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Abstract 

Titanium dioxide nanoparticles (TiO2 NPs) are extensively used in consumer products. 

The release of these NPs into aquatic environments raises the question of their possible 

risks to the environment and human health. The magnitude of the threat may depend on 

whether TiO2 NPs are aggregated or dispersed. Currently, limited information is 

available on this subject. A new approach based on DLVO theory is proposed to 

describe aggregation kinetics of TiO2 NPs in aqueous dispersions. It has the advantage 

of using zeta potentials directly calculated by an electrostatic surface complexation 

model whose parameters are calibrated by ab-initio calculations, crystallographic 

studies, potentiometric titration and electrophoretic mobility experiments. Indeed, the 

conversion of electrophoretic mobility measurements into zeta potentials is very 

complex for metal oxide nanoparticles. This is due to their very high surface electrical 

conductivity associated with the electromigration of counter and co-ions in their 

electrical double layer. Our model has only three adjustable parameters (the minimum 

separation distance between NPs, the Hamaker constant, and the effective interaction 

radius of the particle), and predicts very well the stability ratios of TiO2 NPs measured 

at different pH values and over a broad range of ionic strengths (KCl aqueous solution). 

We found an effective interaction radius that is significantly smaller than the radius of 

the aggregate and corresponds to the radius of surface crystallites or small clusters of 

surface crystallites formed during synthesis of primary particles. Our results confirm 

that DLVO theory is relevant to predict aggregation kinetics of TiO2 NPs if the double 

layer interaction energy is estimated accurately. 
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1. Introduction 

A number of studies have recently focused on the transport and fate of nanoparticles 

(NPs) in porous media and their potential risk for the environment and human health [1-

5]. However, their transport is very difficult to predict due to their very high surface 

reactivity and, notably, to their versatility between their aggregated and dispersed states. 

Modeling their reactivity and mobility in an aqueous environment is, therefore, 

challenging [3, 6, 7]. 

Titanium dioxide (TiO2) NPs are used in many consumer products (e.g. catalysts, 

paints, coatings, soaps, cosmetics, and sunscreens [7-9]) because they have a very high 

specific surface area and a sorption capacity for ionic and nonionic species [10, 11]. 

Their application for soil remediation and water treatment shows great potential [12-

14]. Their increasing use inevitably leads to their entering various environmental 

compartments and questions now arise concerning their mobility, fate and toxicity for 

humans and the environment. 

Aggregation and deposition in porous media are the major processes controlling TiO2 

NPs transport [15]. Both processes are highly dependent on interaction energies 

between particles (aggregation), and between particles and the surrounding aquifer rock 

(deposition on the collector) [2, 16, 17]. The interaction forces between NPs and 

between the NPs and the collector are controlled by the intrinsic properties of NPs 

(chemical composition, size, and shape [2]) and by the intrinsic properties of the rock 

(chemical composition and surface roughness [16]). When immersed in an aqueous 

electrolyte, NPs and rock develop a surface charge (associated with the hydroxylation of 

their surface and specific ion adsorption) and an electrical double layer (EDL) to cancel 

it. EDLs around particles having similar chemical composition and crystal structure 
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have the same polarity and strength. As a result, when two particles draw near each 

other, the overlapping double layers create a repulsive double layer force. This double 

layer force between NPs (of similar chemical composition and crystal structure) and 

rock can be repulsive if the EDLs of both materials have the same polarity (which 

fosters aggregation), or attractive if the EDLs have opposite polarity (which fosters 

deposition) [6, 7, 17].  

When NPs are repulsed from the rock surface, interaction energies between NPs greatly 

influence their aggregation [17]. TiO2 NPs aggregate under specific chemical conditions 

(pH, ionic strength, the chemical nature of aqueous dissolved species) that reduce the 

repulsive double layer interaction energy between particles [10, 11]. Aggregation of 

TiO2 NPs decreases their mobility in porous media and may even clog the porosity if 

their concentration in water is high. It may therefore enhance their deposition [7, 17]. 

However, their deposition can be reversible. Large quantities of TiO2 NPs can be 

released into the environment if the pH of the pore water changes and moves away from 

the pHPZC of TiO2 NPs (PZC is the point of zero charge) or if the ionic strength of the 

pore water decreases to values below the critical coagulation concentration (CCC) [7, 

16, 17]. It is, therefore, important to understand the aggregation of titanium dioxide NPs 

in water as a function of pH and ionic strength. 

The double layer interaction energy is usually estimated using zeta potential data 

inferred from electrophoretic mobility measurements [10, 18]. However, because of 

their excess of electrical charges at the solid/water interface and very high surface-to-

volume ratio, metal oxide NPs can have a very high surface electrical conductivity. This 

is associated with the electromigration of electrical charges in the double layer around 

the particle and is inversely proportional to the size of the particle [18-21]. Surface 

conductivity significantly decreases the magnitude of the electrophoretic mobility of 
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suspended particles when it is similar to or higher than the electrical conductivity of 

bulk water [18, 19], i.e. at low ionic strengths (typically lower than 10
-1

 M), and for pH 

values distant from the pHPZC of the particle [18]. Under these physicochemical 

conditions, the intrinsic or true zeta potential of the NPs can be significantly 

underestimated if the zeta potential is not corrected for the retardation effect due to 

surface conductivity. Both the resulting repulsive interaction energy between double 

layers of particles and their stability ratios can therefore be underestimated. 

Leroy et al. [18] recently developed a surface conductivity model for TiO2 NPs 

immersed in a 1:1 aqueous electrolyte (KNO3, NaNO3, NaCl). In their work, surface 

conductivity of the Stern and diffuse layers are calculated by an electrostatic surface 

complexation model. Their electrokinetic transport model takes into account the 

retardation effect due to surface conductivity of elementary NPs on the electrophoretic 

mobility of the aggregate. Leroy et al. [18] adjusted the parameters of their extended 

Stern layer model (ESM) using both potentiometric titration and electrophoretic 

mobility experiments. Their corrected zeta potentials appear to be at least double the 

apparent zeta potentials estimated using the Smoluchowski equation. These authors also 

showed that potentiometric titration and electrophoretic mobility measurements of TiO2 

NPs can be predicted without the use of the unrealistic assumption of the presence of a 

stagnant diffuse layer at the TiO2/water interface [8, 9]. 

