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 10 
As the world’s largest distributed store of freshwater, groundwater plays a central role in 11 

sustaining ecosystems and enabling human adaptation to climate variability and change. 12 

The strategic importance of groundwater to global water and food security will intensify 13 

under climate change as more frequent and intense climate extremes (droughts, floods) 14 

increase variability in soil moisture and surface water. Here we critically review recent 15 

research assessing climate impacts on groundwater through natural and human-induced 16 

processes as well as groundwater-driven feedbacks on the climate system.  17 
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Groundwater is a near ubiquitous source of generally high quality freshwater. These 18 

characteristics promote its widespread development which can be scaled and localised to 19 

demand obviating the need for substantial infrastructure1. Globally, groundwater is the 20 

source of one third of all freshwater withdrawals supplying an estimated 36%, 42% and 27% 21 

of the water used for domestic, agricultural and industrial purposes, respectively2. In many 22 

environments, natural groundwater discharges sustain baseflow to rivers, lakes and 23 

wetlands during periods of low or no rainfall. Despite these vital contributions to human 24 

welfare and aquatic ecosystems, a paucity of studies of the relationship between climate 25 

and groundwater severely restricted the ability of the Intergovernmental Panel on Climate 26 

Change (IPCC) to assess interactions between groundwater and climate change in both its 27 

third3 and fourth4 assessment reports. There has since been a dramatic rise in published 28 

research applying local- to global-scale modelling as well as ground-based and satellite 29 

monitoring that has substantially enhanced understanding of interactions between 30 

groundwater and climate5,6. We examine these recent advances that include emerging 31 

knowledge of direct and indirect (through groundwater use) impacts of climate forcing 32 

including climate extremes on groundwater resources as well as feedbacks between 33 

groundwater and climate such as groundwater depletion on global sea level rise. Further, we 34 

identify critical gaps in our understanding of direct and indirect interactions between 35 

groundwater and climate, and groundwater-based strategies to adapt to climate variability 36 

and change.  37 

  38 

Influence of climate variability and change on groundwater systems 39 

Palaeohydrological evidence. Long-term responses of groundwater to climate forcing, largely 40 

independent of human activity, can be detected from palaeohydrological evidence from 41 
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regional aquifer systems in semi-arid and arid parts of the world (Fig. 1). Groundwater 42 

flowing in large sedimentary aquifers of central USA (High Plains Aquifer), Australia (Great 43 

Artesian Basin), Southern Africa (Kalahari Sands) and North Africa (Nubian Sandstone Aquifer 44 

System) was recharged by precipitation thousands of years ago7-10. As evaporation and plant 45 

transpiration consume soil moisture but leave chloride behind, substantial accumulations of 46 

chloride in unsaturated soil profiles within these basins indicate that little or no recharge has 47 

since taken place11. Stable isotopes of oxygen and hydrogen together with noble gas 48 

concentrations suggest that recharge occurred under cooler climates (≥ 5°C cooler) before 49 

and occasionally during Late-Pleistocene glaciation with further local additions during the 50 

Early Holocene. Groundwater recharged during cooler, wetter climates of the Late 51 

Pleistocene and Early Holocene (≥ 5 ka B.P.) is commonly referred to as ‘fossil groundwater’. 52 

As current groundwater recharge rates are responsible for at most a tiny fraction of total 53 

groundwater storage, fossil aquifers are storage dominated rather than recharge flux 54 

dominated12. As such, their lifespan is determined by the rate of groundwater abstraction 55 

relative to exploitable storage. In these systems, robust estimates of groundwater storage 56 

estimates and accurate records of groundwater withdrawals are of critical importance. 57 

