid states, we 

suggest that spatial resolution of seismic analyses may not allow identification of fully molten 

bodies of limited vertical extents, such as sill-shaped or laccolith bodies. 

Magnetotelluric profiles enable us to constrain the depth of the top of the electrical 

anomaly but can hardly constrain their thicknesses. We have based our experimental 

modelling exclusively on peak resistivity values from MT data of northwestern Himalaya and 

southern Tibet (10 and 3 Ω.m, respectively; Aurora et al., 2007; Unsworth et al., 2005). The 

resistivity values implied in this study yield anomaly thicknesses of about 23 km for 

northwestern Himalaya and 12 km for southern Tibet (Supplementary Fig. 11). There is 

however a tradeoff between the thickness of a low resistivity layer and the value of resistivity 

of that layer. We decided to adopt the values given in Aurora et al. (2007) and Unsworth et al. 

(2005) therefore knowingly ignoring this tradeoff. We suggest that a more realistic MT-

modelling should be carried out by using our experimental electrical results, complemented 

by seismic data, but such considerations go beyond the scope of the present work. 

5.4. Viscosity implications 



Presence of partial melting and fully molten bodies has serious impact on the 

rheological behaviour of the middle crust. Indeed, our results show that crustal rocks with 20-

25 vol. % partial melting (corresponding to the electrical anomaly of northwestern Himalaya) 

imply a viscosity, η, of 10
11 

Pa.s (Table 2). Our data seems in good agreement with the 

experimental study of Misra et al. (2009), where the apparent viscosity of their synthetic 

sample yielded a value of 10
11.62

 Pa.s at a strain rate of 3·10
-4

 s
-1

, at a temperature of 750°C 

and for comparable melt percentages. 

Pure melts, corresponding to the electrical anomaly beneath southern Tibet, have been 

shown to present lower viscosities, i.e. 10
4
 Pa.s (Scaillet et al., 1996; Whittington et al., 

2004). These two values (i.e. 10
11 

Pa.s and 10
4 

Pa.s) are several orders of magnitude lower 

than previous estimations used in thermo-mechanical models of channel flow and crustal 

extrusion (η = 10
18

-10
19 

Pa.s) (Beaumont et al., 2001, 2004, 2006; Jamieson et al., 2004; 

Medvedev and Beaumont, 2006). Such low-viscosity regions provide a natural mechanism for 

localizing strain into the weakest parts of the deforming layers, as shown by previous field 

observations and demonstrated by experimental deformation studies (Brown, 2007; Kohlstedt 

and Holtzman, 2009; Marchildon and Brown, 2003; Rosenberg and Handy, 2005; 

Vanderhaeghe, 2009). Crustal melting in the Himalayan middle crust must therefore be an 

essential process in forming low-viscosity regions and thus crustal-scale thrusts and/or high 

strain shear zones, such as the STDs and the MCT (Fig. 1). 

5.5. The aqueous fluid hypothesis in conflict with geochemical and geophysical 

observations 

We have found that the aqueous fluids hypothesis cannot completely satisfy combined 

constraints from metamorphic fluid salinity, electrical resistivities and seismic velocities. 

Firstly, the question of the geochemical origin of brines is raised since the presence of Cl-rich 

sources in the Himalayan-Tibetan crust remains unproved. Secondly, fluid inclusions within 



rocks from the GHS show high salinity content (25 wt. % NaCl; Spencer et al., 2011), which 

implies a resistivity value of ~ 75·10
-4

 Ω.m (Nesbitt, 1993). By using electrical mixing 

models (as in section 5.2), we have found that the electrical anomalies beneath the 

Himalayan-Tibetan orogenic system (10 Ω.m - 3 Ω.m in Northwestern Himalaya and 

Southern Tibet, respectively) are best explained by ~ 0.8 vol.% of connected brines for the 

aqueous fluid hypothesis (Supplementary Table 2). Such a low brine percentage cannot 

explain the corresponding low seismic velocity zone, which requires at least 10 vol.% fluids 

(Makovsky and Klemperer, 1999).  

Furthermore, by using the electrical mixing models we have determined that 10 vol.% 

interconnected aqueous fluids would yield a resistivity value of ~ 0.11 Ω.m. This calculated 

value is two orders of magnitude lower than the values assessed by MT-field campaigns (10 

Ω.m – 3 Ω.m in Northwestern Himalaya and Southern Tibet, respectively; Arora et al., 2007; 

Li et al., 2003; Unsworth et al., 2005; Wei et al., 2001). The aqueous fluids hypothesis 

therefore yields a substantial discrepancy between seismic and electrical constraints. 

6. Conclusion 

New electrical resistivity measurements on partially molten metapelites have shown 

that the electrical anomalies detected by geophysical surveys beneath southern Tibet (3 Ω.m) 

and northwestern Himalaya (10 Ω.m) remarkably match fully molten leucogranite bodies and 

25 vol. % partially molten metapelites, respectively. Our study therefore corroborates that the 

processes (i.e. partial melting of metapelites and subsequent melt segregation) that generated 

the 25-13 Ma HHL must still be operating at depth beneath the Himalayan-Tibetan belt. 