Snoswell et al. [22] and Liu et al. [10] used the DLVO theory (constant charge 

approximation and linear superposition approximation, respectively) to correctly predict 

measured stability ratios of TiO2 NPs immersed in a 1:1 aqueous electrolyte solution 

(KCl and NaCl, respectively). However, they used low apparent zeta potentials (not 

corrected for surface conductivity) and therefore predict low repulsive double layer 

interaction energy between particles. Snoswell et al. [22] found an unrealistically low 
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value of 20102  J for the Hamaker constant of the TiO2-H2O-TiO2 interface compared 

to values reported in the literature, which are between 20104  J [23] and 20104.9  J 

[24]. The predictions of Liu et al. [10] were only in quantitative agreement with the 

measured stability ratios of anatase NPs, which have two different sizes (mean radius of 

either 5 or 50 nm). The aggregation kinetics model of Liu et al. [10] underestimated 

stability ratios at low ionic strengths (210
-3

 M and 710
-3

 M NaCl for particles with a 

mean radius of 5 and 50 nm, respectively). Moreover, their measured stability ratios of 

anatase particles with a mean radius of 50 nm were not representative of stability ratios 

of pure TiO2 NPs because their particles contained large quantities of impurities (silicon 

and phosphorous).  

We provide here an aggregation kinetics model based on the DLVO theory and 

combined with a precise description of the electrochemical properties of the TiO2 

NPs/water interface (using an extended Stern model) that is valid regardless of the size 

of the NPs [18, 25]. The aggregation kinetics model uses true zeta potentials calculated 

directly by our electrostatic surface complexation model. The combined model is 

presented and tested against the stability ratios of pure TiO2 NPs reported by Snoswell 

et al. [22] at different pH values and in a KCl solution. 

 

2. Theoretical background 

2.1. Aggregation kinetics models 

In aggregating systems, the coagulation rate is usually expressed by the stability ratio, 

W, which is the ratio of the fast kinetic constant, fk , to the slow kinetic constant, sk  

[26]. The aggregation rate is rapid when all collisions result in aggregation in the 

absence of energy barriers, and slow in the presence of any repulsive energy barrier 



 

8 

 

(unfavorable conditions) that restricts aggregation to the primary minimum. The 

stability ratio of suspended particles in aqueous environments can be predicted using 

various DLVO and non-DVLO theories. The classic DLVO theory applies to smooth 

and spherical colloidal particles immersed in water [27, 28] through two types of 

interaction energies. The first is generally repulsive, due to the overlapping of the 

particles’ EDLs and the second is attractive, due to London–van der Waals (VDW) 

interactions. However, NP aggregates have a more complex stability ratio than that of 

perfectly spherical and smooth colloidal particles, notably because of the discreteness of 

the surface charge [29, 30], the arising of relaxation processes [31-33], the presence of 

additional non-DLVO forces [34, 35], and the surface roughness of the particles [22, 

36]. The classic DLVO theory frequently overestimates the experimental NP 

aggregation and deposition rates, probably by overlooking this complexity related to 

these well-known characteristics [22, 29, 37, 38]. 

Kallay et al. [39] combined an electrostatic surface complexation model (basic Stern 

model, BSM) and an aggregation model based on the DLVO theory to predict the 

stability ratios of anisotropic rutile particles (length of 170  70 nm and width of 45  

10 nm) immersed in a 1:1 aqueous electrolyte (LiCl, KCl, CsCl). The parameters of 

their BSM were calibrated by crystallographic studies, potentiometric titration and 

electrophoretic mobility measurements. Their approach [39] allows direct estimation of 

the electrical potential at the outer Helmholtz plane (OHP). However, these authors 

used the constant potential assumption [40] to estimate interaction energies between 

particles and a too-simple equation to predict stability ratios. Indeed, this equation 

assumes that the stability ratio is approximately proportional to the exponential of the 

scaled maximum interaction energy. Additionally, Kallay et al. [39] did not compare 

their predictions to measured stability ratios. 
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Non-DLVO theories have recently been proposed to explain the weaker-than-expected 

stability of NP aggregates [41, 42]. Kallay and Zalac [41] consider that small NPs 

(radius < 5 nm) surrounded by a diffuse layer are similar to ions surrounded by their ion 

clouds because their size is small compared to the thickness of the electric double layer. 

In their aggregation kinetics model, therefore, NPs interact like two interacting ions 

sharing a common ion cloud. However, their model is only valid for NPs whose size is a 

few nanometers. Furthermore, their model, which assumes that NPs are like hydrated 

ions, is not realistic because NPs are an assemblage of atoms and molecules. For 

example, to explain rapid aggregation of NPs at high ionic strengths (typically >10
-2

 M), 

their aggregation kinetics model assumes that the magnitude of the repulsive surface 

charge density of the diffuse layer decreases with the ionic strength. In fact, this is not 

the case for TiO2 NPs immersed in an 1:1 aqueous solution (like NaCl or KCl) because 

the magnitude of their surface charge density (at the surface of the mineral) increases 

with salinity and therefore the magnitude of the surface charge density of the diffuse 

layer also increases with salinity to cancel it [8, 9]. Zhang et al. [42] developed an 

aggregation kinetics model based on the Maxwell approach. These authors assume that 

NP aggregation is controlled mainly by their random kinetic motion because of their 

nanometric size. They consider that aggregation could occur exclusively among the 

fraction of NPs with the minimum kinetic energy that exceeds the interaction energy 

barrier. In their model, the dispersed NPs are assumed to be Brownian particles in dilute 

systems. That may be true for elementary NPs with a low surface charge density, but 

NPs are often present in the form of aggregates in environmental media and the metal 

oxide NP like TiO2 NP has a large energy barrier due to its high surface charge density 

[8, 9, 18]. Moreover, this aggregation kinetics model [42], as opposed to aggregation 



 

10 

 

kinetics models based on the DLVO theory, needs an additional fitting parameter to 

account for the hydrodynamic damping effect. 