Although fossil aquifers provide a reliable source of groundwater that is resilient to current 58 

climate variability, this non-renewable groundwater exploitation is unsustainable and is 59 

mined similar to oil13.  60 

 61 

Direct impacts. Current, natural replenishment of groundwater occurs from both diffuse 62 

rain-fed recharge and focused recharge via leakage from surface waters (i.e. ephemeral 63 

streams, wetlands or lakes) and is highly dependent upon prevailing climate as well as land 64 

cover and underlying geology. Climate and land cover largely determine precipitation (P) and 65 
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evapotranspiration (ET) demand whereas the underlying soil and geology (Fig. 1) dictate 66 

whether a water surplus (P-ET) can be transmitted and stored in the subsurface. Modelled 67 

estimates of diffuse recharge globally14,15 range from 13,000 to 15,000 km3 year-1, equivalent 68 

to ~30% of the world’s renewable freshwater resources16 or a mean per capita groundwater 69 

recharge of 2,100 to 2,500 m3 year-1. These estimates represent potential recharge fluxes as 70 

they are based on a water surplus rather than measured contributions to aquifers. Further, 71 

these modelled global recharge fluxes do not include focused recharge which, in semi-arid 72 

environments, can be substantial11,17. 73 

Spatial variability in modelled recharge is related primarily to the distribution of 74 

global precipitation14,15. Over time, recharge is strongly influenced by climate variability 75 

including climate extremes (i.e. droughts and floods) that often relate to modes of climate 76 

variability such as El Niño Southern Oscillation (ENSO) at multiyear timescales and Pacific 77 

Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO) and others at longer 78 

timescales18,19. During the recent multi-annual Millennium Drought in Australia, 79 

groundwater storage in the Murray-Darling Basin declined substantially and continuously by 80 

~100 ± 35 km3 from 2000 to 2007 in response to a sharp reduction in recharge20. Heavy 81 

rainfall has been found to contribute disproportionately to recharge observed in borehole 82 

hydrographs from tropical Africa18,21. Further, recharge in semi-arid environments is often 83 

restricted to statistically extreme (heavy) rainfall14,22 that commonly generates focused 84 

recharge beneath ephemeral surface water bodies17,18,23. Recharge from heavy rainfall 85 

events is also associated with microbial contamination of shallow groundwater-fed water 86 

supplies and outbreaks of diarrhoeal diseases in both low and high-income countries24. 87 

Wetter conditions do not, however, always produce more groundwater recharge. Incidences 88 

of greater (x 2.5) winter precipitation in the SW USA during ENSO years, give rise to 89 
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enhanced evapotranspiration from desert blooms that largely or entirely consume the water 90 

surplus25. 91 

At high latitudes and elevations, global warming changes the spatial and temporal 92 

distribution of snow and ice. Warming results in lower snow accumulation and earlier 93 

snowmelt as well as more winter precipitation falling as rain and an increased frequency of 94 

rain-on-snow events. The aggregate impact of these effects on recharge is not well resolved 95 

but preliminary evidence26,27 indicates that they serve to reduce the seasonal duration and 96 

magnitude of recharge. Aquifers in mountain valleys that are strongly coupled to adjacent 97 

rivers exhibit shifts in the timing and magnitude of: (1) peak groundwater levels due to an 98 

earlier spring melt, and (2) low groundwater levels associated with longer and lower 99 

baseflow periods28,29 (Fig. 2). Summer low flows in streams may be exacerbated by declining 100 

groundwater levels so that streamflow becomes inadequate to meet domestic and 101 

agricultural water requirements and to maintain ecological functions such as in-stream 102 

habitats for fish and other aquatic species29. The impacts of receding alpine glaciers on 103 

groundwater systems are also not well resolved yet the long-term loss of glacial storage is 104 

estimated to similarly reduce summer baseflow30.  In glaciated watersheds of the Himalayas, 105 

the impacts of large reductions in glacial mass and increased evaporation on groundwater 106 

recharge are projected to be offset by a rise in precipitation31. In permafrost regions where 107 

recharge is currently ignored in global analyses14, coupling between surface water and 108 

groundwater systems may be particularly enhanced by warming32. In areas of seasonal or 109 

perennial ground frost, increased recharge is expected even though the absolute snow 110 

volume decreases33.  111 

 112 
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Human and indirect climate impacts. Linkages between climate and groundwater in the 113 

modern era are complicated by Land-Use Change (LUC) that includes most pervasively the 114 

expansion of rain-fed and irrigated agriculture. Managed agro-ecosystems do not respond to 115 