Whether these processes are local or regional phenomena remains to be ascertained (Harrison, 

2006; Hetényi et al., 2011). 

The high melt percentages and corresponding viscosity values acquired during our 

experiments represent a benchmark for thermo-mechanical models, which must be calibrated 



against this inescapable constraint. The implementation of the electrical-seismic-petrological-

thermal-rheology relationships made possible with our study constitutes a requirement for 

understanding which factors in such thermo-mechanical models are most likely to influence 

orogenic processes and therefore in improving our knowledge of the development and 

sustainment of large-scale orogens. 

We finally suggest that forward modelling based on our laboratory electrical 

measurements and petrological-thermobarometric models of the Himalayan-Tibetan range 

should be confronted to field data from MT studies. Such an integrated methodology might 

lead to a revision of the minimum resistivity, translating into revised melt fractions, viscosity 

and strain localisations in the mid-crustal range.  
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Figure captions 

 

Figure 1. Simplified geological map and cross-section of the Himalaya showing the 

main High Himalayan Leucogranites (red dots) along the Greater Himalaya Sequence 

(adapted after Law et al. (2004) and Searle et al. (2006)). Abbreviations - GHS: Greater 

Himalaya Sequence; LH: Lesser Himalaya; STDs: South Tibetan Detachment system; MCT: 

Main Central Thrust; MBT: Main Boundary Thrust; MFT: Main Frontal Thrust; MHT: Main 

Himalayan Thrust; MOHO: Mohorovic discontinuity. 



 

Figure 2. (A) Modified Paterson assembly used for electrical resistivity 

measurements. (B) Zoom of sample showing inner Ni electrode. 



 

Figure 3. Measured electrical resistivities of runs PP187, PP202, PP205 and PP216 

during heating cycles at 300 MPa. The plotted values represent electrical measurements after t 

> 60 min. Error on the plotted electrical resistivity values is within the size of the data points. 



 

Figure 4. Electrical resistivity vs. temperature of experiment PP216 at 300 MPa 

confining pressure. During the heating cycle (red triangles), melt percentage increases 

moderately from 0 to 23 vol. %. During the cooling cycle (blue triangles), the sample remains 

partially molten (23 vol. % melt), even at the lowest temperature (500°C). This hysteresis 

cycle shows that the sample is in electrical disequilibrium. The equilibrated 

resistivity/temperature path (bold dashed lines) should follow the solid-state sample until the 

solidus temperature (e.g. solidi at 300 and 700 MPa), where the resistivity is shifted within a 



few degrees Celsius to lower values corresponding to 23 vol. % partial melting. See text for 

more details. Error on the plotted electrical resistivity values is within the size of the data 

points. Abbreviation – Φm: melt percentage; P: pressure.  



 

Figure 5. Mechanical behaviour of the metapelitic samples during runs PP187, 

PP202, PP213 and PP216. Experiments PP187 and PP216 were deformed at constant strain 

rate. Stepping strain rate experiments were undertaken during runs PP202 and PP213.  



 

Figure 6. Melt percentages (vol. %) calculated with Perple_X 6.6.6. for the chemical 

composition of the Sioule sample used as starting material in the present study. The water 

content of the system was fixed at 1.75 wt. %. The results are plotted in P-T diagrams (2D 

contours and 3D surface) with the program PyWerami.  



 

Figure 7. Pressure/depth versus temperature plot for partial melting of Himalayan 

metapelites. The red zone represents the dehydration-melting of muscovite in fluid absent 

conditions and isolates solid-state rocks (on the left-hand side of the red zone) from partially 

molten rocks (on the right-hand side of the red zone). In the Himalayan geological context, 

metapelites produce granitic melts in the temperature range 750-800°C and pressures between 

600-800 MPa (Patiño Douce and Harris, 1998). High Himalayan Leucogranites emplace as 

near-liquidus magma at 800°C and 400 MPa (Scaillet et al., 1995). Resistivity-depth-

temperature conditions for Himalayan partial melting and leucogranite emplacement 

remarkably match the MT anomalies beneath this orogen. 



 

Figure 8. Electrical resistivity versus temperature for partial melting of Himalayan 

metapelites and crystallization of Himalayan leucogranites. Our experimental data is 

represented by the triangles in the left panel. At 650°C and 300 MPa, melt percentage 

increases from 0 to 10 vol.% within 5°C, sharply decreasing the electrical resistivity. With 

increasing pressure, melting temperature increases, therefore shifting the sharp decrease in 

resistivity to higher temperatures. Resistivity mixing models are shown in red dashed lines, 

considering fully connected melt (10 and 25 vol.% melt) in a solid matrix (HS
+
). 

Extrapolation of fully molten bodies at 800°C from our partial melting experiments and 

mixing models is represented by red rectangles in both panels (lower and upper boundaries 

calculated using HS
+
 and equation 5 by Gaillard (2004), respectively). The blue dotted line in 

the right panel corresponds to cooling and crystallization of leucogranitic bodies 

(experimental data from Scaillet et al. (1995) using HS
+
). MT anomalies can be explained by 

either 25 vol.% partial melting of the middle crust at 800°C or leucogranites containing 20 

vol.% crystals at 680°C for northwestern Himalaya and by emplacement of leucogranitic 

bodies at 800°C for southern Tibet. Abbreviation – Φm: melt percentage. 