According to the DLVO theory and for perikinetic aggregation (by diffusion), the 

stability ratio is defined by the following equation [43]:  
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where β(ua) is the correction factor for the hydrodynamic resistance between two 

approaching particles having radii 1a  (m) and 
2a ,  21/2 aadua  , d is the surface-to-

surface separation distance between the two particles (m), bk  is the Boltzmann constant 

(1.38110
-23

 J K
-1

), and T is the absolute temperature (K). The parameters TOTV
 
and 

VDWV (in J) represent total and van der Waals interaction energies between the two 

particles, respectively. TOTV  is the sum of the attractive van der Waals interaction 

energy and the (generally) repulsive electrical double layer interaction energy, EDLV . 

The sign and the strength of this double layer interaction energy are given by the surface 

electrical potential, commonly assumed to be the zeta potential () [19, 44]. The latter is 

therefore a key parameter for the estimation of NP aggregation kinetics and must be 

accurately calculated. This is the reason why, in section 3, the zeta potential is 

calculated by an electrostatic surface complexation model. The correction factor for 

hydrodynamic resistance is described by the following approximation [43]: 
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According to the DLVO theory, Eq. (1) shows that the stability ratio of electrically 

charged and suspended particles is strongly controlled by interaction energies due to 
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VDW and EDL forces. Two different approaches can be used to estimate the interaction 

energies between two spherical particles from interaction energies per unit area between 

two infinite flat plates: the Derjaguin approximation (DA) and the surface element 

integration (SEI). 

 

2.2. Interaction energies 

2.2.1. Interaction energies between two infinite flat plates 

The non-retarded van der Waals interaction energy per unit area ( VDWE ; J m
-2

) between 

two infinite flat plates separated by a distance h is calculated according to the Hamaker 

approach [45] by: 

 
2

H
VDW

12 h

A
hE


 , 

(3) 

where HA is the Hamaker constant (J) which includes the dielectric information for the 

particles and the surrounding medium. The attractive London-van der Waals force arises 

from the bulk material properties of the particles and is caused by dipolar fluctuation of 

the atoms. The strength of this force is independent of the chemical composition of 

water surrounding the particles, and it decreases very rapidly with the surface-surface 

separation distance [27]. 

There is, as yet, no universal theory describing double layer interaction energy when 

two particles collide because, in that case, there is an overlapping of the diffuse layers 

and the double layer is not in thermodynamic equilibrium [32, 33, 36]. Three different 

approaches can be used to analytically estimate EDL interaction energy per unit area: 

constant charge approximation (CCA) [46], constant potential approximation (CPA) 

[40] and linear superposition approximation (LSA) [47]. 
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CCA considers that the surface charge density is, therefore, constant, as is the total 

number of counter-ions between the surfaces as the particles draw closer [46, 48]. The 

counter-ions concentration and the repulsive double layer pressure increase accordingly. 

CPA, on the other hand, assumes that the concentration of counter-ions between the two 

surfaces remains approximately constant and the surface charge density diminishes as 

the surfaces come together [40, 48]. Therefore, repulsive double layer interaction 

energies predicted by CCA are higher than those predicted by CPA. CCA and CPA are 

based on the linear Poisson-Boltzmann equation. These two methods consider a Debye-

Hückel ionic atmosphere, i.e. that the electrical potential in the diffuse layer follows a 

Debye-Hückel distribution. Consequently, the analytical equations used by these two 

models (to estimate the double layer interaction energy per unit area) are accurate only 

for low surface electrical potentials (magnitude < zeTkb / , where e is the elementary 

charge of 1.602×10
-19

 C and z is the valence of a binary symmetric electrolyte) [19, 44]. 

Furthermore, these two approximations may be regarded as extremes, with the “true” 

situation lying somewhere in between [2, 37, 49].  

LSA is a useful compromise between CCA and CPA [2, 16, 47] that gives intermediate 

values for the double layer interaction energy per unit area [47, 49]. This theory is based 

on the calculation of the electrical potentials of isolated spheres, which can be done 

numerically. This means that LSA can be used for higher surface electrical potentials 

than CCA and CPA. This also means that LSA is particularly relevant when particles 

are far apart, i.e. in cases where 1h  [50],  being the inverse of the Debye length, 

which corresponds to approximately half the total thickness of the diffuse layer of 

isolated particles [44]. According to LSA, the double layer interaction energy per unit 

area can be written as [51]: 
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where 0  is the dielectric permittivity of vacuum (8.8510
-12

 F m
-1

), r  is the relative 

dielectric permittivity of water ( r   78.3 for bulk water at a pressure = 1 bar and a 

temperature T = 298 K), and d  is the electrostatic potential at the head-end of the 

diffuse layer (in V), which corresponds to the outer Helmholtz plane (OHP). This 

electrostatic potential is called the surface electrical potential, commonly assumed to be 

equal to the zeta potential () [19, 44]. 

The inverse of the Debye length, , is calculated by : 
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where AN

 

is the Avogadro number (6.02210
23

 mol
-1

), I is the ionic strength of the 

solution (mol dm
-3

), N is the number of types of ions in the bulk electrolyte (superscript 

“b”) of valence iz , and concentration ic (mol dm
-3

).  

 

2.2.2. Derjaguin approximation and surface element integration 

The Derjaquin approximation (DA) enables us to calculate the interaction energy, V, 

between two spherical surfaces from the interaction energy per unit area between two 

plane surfaces, E, according to [28]: 
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where d is the distance of closest approach between the two curved surfaces and A is the 

area of the facing surfaces. Equations for the calculation of the interaction energies are 

written in Appendix A. 