changes in precipitation in the same manner as natural ecosystems. Indeed, LUC may exert a 116 

stronger influence on terrestrial hydrology than climate change. Under multi-decadal 117 

droughts in the West African Sahel during the latter half of the 20th century, groundwater 118 

recharge and storage rose rather than declined due to a coincidental LUC from savannah to 119 

cropland that increased surface runoff through soil crusting and focused recharge via 120 

ephemeral ponds34. Much earlier in the 20th century, LUC from natural ecosystems to rain-121 

fed cropland in SE Australia and SW USA similarly increased groundwater storage through 122 

increased recharge but also degraded groundwater quality through the mobilisation of 123 

salinity accumulated in unsaturated soil profiles11. In both regions, recharge rates under 124 

cropland increased by about an order of magnitude35-37.   125 

Humans have also exerted large-scale impacts on the terrestrial water system 126 

through irrigation (Fig. 2). In 2000, irrigation accounted for ~70% of global freshwater 127 

withdrawals and ~90% of consumptive water use2. This large-scale redistribution of 128 

freshwater from rivers, lakes and groundwater to arable land (Fig. 2) has led to: (1) 129 

groundwater depletion in regions with primarily groundwater-fed irrigation; (2) groundwater 130 

accumulation as a result of recharge from return flows from surface-water fed irrigation; and 131 

(3) changes in surface-energy budgets associated with enhanced soil moisture from 132 

irrigation. Irrigation has depleted groundwater storage in several semi-arid and arid 133 

environments including the North China Plain38, NW India39, US High Plains40,41 but also in 134 

humid environments of Brazil42 and Bangladesh43 (Fig. 1) where abstraction is especially 135 

intense. During a recent (2006 to 2009) drought in the California Central Valley (Fig. 1), large-136 
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scale groundwater depletion occurred when the source of irrigation water shifted from 137 

surface water to mostly groundwater. GRACE (Gravity Recovery and Climate Experiment) 138 

satellite data and ground-based observations revealed that groundwater storage declined by 139 

between 24 and 31 km3, a volume that is equivalent to the storage capacity of Lake Mead, 140 

the largest surface reservoir in the USA44,45. These observations show that indirect effects of 141 

climate on groundwater through changes in irrigation demand and sources can be greater 142 

than direct impacts of climate on recharge. Global-scale modelling2 highlights areas of recent 143 

(1998 to 2002) groundwater accumulation through irrigation return flows from surface-144 

water fed irrigation in the Nile Basin of Egypt, Tigris-Euphrates basin of Iraq, Syria and 145 

Turkey, the lower Indus basin in Pakistan, and southeastern China (Fig. 3). In parts of the 146 

California Central Valley, surface water irrigation since the 1960s has increased groundwater 147 

recharge by a factor of ~7 replenishing previously depleted aquifers and raising groundwater 148 

levels by up to 100 m46. Increased recharge may also serve not only to degrade groundwater 149 

quality through the mobilisation of salinity in soil profiles (discussed above) but also to flush 150 

natural contaminants such as arsenic from groundwater systems47,48.  151 

 152 

Future climate impacts on groundwater systems. As irrigation dominates current 153 

groundwater use and depletion, the effects of future climate variability and change on 154 

groundwater may be greatest through indirect impacts on irrigation water demand.  155 

Substantial uncertainty persists in climate change impacts on mean precipitation from 156 

General Circulation Models (GCMs)49 but there is much greater consensus on changes in 157 

precipitation and temperature extremes, which are projected to increase with intensification 158 

of the global hydrological system50,51. Longer droughts may be interspersed with more 159 

frequent and intense rainfall events. These changes in climate may affect groundwater 160 
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initially and primarily through changes in irrigation demand, in addition to changes in 161 

recharge and discharge. A global analysis of climate change impacts on irrigation demand 162 

suggests that two thirds of the irrigated area in 1995 will be subjected to increased water 163 

requirements for irrigation by 2070(ref. 52). Projected increases in irrigation demand in 164 

southern Europe will serve to stress further limited groundwater resources53. Persistent 165 

droughts projected in the California Central Valley over the latter half of the 21st century are 166 

predicted to trigger a shift from predominantly surface water to groundwater supply for 167 

agriculture54. Increased groundwater abstraction combined with reduced surface water 168 

flows associated with intermittent droughts during the first half of the 21st century may, 169 

however, induce secondary effects (e.g. subsidence) that severely constrain this future 170 

adaptation strategy.  171 

Projections of the direct impacts of climate change on groundwater systems are 172 

highly uncertain. The dominant source of uncertainty lies in climate projections derived from 173 