 



Table 1 

Starting Sample Produced melt 

 Bulk rock Quartz K-Feldspar Plagioclase Muscovite Biotite DK Melt 

Modal abundances 100 22 2 30 23 23 — — 

SiO2 62.36 (± 0.26) 100.00 63.63 (± 4.54) 67.25 (± 1.04) 48.27 (± 0.69) 36.41 (± 2.02) 73.04 74.82 (± 3.59) 

Al2O3 19.27 (± 0.18) 0.00 19.87 (± 3.73) 20.21 (± 0.57) 37.29 (± 0.82) 19.73 (± 1.43) 15.32 14.92 (± 2.39) 

Fe2O3 — — — — — — 0.17 nd 

FeO 4.56 (± 0.22)* 0.00* 0.18 (± 0.22)* 0.14 (± 0.08)* 1.73 (± 1.62)* 22.00 (± 1.47)* 0.74 0.66 (± 0.30)* 

MnO 0.08 (± 0.07) 0.00 0.01 (± 0.01) 0.03 (± 0.03) 0.08 (± 0.02) 0.32 (± 0.03) 0.01 nd 

MgO 3.28 (± 0.03) 0.00 0.04 (± 0.15) 0.01 (± 0.03) 0.74 (± 0.08) 9.14 (± 0.47) 0.20 0.13 (± 0.05) 

CaO 1.06 (± 0.07) 0.00 0.03 (± 0.07) 0.88 (± 0.47) 0.00 (± 0.00) 0.08 (± 0.16) 0.85 0.70 (± 0.63) 

Na2O 2.63 (± 0.02) 0.00 1.21 (± 1.66) 9.62 (± 2.19) 0.49 (± 0.05) 0.12 (± 0.05) 3.85 2.65 (± 1.15) 

K2O 5.33 (± 0.09) 0.00 15.00 (± 2.38) 1.84 (± 3.66) 10.77 (± 0.18) 9.92 (± 0.93) 4.96 5.92 (± 1.68) 

TiO2 1.23 (± 0.05) 0.00 0.03 (± 0.13) 0.02 (± 0.02) 0.63 (± 0.03) 2.28 (± 0.43) 0.13 0.06 (± 0.04) 

P2O5 nd nd nd nd nd nd 0.14 nd 

CO2 0.001‡ nd nd nd nd nd 0.05 nd 

H2O 1.75‡ nd nd nd nd nd 0.65¥ nd 

F 0.19 (± 0.02) nd nd nd nd nd 0.09 0.14 (± 0.02) 

Cl 0.01 (± 0.01) nd nd nd nd nd nd nd 

Total 96.09 (± 0.30) 100.00 97.97 (± 1.75) 98.37 (± 0.64) 93.52 (± 1.80) 91.99 (± 6.12) 100.20 92.49 (± 1.39) 



Table 2 
Run Length 

(mm) 
Diameter 
(mm) 

Type Tpeak 
(°C) 

γdot (s-

1) 
γ τpeak 

(MPa) 
ηA 
(Log 
Pa.s) 

ΦM 
(vol. 
%) 

Phases Total run 
duration 
(h) 

Maximum error on 
resistivity 
measurements (%) 

PP187 12.40 14.93 Torsion 825 1·10-5 0.57 22.0 12.32 23 
Qz + Pl + Kfs 
+ Bt + Ms + 
Sil + Melt 

24.2 7.0 

PP202 16.93 14.91 Torsion 825 
2.5·10-5 0.35 22.0 11.93 

24 
Qz + Pl + Kfs 
+ Bt + Ms + 
Sil + Melt 

17.0 0.1 5·10-5 0.77 24.6 11.67 
1·10-4 0.91 24.6 11.38 

PP205 8.33 14.86 Static 825 – – – – 10 
Qz + Pl + Kfs 
+ Bt + Ms + 
Sil + Melt 

30.0 2.2 

PP213 14.71 14.91 Torsion 850 
1·10-5 0.02 4.9 11.69 

30 
Qz + Pl + Kfs 
+ Bt + Ms + 
Sil + Melt 

29.6 1.3 5·10-5 0.03 6.5 11.11 
2.5·10-4 0.20 8.9 10.55 

PP214 13.23 14.99 Static 850 – – – – 23 
Qz + Pl + Kfs 
+ Bt + Ms + 
Sil + Melt 

23.6 0.1 

PP216 19.65 14.98 Torsion 850 2.5·10-4 0.23 9.2 10.56 30 
Qz + Pl + Kfs 
+ Bt + Ms + 
Sil + Melt 

7.6 28.2 

 



Table 3 
Electrical mixing law Melt resistivity (Ω.m) 

Archie’s law 1.87 

Modified Archie’s law 2.71 

Hashin-Shtrikman upper bound 2.13 

Cubes model 1.91 

Tubes model 0.97 

 