The main assumption in the Derjaguin approximation is that the range of the interaction 

energy is much shorter than the radii of curvature of the particles. The function outside 

of the integral in Eq. (8) represents curvature effects that are valid only near the distance 

of closest approach, d. This means that DA is accurate if the distance between the two 

surfaces is much smaller than the shortest radius of the two particles, i.e. when 

minad   [52]. This also implies that DA is accurate for thin double layers relative to 

the smallest radius, i.e. when 10min a  [51]. Furthermore, Derjaguin’s technique 

considers that a surface element interacts with another element directly facing it with an 

intensity E(h). This assumption becomes progressively inaccurate as the separation 

distance between particles increases. DA overestimates the interaction energy between 

two particles when the condition minad   is not satisfied [51-53]. To avoid the main 

assumptions of DA, we use a specific computing method, surface element integration 

(SEI), which discretizes the area over which the two surfaces interact.  

The surface element integration method calculates the total interaction energy between 

two particles by numerically integrating the interaction energy per unit area between 

opposing differential planar elements over the entire surfaces. For two spherical 

particles and according to the SEI method, the interaction energy can be written as: 
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In Eq. (9), the centers of particles 1 and 2 are origins of two body-fixed coordinate 

systems, with their z axes directly facing each other (Fig. 1). The xy planes of these 

coordinate systems are parallel to each other (see Bhattacharjee et al. [51] for more 

details relative to SEI). The parameter 
1S  in Eq. (9) is the surface of particle 1, 

1A  is the 

projected area of particle 1 on the xy plane, vectors 
1n  and 

2n  are the outward unit 

normal to the surfaces of the two particles, and vectors 
1k  and 

2k  are the unit vectors 

directed towards the positive z axes of each body-fixed coordinate system. The scalar 

products 
11 kn   and 

22 kn   can have both positive and negative values. Equations for 

the calculation of the interaction energies are written in Appendix A. 

 

Fig. 1. Two interacting spherical particles with radii a1 and a2. The centers of the 

spheres are origins of two body-fixed coordinate systems, with their z axes directly 

facing each other. The xy planes of these coordinate systems are parallel to each other 

(from Bhattacharjee et al. [51]). 

 

According to Bhattacharjee et al. [51], SEI, on the contrary to DA, doesn’t grossly 

overestimate the repulsive double layer interaction energy between particles (with the 

same radius a) when 10a . This can be the case for NPs immersed in a dilute 

aqueous solution. Furthermore, Eqs. (8) and (9) are based on the assumption of pairwise 

interaction between two facing surface elements. The error involved in this assumption 
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will be small only when the interaction energy is very short-ranged. These two 

equations assume that the interaction force per unit area acts normal to the particle 

surface, which is rigorous only for a constant surface potential [51]. 

 

2.3. Zeta potential 

Snoswell et al. [22] used Henry equation [54] to convert electrophoretic mobility 

measurements of TiO2 nanoparticles into apparent zeta potentials. However, this 

equation only considers the retardation effect associated with the size of the particle. 

The conversion of electrophoretic mobility measurements of metal oxide NPs is very 

difficult because these particles have an electrical double layer which affects the applied 

electrical field around the particle [18] (Fig. 2). Surface conductivity is associated with 

the electromigration of electrical charges in the double layer around the particle and is 

inversely proportional to the size of the particle [18-21]. It creates a retardation force 

that decreases the magnitude of the electrophoretic mobility of the particle if surface 

conductivity is similar to or higher than the bulk electrical conductivity [18, 55]. 

Therefore, apparent zeta potentials (not corrected of surface conductivity) can be 

significantly lower than true or intrinsic zeta potentials. Furthermore, Snoswell et al. 

[22] made not a complete set of electrophoretic mobility measurements. These authors 

therefore used an empirical interpolation formula to obtain zeta potentials at any pH and 

ionic strength.  
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Fig. 2. Effect of the electrical double layer around the particle on the applied electrical 

field. Non-conducting particles (a.) and conducting particles (b.) (from Lyklema and 

Minor [55]). Du is the Dukhin number, which is defined as half the ratio of surface 

electrical conductivity to bulk electrical conductivity. 

 

As shown by Eq. (5), the electrostatic potential at the OHP, d , is a key 

physicochemical parameter for describing the repulsive double layer interaction energy 

between TiO2 NPs. In the double layer theory, the electrostatic potential at the OHP is 

usually assumed to be equal to the zeta potential (ζ) which can be inferred from 

electrophoretic mobility measurements, for example [19, 44]. Under the applied 

electrical field, hydrated counter-ions in the diffuse layer drag water molecules and 

therefore create a solvent flow at the surface of the particles. This solvent flow is 

therefore assumed to be zero at the onset of the diffuse layer which coincides with the 

shear plane where the zeta potential is located [19, 44].  

As opposed to what was done in previous studies [10, 22], the electrostatic potential at 

the OHP, d , is calculated directly by the extended Stern model of Leroy et al. [18] 
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(Fig. 3) and is therefore not derived directly from the electrophoretic mobility 

measurements. The parameters of this electrostatic surface complexation model were 

calibrated using ab-initio calculations (done with the Density Functional Theory, DFT), 

crystallographic studies, electrophoretic mobility and potentiometric titration 

measurements of pure TiO2 NPs (Degussa P25) [8, 18]. Ridley et al. [25] emphasized 

that the size and shape of TiO2 nanoparticles have little influence on their measured 

surface charge densities. In our approach, the electrochemical properties of the TiO2 

nanoparticles used by Snoswell et al. [22] are therefore assumed to be very close to the 

electrochemical properties of the TiO2 nanoparticles used by Leroy et al. [18]. This 

justifies the use of the extended Stern model of Leroy et al. [18]. 

To confirm this assumption, we also use the approach of Leroy et al. [18] to convert 

electrophoretic mobilities of Snoswell et al. [22] into zeta potentials using Henry’s 

electrokinetic transport model [56]. Therefore, experimental zeta potentials can be 

compared to zeta potentials predicted by our electrostatic surface complexation model. 