GCMs which typically translate the same emissions scenarios into very different climate 174 

scenarios, particularly for precipitation49. Nevertheless, GCM projections of global 175 

precipitation for the 21st century broadly indicate a ‘rich get richer’ pattern in which regions 176 

of moisture convergence (divergence) are expected to experience increased (decreased) 177 

precipitation50,55. At the global scale, there are no published studies applying a large 178 

ensemble of GCMs and greenhouse-gas emissions scenarios to generate recharge 179 

projections. Global simulations employing output from two climate models (ECHAM4, 180 

HadCM3) under two emissions scenarios (A2, B2) project: (1) decreases in potential 181 

groundwater recharge of more than 70% by the 2050s in NE Brazil, SW Africa and along the 182 

southern rim of the Mediterranean Sea; and (2) increases in potential recharge of more than 183 

30% in the Sahel, Middle East, northern China, Siberia and the western USA16. Baseline 184 
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recharge rates in many of these areas are, however, very low so that small changes in 185 

projected recharge can result in large percentage changes. For most of the areas with high 186 

population densities and high sensitivity to groundwater recharge reductions, model results 187 

indicated that groundwater recharge is unlikely to decrease by more than 10% until the 188 

2050s16.  189 

Groundwater recharge projections are closely related to projected changes in 190 

precipitation. Regional simulations employing 16 GCMs in Australia project potential 191 

recharge decreases in the west, central and south, and increases in the north based on the 192 

ensemble median55. In Europe, potential recharge projections derived from an ensemble of 193 

four GCMs under the A1FI emissions scenario demonstrate strong latitudinal dependence on 194 

the direction of the climate change signal56. Substantial reductions in potential groundwater 195 

recharge are uniformly projected in southern Europe (Spain and northern Italy) whereas 196 

increases are consistently projected in northern Europe (Denmark, southern England, 197 

northern France). Current uncertainty in climate change impacts on recharge derives not 198 

only from the substantial uncertainty in GCM projections of precipitation but also from the 199 

cascade of uncertainty associated with the downscaling of GCM projections and employed 200 

hydrological models57. For a chalk aquifer in England, for example, application of an 201 

ensemble of 13 GCMs resulted in projected changes in groundwater recharge for the 2080s 202 

of between -26% and +31%58. In southern British Columbia, recharge projections for the 203 

2080s range from -10 % to +23 % relative to historical recharge59. At three Australian sites, 204 

the choice of GCMs was found to be the greatest source of uncertainty in future recharge 205 

projections followed by that of downscaling  and, in turn, the applied hydrological model 206 

amounting to 53, 44 and 24% of historical recharge, respectively60. Uncertainty from 207 
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downscaling can be greater than uncertainty due to the choice of applied emissions 208 

scenarios61,62.  209 

Current projections of groundwater recharge under climate change commonly do not 210 

consider the intensification of precipitation and CO2-physiological forcing. Although 211 

precipitation intensity is of critical importance to recharge, historical daily rainfall 212 

distributions are typically used to downscale monthly rainfall projections to a daily timestep. 213 

