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Abstract 

The possible role of liquid-air and solid-liquid interfacial curvature on the water-rock mass transfers in natural setting 

is here studied by macroscopic thermodynamics that includes Young-Laplace interphase pressure gradient. Capillary 

water in non-saturated soils (liquid-air concave curvature toward air), and curved solid as a function of pore sizes 

(solid-liquid concave curvature towards infilling solution) exemplify what can be expected in terms of solubility. 

Gases solubility in capillary water is increasing with curvature, promoting the gas uptake and so moving chemical 

equilibria in solutions (e.g., redox and/or acido-basic) accordingly. Applied to solid solubility, the macroscopic 

thermodynamics of interfaces treatment highlights the versatility offered by crystalline shaping with respect to the 

capillary degree (if any) of the surrounding aqueous solution. Additionally, the solid curvature associated with 

decreasing pore sizes makes the solid less soluble in the infilling bulk solution. 
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1. Introduction 

Interfaces attract much attention of the geochemistry community because they are the true location 

where solid-liquid or liquid-gases interact, depending on the local thermodynamic potential. Many efforts 

were and are undertaken to describe the physical and physic-chemical properties of interfaces down to the 

atomic-scale, in terms of structure (e.g., review by Brown et al. [1]) and/or chemical fluxes (e.g., [2]). 

Macroscopic thermodynamics calculate the driving force existing in one extended system using the 

chemical potential for those phase transitions that arise at constant (T,P). Meanwhile, it does not appear to 

be the relevant tool to deal with the atomically heterogeneous interfaces. Yet, interface has got one 

feature that can be addressed in continuum terms: its curvature that directly links to phase pressure owing 
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to the Young-Laplace equation (YLE) and the interphase surface tension (e.g., [3]). Originally declined 

for liquid-gas interfaces, YLE can be extended to liquid-solid equilibrium situations and allows taking 

into account the interfacial curvature into chemical potential and so reaction driving force (e.g., [4-5]). 

The present contribution develops the different thermodynamic sketches, and evokes the natural settings 

in which they should be relevant. 

2. Liquid-air interfacial curvature 

Capillary water in non-saturated porous system display liquid-air interface concave toward air, while 

water droplets experience an opposite convex shape of their liquid-air interfaces. Indeed, capillary water 

is largely encountered in natural settings, in soils (featuring most of the immobile water) and trees (sap 

ascent) mainly, and water nano/micro-droplets are common in clouds and fogs. In all these cases, the 

driving force to curve a liquid with respect to the ambient pressure is the partial pressure of vapor in air 

(Kelvin law). A capillary meniscus is driven by a lower relative humidity (RH hereafter) than 

saturation’s, while cloud droplets imply RH conditions above saturation’s: liquid-air curvature is then air 

humidity-dependent. The true difference between droplet and meniscus is that the former closes on itself 

and then can stand as such, while the latter needs a support to sustain its curvature without collapsing: 

only a pore/channel network can host capillary water. The properties of curved-shape liquids are easily 

worked out by simple thermodynamics, as follows: 

µCURVED- µ°REF = V°phase x (Pphase – 1) (1) 

with µCURVED and µ°REF are the chemical potentials of, respectively, the curved and the reference phase, 

V°phase is the molar volume of the wetting phase (water), assumed or not constant with curvature, P is the 

wetting phase internal pressure. 

Water phase pressure can be determined from RH values (Kelvin law), from capillary sizes (Young-

Laplace law), or from lifetime of capillary water when metastable (nucleation theory) [6]. Capillary water 

becomes metastable whenever hosted in pore/channel with interior larger than the meniscus locations, 

typically an ink-bottle shape, frequently evoked in soil physics (e.g. [6-7]). 

 
Fig. 1. Gases solubility ratio between capillary and bulk water and (a) concave-curved capillary water; (b) convex-curved droplet. 