Because the two materials have slightly different pHIEP (IEP is the isoelectric point, a 

pHIEP equal to 6.3 was reported in the work of Leroy et al. [18] and a pHIEP equal to 6.1 

was reported in the work of Snoswell et al. [22]), the value of the equilibrium constant 

(K) for the sorption of protons at the >Ti2O
-0.57

 surface sites is modified (the initial value 

of logK = 7.55 [18] is replaced by logK = 7.1). 
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Fig. 3. The simplified sketch of the extended Stern model (ESM) of Leroy et al. [18]. 

M
+
 are metal cations (e.g., Na

+
 or K

+
) and A


 are anions (e.g., Cl

−
). OHP is the outer 

Helmholtz plane, which corresponds here to the shear plane where the zeta potential () 

is defined. Q is the surface charge density of the three different layers (mineral surface, 

0Q , Stern, Q , and diffuse layer, dQ ). C is the capacitance between the “0-plane” and 

the “-plane” ( 1C ), and between the “-plane” and the “d-plane” ( 2C ). 

 

According to Henry [56], the surface conductivity and the internal conductivity of an 

electrically charged particle alter the shape of the potential distribution of the applied 

field in the liquid, modify the fluid motion within the electrical double layer, and 

therefore change the fluid stresses exerted on the particle. For spherical particles, Henry 

([56]) proposed: 

  






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
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, 
(10) 
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where η is the dynamic viscosity of water (in Pa s;  = 0.89510
-3

 Pa s at T = 298 K),  

is the dipolar coefficient of the particle, and (κa) is a correction factor taking into 

account the retardation effect due to the size of the particle ([57], comprised between 1, 

Hückel theory [58], and 1.5, Smoluchowski theory [59]).  is the electrical conductivity 

(in S m
-1

),  is the specific surface electrical conductivity of the electrical double layer 

(in S), subscripts “p”, “s”, “b” correspond, respectively, to the particle’s “interior” 

(aggregates of elementary NPs), the particle’s surface and the surrounding medium (the 

bulk aqueous electrolyte). The specific surface conductivity expresses the excess of 

electrical conductivity at the solid’s surface compared to that of the bulk aqueous 

electrolyte [60-63]. Du corresponds to the Dukhin number (see Dukhin and Shilov [64] 

for more details concerning this parameter). Equations used for the calculation of the 

parameters (κa), p , b , and sΣ  are written in Appendix B.  

Electrophoretic mobilities are converted into true zeta potentials using Eqs. (10)-(13) 

and (B1)-(B8), in order to compare them with the d  values calculated by our ESM. 

The fitting parameters for the conversion procedure are the radius of the aggregate 

(which varies with pH and salinity), a, the radius of elementary nanoparticles (which 

does not vary with pH and salinity), ea and the intra-aggregate porosity, (the surface 

mobility of adsorbed counter-ions at the Stern layer is considered to be equal to their 
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mobility in bulk electrolyte). Specific surface conductivities of the Stern and diffuse 

layers are estimated directly by our electrostatic surface complexation model. 

 

 3. Comparison with experimental data 

We test our approach combining an electrostatic surface complexation and an 

aggregation kinetics model, to see if it could predict measured stability ratios of pure 

synthetic TiO2 NPs (immersed in a KCl solution at different pH values (6.3, 6.7 and 8.4) 

[22]). The parameters required are the minimum separation distance between NPs, mind , 

the (non retarded) Hamaker constant, HA , and the effective interaction radius, ia . The 

electrostatic potential d , which is directly calculated by the ESM, is compared to the 

zeta potential inferred from the electrophoretic mobility measurements of Snoswell et 

al. [22] using the approach of Leroy et al. [18]. Stability ratios predicted by LSA-DA, 

and LSA-SEI are compared to the measured stability ratios of Snoswell et al. [22]. 

 

3.1. Zeta potential 

The TiO2 NPs zeta potentials reported by Snoswell et al. [22] and calculated with the 

approach of Leroy et al. [18] are shown in Figs. 4a and 4b, respectively. Snoswell et al. 

[22] used Henry’s equation without surface conductivity correction (Eq. (10) with  = 

0.5) to estimate the zeta potentials from the measured electrophoretic mobilities. These 

“observed” zeta potentials can be compared to the zeta potentials directly predicted by 

the ESM (assuming  d ). ESM calculations are done with PHREEQC [65]. 
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Fig. 4. “Observed” zeta potentials of pure TiO2 NPs versus pH at 10
-4

, 10
-3

, and 10
-2

 M 

KCl from Snoswell et al. [22] (a; squares) and calculated using the approach of Leroy et 

al. [18] (b; circles). The curves are the ESM predictions assuming  d [18]. 

 

Because of the strong influence of surface conductivity on the electrophoretic mobilities 

of TiO2 NPs, zeta potentials estimated by Snowswell et al. [22] are significantly 

underestimated compared to the zeta potentials predicted by the surface complexation 

model (ESM), especially at low ionic strengths and pH values distant from the pHIEP 

( 1.6pHIEP  ) (Fig. 4a). IEPpH  is the pH of isoelectric point. It is the pH value where the 

zeta potential is equal to zero. 

This is not the case if the approach of Leroy et al. [18] is used to convert electrophoretic 

mobilities into zeta potentials taking into account surface conductivity (Fig. 4b). 

Underestimation of the true zeta potentials by Snoswell et al. [22] can be explained by 

the very high Dukhin number of the elementary NPs and their aggregated forms. This 
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high value of the surface conductivity of NPs compared to that of colloids and larger 

particles is readily justified because this phenomenon is inversely proportional to 

particle size [55] (Eqs. (13) and (B4)) (Fig. 5).  