Evidence from the tropics63 where the intensification of precipitation is expected to be 214 

especially strong, reveals that failure to consider changes in daily rainfall distributions may 215 

systemically underestimate future recharge. Transformation of the rainfall distribution to 216 

account for changes in rainfall intensity reversed a projected 55% decline in potential 217 

recharge to a 53% increase. Recent multi-model simulations that account for precipitation 218 

intensification64,65 represent a critical advance in assessing climate change impacts on 219 

groundwater recharge and terrestrial water balances. Under higher atmospheric CO2 220 

concentrations, terrestrial plants open their stomata less; this response is projected to 221 

reduce evapotranspiration and increase continental runoff66. Recent analyses in Australia67 222 

highlight that: (1) greater plant growth (i.e. greater leaf area) can offset reductions in 223 

evapotranspiration through stomatal closure; (2) reduced leaf area due to unfavorable 224 

climate conditions can result in an increase of groundwater recharge even with slightly 225 

decreased rainfall; and (3) changes in rainfall intensity can have a greater impact on recharge 226 

fluxes than rising atmospheric CO2 concentrations.  227 

 228 

Groundwater Impacts on the Climate System 229 

Impact of groundwater-fed irrigation on soil moisture. Groundwater primarily influences 230 

climate through contributions to soil moisture.  Irrigation can transform areas from water 231 
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(soil moisture) -limited to energy-limited evapotranspiration thereby influencing water and 232 

energy budgets. A modeling study68 showed that during the growing season and averaged 233 

over the continental United States, irrigation increases evapotranspiration by 4%. 234 

Simulations show that rising groundwater-fed irrigation in the High Plains (Fig. 1) over the 235 

20th century increased downwind precipitation by ≤15 to 30 % in July69 with associated 236 

increases in groundwater storage and streamflow observed from August to September70. 237 

Irrigation in California’s Central Valley is shown to strengthen the southwestern U.S. 238 

monsoon increasing precipitation by 15% and discharge of the Colorado River by 30%71. 239 

Similar impacts of groundwater-fed irrigation on evapotranspiration and downwind 240 

precipitation have been demonstrated in the Indian monsoon region using a regional climate 241 

model72.  242 

 243 

Representation of groundwater in land-surface models. Land surface models (LSMs), 244 

embedded in GCMs, have long neglected hydrological processes below the root zone such as 245 

lateral groundwater flow as these have been assumed to be disconnected from the 246 

atmosphere. LSMs were subsequently retrofitted with a simplified formulation of 247 

unconfined groundwater storage changes73,74. There have also been attempts to better 248 

represent subsurface processes in LSMs75 or to couple more complete groundwater models 249 

to LSMs76. These efforts led to the discovery of a critical zone of water table depths from 2 250 

to 7 m where groundwater exerts the most influence on land-energy fluxes77. Coupling of an 251 

integrated hydrological model to mesoscale atmospheric models78 revealed clear 252 

connections between water-table depth and development of the atmospheric boundary 253 

layer79. Representing groundwater flow in atmospheric models at larger scales and longer 254 

time frames affects land surface moisture states that feed back into regional climate where 255 



 12

water tables are relatively shallow80. Without a prognostic groundwater reservoir and 256 

explicit groundwater-surface water exchanges in LSMs, we remain unable to represent the 257 

integrated response of the water cycle to human perturbations and climate change. One key 258 

groundwater process missing from LSMs is lateral groundwater flow from high to low 259 

regions. This flow occurs at multiple spatial scales81 but is fundamentally important at 260 

hillslope (or small model grid) scales in a humid climate or at basin scales in semi-arid and 261 

arid climates with regional aquifers where discharges can be remote from sources of 262 

recharge82. Lateral groundwater flow supports persistently wetter river valleys in humid 263 

climates and regional wetlands and oases in arid climates80 affecting land surface moisture 264 

states and ET fluxes. Groundwater also acts as an important store and vehicle for carbon 265 

though studies accounting for groundwater interactions and feedbacks in the global carbon 266 

budget are still in their infancy83.  267 

 268 

Groundwater and Sea Level Rise. Coastal aquifers form the interface between the oceanic 269 

and terrestrial hydrological systems and provide a source of water for the more than one 270 

billion people in coastal regions84. Global sea-level rise (SLR) of 1.8 mm yr-1 over the second 271 

half of the twentieth century85 is expected to have induced fresh-saline water interfaces to 272 

move inland. The extent of seawater intrusion into coastal aquifers depends on a variety of 273 

factors including coastal topography, recharge, and critically groundwater abstraction from 274 

coastal aquifers86-88. Analytical models suggest that the impact of SLR on seawater intrusion 275 