The whole dataset of capillary thermodynamic properties can be calculated (e.g., [8]), and so the 

solvent properties of capillary water with respect to gases and solids (e.g. [3,8-10]). At first sight, gases 

and solids have nothing to do with the capillary state. For instance, gas pressures stay constant in the 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

-1000 -800 -600 -400 -200 0

(N
eu

tr
a
l 

so
lu

te
) e

q
,P

 / 
(N

eu
tr

a
l 

so
lu

te
) e

q
,1

Pressure (bars)

neon

oxygen

argon

carbonic gas

nitrogen

methane

xenon

Gasair  (neutral solute)aqueous

T = 25 C, pgas = partial pressure in natural atmosphere

RHeq = 60%

rmeniscus  2 nm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 200 400 600 800 1000

(N
eu

tr
a
l 

so
lu

te
) e

q
,P

 / 
(N

eu
tr

a
l 

so
lu

te
) e

q
,1

Pressure (bars)

neon

oxygen

argon

carbonic gas

nitrogen

methane

xenon

Gasair  (neutral solute)aqueous

T = 25 C, pgas = partial pressure in natural atmosphere

RHeq = 110%

rdroplet  10 nm



   

atmosphere even while contacting a capillary meniscus or a fog/cloud water droplet. The reaction driving 

force only includes the role of liquid-air curvature embedded into the liquid Young-Laplace pressure: 
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In this typically anisobaric case, capillary water is pumping in the gases, while the water droplet has 

the reverse behaviour with respect to the bulk (Fig. 1). Capillary water appears a better solvent for gases, 

favouring for instance the embolism resistance in trees (e.g., [11]) and oxidation reactions (e.g., [10]). It is 

also a good CO2 sink, especially in arid and semi-arid zones wherein the capillarity magnitude becomes 

large and the petrophysical properties of soils are relevant. 

3. Liquid-solid interfacial curvature 

Solid curvature is related to external shape. YLE has been early used to define the natural geometrical 

features of many crystals, by the so-called Wulff’s construction (e.g, [4]). Using YLE for crystal-solution 

equilibria means that the chemical potential of solids is curvature-dependent. If they are curved concavely 

to their native shape, their chemical potential is negatively affected by the PdV term, and the reverse for 

those solids convexically curved. As a whole, the pressures of liquid and interacting solids can be equal 

(isobaric scheme), or different (anisobaric scheme), by a value controlled by the pressure difference 

across liquid-solid interface. A simple example of the anisobaric configuration takes place in porous 

media when measuring a decreasing melting point of liquid water as a function of pore radius (Gibbs-

Thompson equation). In this case, the solid and the solution pressures are different because their mutual 

interface can change according to the YLE. Equation (2) becomes (generic reaction: cristal X + H2O = 

cristal Y + cation + anion): 
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Fig. 2. Isobaric and anisobaric contexts illustrated for (a) NaCl solubility as a function of capillary pressure; (b) amorphous silica 

solubility as a function of pore radius (compared to experiments from [12]). 

Equation (3) makes clear that any combination of liquid and solid pressures is possible, even having 

the pressures of the two crystals be different (e.g., [8]). The calculation leads to conclude that the solids 

can be more or less soluble in capillary water (Fig. 2a), depending on their own behaviour and shaping, 
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and that a decreasing pore size in saturated system is accompanied with a decreasing solubility matching 

well experimental data (Fig. 2b). The effect is clearly expressed for pore sizes smaller than 0.1 µm. 

As a consequence, water-rock interactions in non-saturated zone should consider the crystalline habit 

of the solids. It is clear that a solution saturated with respect to the normal crystal (“anisobaric case”) is 

supersaturated with respect to the curved solid (Fig. 2a), favouring such precipitation and a slightly less 

concentrated capillary solution (e.g., [13]). Meanwhile, pores implies that the host solid is curved concave 

to the infilling solution (saturated zone), leading to decrease the solubility threshold and promoting 

unexpected phase transition along a flowline (Fig. 2b). 

4. Interfaces without curvatures 

Figures 1 and 2 illustrate the versatility of the thermodynamic treatment to involve the interfacial 

curvature into the calculation of the equilibrium constants. Solubility of gases and solids are thus 

changed, and unexpected driving forces are possible, for instance by turning normal into curved solids 

(Fig. 2a, and [13]). An additional extension of the present reasoning can be done toward the weathering 

by adsorption thin films. It is well known that they have the same chemical potential than the mother 

water reservoir (capillary cluster, saturated zone). It is less known that they are chemically active, even 

restricted to high thinness, one monolayer or so (e.g., [14-15]). Using the same thermodynamic treatment, 

it seems possible to expect a strong influence of adsorbed water on the mass transfer at the field scale. 
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