 

Fig. 5. The predicted Dukhin numbers of (a) an elementary NP and (b) an aggregate 

versus pH at 10
-4

, 10
-3

, and 10
-2

 M KCl. The mean radius of elementary NPs is equal to 

6 nm ([22]), and the radius of the aggregate is optimized by decreasing the cost function 

 



L

i

d iiR
1

2

obs

2 )()(  using the Simplex algorithm [66] (where L is the number of 

experimental values). The intra-aggregate porosity is equal to 10 %.  

 

The Dukhin number increases as the ionic strength of the aqueous solution decreases 

because the ratio of surface to bulk electrical conductivity increases with the dilution of 

the aqueous electrolyte (Eq. (13)). Furthermore, when pH moves away from pHIEP, the 
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Dukhin number increases because the specific surface conductivity increases (Fig. 4a). 

This can be explained by the increasing concentration of counter-ions in the Stern and 

diffuse layers (Eq. (B7); StΓi and d
 
increase when pH moves away from pHIEP). 

Snoswell et al. [22] significantly underestimated the true zeta potentials and therefore 

the repulsive double layer energy between particles. This implies that, in their 

aggregation kinetics modeling, they adjusted the Hamaker constant HA  with an 

unrealistic value ( 20

H 102 A J for the TiO2-H2O-TiO2 interface, see also section 1). 

Their Hamaker constant is significantly lower than typical estimates. For instance, 

Larson et al. [23] found 20

H 1026 A  J for the TiO2-H2O-TiO2 interface using the 

DLVO theory and successfully predicted the interaction force between a rutile TiO2 

colloid (diameter of approximately 9 µm) and a single macroscopic rutile crystal in an 

aqueous solution. This force was measured at the isoelectric point of the TiO2/water 

interface (where no double layer interaction should occur) by Atomic Force Microscopy 

(AFM). To date and to our knowledge, no study has shown that there is a correlation 

between the Hamaker constant and particle size for metal oxide NPs. The calculations 

done by Larson et al. [23] seriously question the value of the Hamaker constant deduced 

by Snoswell et al. [22]. The HA  value found by Snoswell et al. [22] is also significantly 

lower than the Hamaker constant estimated using spectroscopy data (
20

H 1017 A J 

[23]) and the full Lifshitz theory (
20

H 107.17.7 A J [24]; 
20

H 105.05.5 A J 

[67]). 

 

3.2. Aggregation kinetics 

The evolution of the hydrodynamic radius of the aggregate with time (for a given 

chemical composition of the aqueous solution) can be expressed by the stability ratio W. 
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This was determined experimentally by Snoswell et al. [22], who measured the ratio of 

the fast kinetic constant, fk , to the slow kinetic constant, sk . The two kinetic constants 

are proportional to the slope of the hydrodynamic radius ha  versus time t as t0 s for 

each electrolyte concentration. Measured stability ratios enable the estimation of the 

critical coagulation concentration (CCC) [16]. The critical coagulation concentration is 

one of the most significant properties of NPs in suspension. It is defined as the 

minimum electrolyte concentration needed to induce fast aggregation of NPs, i.e. at 

CCC, the stability ratio is 1 (   0log W ). 

 

3.2.1. A priori parameters 

Our aggregation kinetics model involves four parameters: electrostatic potential at the 

OHP, d , minimum separation distance between NPs, mind , (non-retarded) Hamaker 

constant, HA , and the particle’s effective interaction radius, ia . The electrostatic 

potential d  is calculated by the ESM, whereas mind , HA  and ia  need to be optimized.  

As suggested by Frens and Overbeek [33], the minimum separation distance between 

NPs must be superior to twice the distance  between the center of the surface atoms of 

the particle and the outer Helmholtz plane, i.e. 2min d . For 2d , counter-ions 

would be squeezed between the particles’ surfaces. Such a violation of the 

electroneutrality of the double layer systems would give rise to a strong repulsion, 

which could not be overcome by the relatively weak van der Waals attraction between 

the particles.   can be estimated using the following equation [68]: 

2

20

1

10

CC

rr 
  , 

(14) 
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where C1 and C2 are capacitances (in F m
-2

) of the two molecular capacitors of the ESM 

(Fig. 3). The first molecular capacitor corresponds to the interfacial region located 

between the “0-plane” and the “-plane” with a relative dielectric permittivity 1r  (in F 

m
-1

) while the second molecular capacitor corresponds to the region located between the 

“-plane” and the “d-plane” with a relative dielectric permittivity 2r . In accordance 

with Bourikas et al. [9], and Hiemstra and Van Riemsdijk [68], we choose 15.391 r  

and 3.782 r . The value of 1r  is half the value of 2r  because of the presence of a 

strong electrical field between the “0-plane” and the “-plane”. The capacitance values 

are 5.21 C  F m
-2 

and 12 C  F m
-2

 [18]. Using Eq. (14) and the C and r values given 

above, we obtain 83.0 nm. This means that 66.1min d nm.  

The optimized values of the three parameters are determined using a MatLab routine 

and the Simplex algorithm [66] for which starting values are 66.1min d nm, 

20

H 106 A  J [23] and ia  = 150 nm. The a priori value of ia
 
is given according to 

dynamic light scattering measurements of TiO2 primary particles in dilute water and for 

a pH value (not given by the authors) close to pHIEP (pHIEP = 6.1) [22]. 

 

3.2.2. Stability ratios 

The Hamaker approach [45] and LSA [47] are used to calculate the interaction energies 

per unit area between two infinite flat plates due to van der Waals and double layer 

interactions (Eqs. (3) and (4), respectively). Interaction energies between two spherical 

particles with the same radius ia  were calculated accordingly using DA ([28]; Eqs. 

(A10) and (A11)) and SEI ([51]; Eqs. (A12)-(A16)). Stability ratios were determined 
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with Eqs. (1) and (2). The algorithm of optimization minimizes a cost function 
2R  

defined in a least square sense: 

    



M

i

iWiWR
1

2

calobs

2 )(log)(log , 
(15) 

where M is the number of experimental values. 