is negligible compared to that of groundwater abstraction89. The impacts of seawater 276 

intrusion have been observed most prominently in association with intensive groundwater 277 

abstraction around high population densities (e.g. Bangkok, Jakarta, Gaza)89,90. Coastal 278 

aquifers under very low hydraulic gradients such as the Asian Mega-Deltas are theoretically 279 
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sensitive to SLR but, in practice, are expected in coming decades to be more severely 280 

impacted by saltwater inundation from storm surges than SLR89. 281 

Groundwater depletion contributes to SLR through a net transfer of freshwater from 282 

long-term terrestrial groundwater storage to active circulation near the earth’s surface and 283 

its eventual transfer to oceanic stores. The contribution of groundwater depletion to SLR 284 

has, however, been subject of debate. In the IPCC AR491, the contribution of non-frozen 285 

terrestrial waters including groundwater depletion to sea-level variation is not specified due 286 

to its perceived uncertainty. Recently, there has been a series of studies estimating the 287 

contribution of groundwater depletion to SLR15,92-94. Current estimates of global 288 

groundwater depletion derived from flux-based (year 2000) and volume-based (period: 289 

2001-2008) methods are summarised in Table 1. Global groundwater depletion (204 ± 30 290 

km3 year-1) estimated by the flux-based method92, is based on the difference between grid-291 

based simulated groundwater recharge and net abstraction (i.e. groundwater withdrawals 292 

minus return flows). This approach overestimates depletion as it does not account for 293 

increased capture due to decreased groundwater discharge and long-distance surface-water 294 

transfers. The volume-based method93 combines evidence of groundwater storage changes 295 

for the US and another five aquifer systems (Indo-Gangetic Plain, North China Plain, Saudi 296 

Arabia, Nubian Sandstone and North West Sahara) (Fig. 1) and then extrapolates 297 

groundwater depletion elsewhere using the fixed ratio of depletion to abstraction observed 298 

in the US. This approach produces a lower global estimate of groundwater depletion (145 ± 299 

39 km3 year-1) than the flux-based approach but assumes that the average relationship 300 

between groundwater depletion and abstraction is reasonably approximated by the known 301 

ratio in the US. Both methods reveal that groundwater depletion is most pronounced in Asia 302 

(China, India) and North America (Table 1).  The different estimates of global groundwater 303 
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depletion produce variable estimates of its current contribution to SLR (34% or 0.57 ± 0.09 304 

mm year-1 versus 23% or 0.4 ± 0.1 mm year-1). Direct observations of groundwater depletion 305 

continue to be hampered by a dearth of ground-based observations that not only limits 306 

understanding of localised groundwater storage changes but also our ability to constrain 307 

evidence from GRACE satellite observations at larger scales (≥ 150 000 km2). 308 

 309 

A look forward 310 

 311 

Groundwater can enhance the resilience of domestic, agricultural and industrial uses 312 

of freshwater to climate variability and change. As the only perennial source of freshwater in 313 

many regions, groundwater is of vital importance to the water security of many communities 314 

including most critically rural dwellers in low-income countries. Groundwater-fed irrigation 315 

provides a buffer against climate extremes and is consequently essential to global food 316 

security. Further, it serves to alleviate poverty in low-income countries by reducing crop 317 

failure and increasing yields95.  The value of groundwater is expected to increase in coming 318 

decades as the temporal variability in precipitation, soil moisture and surface water 319 

increases under more frequent and intense climate extremes associated with climate 320 

change51. Rises in both absolute groundwater abstractions and groundwater abstractions as 321 

a ratio of total water abstraction threaten to overexploit groundwater resources. This risk is 322 

particularly acute in semi-arid regions where projected increases in the frequency and 323 

intensity of droughts, combined with rising populations and standards of living as well as the 324 

projected expansion of irrigated land, will intensify groundwater demand. To sustain 325 

groundwater use under these conditions will require careful aquifer management96 that: (1) 326 

is informed by integrated models able to consider the range of interactions between 327 
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groundwater, climate and human activity summarised here (Fig. 2); and (2) exploits 328 

opportunities for enhanced groundwater recharge associated with less frequent but heavier 329 

rainfall events.   330 

A comprehensive management approach to water resources that integrates 331 

groundwater and surface water may greatly reduce human vulnerability to climate extremes 332 

and change, and enable sustainable increases in supply for global water and food security. 333 

Conjunctive uses of groundwater and surface water that employ surface water for irrigation 334 

and water supply during wet periods and groundwater during drought46, are likely to prove 335 

essential. Managed aquifer recharge wherein excess surface water and treated wastewater 336 

are stored in depleted aquifers could also supplement groundwater storage for use during 337 

droughts41,97. Use of aquifers as natural storage reservoirs avoids many of the problems of 338 

evaporative losses and ecosystem impacts associated with large, constructed surface water 339 

reservoirs. In South Asia for example, intensive groundwater abstraction for dry season 340 

irrigation has induced greater recharge in areas with permeable soils by increasing available 341 

groundwater storage during the subsequent monsoon98. 342 

Two fundamental impediments to employing the adaptation strategies discussed 343 

above are: (1) availability of groundwater observations to inform them; and (2) existence of 344 

robust integrated models to evaluate their impact. Although we report above on progress 345 

toward the latter, there remains no global programme for the collation of groundwater data. 346 

As a result, the ability in many environments to evaluate fully the responses of groundwater 347 

to climate variability and change, to estimate directly groundwater replenishment, and to 348 

constrain models and satellite observations, is severely impaired. There is, for example, a 349 

profound lack of knowledge regarding the quantity of exploitable groundwater storage in 350 

most aquifers. The equivalent depth of groundwater storage, determined primarily by 351 
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geology, can vary substantially from regional sedimentary aquifers (>50 m) to small, 352 

discontinuous aquifers in deeply weathered crystalline rock (<1 m) that underlie 40% of sub-353 

Saharan Africa99. Due, in part, to this lack of data globally, groundwater resources continue 354 

to be disregarded in current metrics defining water stress and scarcity despite their strategic 355 

role in ensuring water security. 356 

357 
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Table 1. Flux-based and volume-based estimates of global and continental-scale 605 
groundwater depletion (km3 year-1) and their contributions to global sea-level rise (mm year-606 
1). 607 
 608 
region flux-based method (ref. 92)* volume-based method (ref. 93)^ 

gw depletion sea-level rise gw depletion sea-level rise 
World 204 ± 30 0.57 ± 0.09 145 ± 39 0.40 ± 0.11 
Asia 150 ± 25 0.42 ± 0.07 111 ± 30 0.31 ± 0.08 
Africa 5.0 ± 1.5 0.014 ± 0.004 5.5 ± 1.5 0.015 ± 0.004 
N. America 40 ± 10 0.11 ± 0.03 26 ± 7 0.07 ± 0.02 
S. America 1.5 ± 0.5 0.0042 ± 0.0014 0.9 ± 0.5 0.002 ± 0.001 
Australia 0.5 ± 0.2 0.0014 ± 0.0006 0.4 ± 0.2 0.001 ± 0.0005 
Europe 7 ± 2 0.02 ± 0.006 1.3 ± 0.7 0.004 ± 0.002 
*year 2000; ^period of 2001 to 2008 609 
 610 

611 
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FIGURE CAPTIONS: 612 
 613 
Figure 1. Global hydrogeological map simplified from ref. 100 highlighting the locations of 614 
cited regional aquifers systems. 615 
 616 
Figure 2. Conceptual representation of key interactions between groundwater and climate. 617 
 618 
Figure 3. Anthropogenic groundwater recharge in areas with substantial irrigation by surface 619 
water estimated from the difference between the return flow of irrigation water to 620 
groundwater and total groundwater withdrawals (mm yr-1) for the period 1998 to 2002(ref. 2). 621 
Note that in areas with predominantly groundwater-fed irrigation or significant water 622 
withdrawals for domestic and industrial purposes, no anthropogenic groundwater recharge 623 
occurs; a net abstraction of groundwater leads to groundwater depletion in regions with 624 
insufficient natural groundwater recharge. 625 
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