In the optimization procedure, two cases are considered. In the first case, the effective 

interaction radius is constant with pH. In the second case, the effective interaction 

radius varies with pH. As already stated by Snoswell et al. [22] and Schwarzer and 

Peukert [69], we suggest that the aggregation behavior of TiO2 NPs can be controlled by 

NPs or small clusters of NPs with an effective interaction radius that can be shorter (low 

electrolyte concentration) or longer (high electrolyte concentration) than the Debye 

length. This implies that TiO2 NPs aggregation kinetics can be controlled by 

nanoparticles or small clusters of nanoparticles rather than aggregates [22, 69]. 

Schwarzer and Peukert [69] stated that, if the range of interaction (determined by at 

least two times the Debye length, 1 ) is smaller than the size of the nanoparticle (this 

can be the case for an ionic strength greater than approximately 10
-3 

M where 8.91   

nm), the interaction energy of aggregates is determined only by the two nanoparticles 

involved (Fig. 6). Furthermore, Schwarzer and Peukert [69] emphasized that, if the 

range of interaction is similar to or longer than the size of the nanoparticle (this can be 

the case for an ionic strength lower than approximately 10
-3 

M because the Debye length 

increases with the dilution of the aqueous solution, see Eq. (6)), the interaction energy 

depends not only on the nanoparticles in contact but also on neighboring particles and 

their distance to contact, i.e. the local structure of the aggregate. This implies that the 

effective interaction radius can vary with ionic strength. Because stability ratios were 

recorded by Snoswell et al. [22] at different pH values with different salinity ranges, we 
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assume, like Snoswell et al. [22], that the effective interaction radius can vary with pH 

rather than with ionic strength (in order to limit the number of adjusted radii). 

 

Fig. 6. The aggregation behavior of two nanoparticles (a) and of two aggregates (b) 

showing that stability is determined by the two nanoparticles involved if the range of 

interaction (defined by the thickness of the diffuse layer) is largely inferior to their size 

(from Schwarzer and Peukert [69]). 

 

Stability ratios predicted using both approaches (DA and SEI) are in very good 

agreement with the experimental data of Snoswell et al. [22], except for the pH value 

very close to the pHIEP (pH = 6.3) (Fig. 7). When the effective interaction radius is 

considered to vary with pH, our stability ratio predictions improve significantly, 

particularly at pH = 6.3 and for ionic strengths lower than approximately 10
-3

 M. 

According to Schwarzer and Peukert [69], at low ionic strengths, the local structure of 

the aggregate can control its aggregation behavior. Therefore, under these 

physicochemical conditions, a larger effective interaction radius is needed to reproduce 

the trend of the experimental data (according to the DLVO theory, predicted stability 

ratios increase with the radius of the particle [16]).  

At pH = 6.3, a combination of LSA and DA gives better predictions of stability ratios 

than a combination of LSA and SEI. LSA is very good for large separation distances 

and less efficient for small separation distances while DA overestimates the interaction 
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energy for large separation distances but is efficient for small separation distances. 

Consequently, the LSA-DA combination is a good compromise that covers all of the 

separating distances between particles [47, 50]. The present approach can also 

accurately predict CCC, which increases with pH. This can be explained by the 

increasing magnitude of the surface electrical potential and repulsive double layer force 

when pH moves away from pHIEP (Fig. 4). 

 

Fig. 7. Stability ratios versus salinity (KCl) (in log scale) at three different pH values 

(pH = 6.3, 6.7, and 8.4). Experimental data from Snoswell et al. [22] (squares) and 

model predictions with DA (solid lines) and SEI (dotted lines). Two cases are 

considered: the effective interaction radius is constant with pH (a) and the effective 

interaction radius varies with pH (b). 
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During slow aggregation, also called reaction limited clusters aggregation (RLCA) [16], 

there is a strong electrostatic barrier between particles,   0log W , and the aggregation 

rate depends strongly on the salt concentration (Fig. 7). In that case, not all collisions 

lead to sticking events, and individual particles have time to find a pathway into the 

core of a compact aggregate [16, 70] (mass fractal dimension D = 2.1-2.2 [70]). During 

fast aggregation, also called diffusion limited clusters aggregation (DLCA), the 

interaction energy between particles is purely attractive (due to van der Waals 

interactions),   0log W , and the aggregation rate no longer depends on the salt 

concentration (Fig. 7). In that case, diffusion of clusters controls the aggregation process 

[16], leading to larger and less compact aggregates (compared to RLCA; mass fractal 

dimension D = 1.7-1.8 [70]). In the intermediate phase between slow and fast 

aggregation, there is a gradual transition between RLCA and DLCA [16, 70].  

The quality of the stability ratio predictions decreases when the pH of the solution is 

close to pHIEP (at pH = 6.3) and when the salinity is close to the CCC. It is very difficult 

to reproduce the evolution of stability ratios when the pH of the aqueous solution is 

close to pHIEP and in the transition phase between the slow and fast aggregation [10, 16, 

70]. This is because, under these physicochemical conditions, repulsive double layer 

forces are relatively weak compared to attractive van der Waals forces and, therefore, 

TiO2 NPs aggregation kinetics may be controlled by the collision of more than two 

isolated particles [40, 71]. 

 

3.2.3. Optimized parameters and interaction energy profiles 
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Values of adjusted parameters are given in Table 1 (constant effective interaction 

radius) and Table 2 (variable effective interaction radius). In all cases, the minimum 

separation distance is significantly greater than the a priori value (1.66 nm). This might 

be due to the uncertainty associated with the estimation of . Indeed, in Eq. (14), the 

dielectric permittivities 1r , 2r , and the capacitance 2C  are not precisely known [68]. 

The capacitance 2C  remains relatively unknown because the dielectric permittivity 2r  

and the location of the shear plane (where the zeta potential is located) are still uncertain 

[55] ( )/(22  xxC dr   where x  and dx  are the locations of the “-plane” and the “d-

plane”, which corresponds to the shear plane, from the TiO2’s surface). A second reason 

for the large mind  value might be an overestimation of the electrostatic potential d  by 

our ESM. The capacitance 2C  of our ESM is the parameter most subject to some 

uncertainty because, as cited above, the location of the shear plane remains relatively 

unknown. A lower capacitance 2C  value would lead to a lower magnitude of the 

electrostatic potential d . A third reason might be due to the DLVO theory, which 

overestimates interaction energies between NPs [22, 29, 37], in particular for small 

separation distances. Indeed, it has been observed that the DLVO theory overestimates 

interaction energies between TiO2 particles for small separation distances [23]. For 

example, Larson et al. [23] found a good agreement between surface force 

measurements and predictions (with the DLVO theory) at a minimum separation 

distance of only 10 nm.  

When the effective interaction radius is assumed to vary with pH, mind  decreases 

compared to the case when the effective interaction radius is assumed to be constant 

with pH (Table 2). Furthermore, when ia  varies with pH, our stability ratio predictions 
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are almost entirely independent of the value of mind  chosen (Table 2; the cost function 

R
2
 increases slightly as the mind  value decreases). This implies that considering an 

effective interaction radius that varies with pH not only increases the accuracy of our 

stability ratio predictions, but it also decreases significantly the dependence of our 

stability ratio predictions on the value of mind .  

The optimized Hamaker constant and radius given by SEI are greater than those given 

by DA. This is because DA overestimates the van der Waals and double layer 

interaction energies of small particles (relative to the Debye length) compared to SEI 

[51]. Aside from this disagreement between DA and SEI in the estimation of the 

parameters, on the contrary to Snoswell et al. [22], the optimized Hamaker constants are 

similar to values found in the literature [23, 24, 67].  

When the effective interaction radius is assumed to be constant with pH (Fig. 7a), its 

optimized values are close to the mean radius of the surface crystallites that constitute 

the aggregate ( ea  is between 6 and 20 nm according to Snoswell et al. [22]; Table 1). 

This implies that TiO2 NPs aggregation kinetics are controlled by surface crystallites or 

small clusters of surface crystallites rather than by aggregates, as reported by Schwarzer 

and Peukert [69]. When the effective interaction radius is assumed to vary with pH (Fig. 

7b), its optimized values increase with the dilution of the aqueous solution (Table 2). 

These results agree with the statements of Schwarzer and Peukert [69] who emphasized 

that, if the range of interaction is similar to or longer than the size of the nanoparticle, 

the interaction energy will depend on the local structure of the aggregate. 

Interaction energy profiles calculated using the two approaches (DA and SEI) for the 

three pH values and for a salinity of 10
-2

 M KCl, are shown in Fig. 8a. This salinity 

corresponds approximately to CCC at pH = 6.7 (Fig. 7). For low pH values (pH = 6.3, 
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6.7), the interaction energies between particles are only attractive because repulsive 

double layer forces are weak compared to van der Waals forces. At a higher ionic 

strength, 10
-1.5

 M KCl (which corresponds approximately to CCC at pH = 8.4), the 

repulsive energy barrier at pH = 8.4 disappears almost entirely (Fig. 8b). 

 

Fig. 8. Interaction energy profiles calculated by DA (solid lines) and SEI (dotted lines) 

at three different pH values (pH = 6.3, 6.7, and 8.4) and in the case of a constant 

effective interaction radius. a. Salinity of 10
-2

 M KCl. b. Salinity of 10
-1.5

 M KCl. 

 

Our results show that the DA method is easily adjustable with three parameters 

(minimum separation distance, Hamaker constant, and effective interaction radius) 

while the SEI method is theoretically more suitable for NPs due to their nanometric size 

[51]. Moreover, considering an effective interaction radius that decreases with pH 
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increases significantly the accuracy of our stability ratio predictions. Our results do not 

agree with the effective interaction radii obtained by Snoswell et al. [22], whose 

optimized effective interaction radius increases with the pH of the aqueous solution 

(they found ia  values of 6, 12, and 20 nm at pH levels of 6.3, 6.7, and 8.4, 

respectively). In our approach, the introduction of true zeta potentials predicted by our 

extended Stern model reversed this trend because the retardation effect of surface 

conductivity is more pronounced when the ionic strength of the aqueous solution is low 

and the pH is distant from pHIEP. We also find realistic values of Hamaker constants for 

the TiO2-H2O-TiO2 interface. The approach proposed here appears, therefore, to be a 

real improvement, reaching a quantitative agreement with experimental results while 

using realistic parameterization. 

 

4. Conclusions  

We have developed a new approach based on DLVO theory to describe aggregation 

kinetics of titanium dioxide nanoparticles (NPs) in aqueous solutions. It has the 

advantage of using zeta potentials directly calculated by an extended Stern model 

(ESM) because the conversion of electrophoretic mobility measurements into zeta 

potentials is very difficult for metal oxide nanoparticles. This is due to their very high 

surface electrical conductivity associated with the electromigration of counter and co-

ions in their electrical double layer and their very high surface-to-volume ratio. Linear 

superposition approximation (LSA) is combined with Derjaguin approximation (DA) or 

surface element integration (SEI) to calculate interaction energies of spherical particles.  

Zeta potentials calculated by our ESM and inferred from electrophoretic mobilities 

taking into account surface conductivity are found to be significantly higher in 
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amplitude than apparent zeta potentials (not corrected for surface conductivity). This is 

particularly the case at low ionic strengths (typically lower than 10
-1 

M) and pH values 

far away from pHIEP (pHIEP = 6.1) because, in these physicochemical conditions, surface 

conductivity is similar to or higher than the bulk electrical conductivity and, therefore, 

retardation effect due to surface conductivity is strong. The repulsive electrostatic force 

between NPs can be significantly underestimated if apparent zeta potentials are used 

instead of true zeta potentials. 

Our two aggregation kinetics models (DA and SEI) are validated against measured 

stability ratios of pure synthetic TiO2 NPs made at different pH values (pH = 6.3, 6.7, 

and 8.4) over a broad salinity range (between 10
-4

 and 10
-1

 M KCl). Optimized 

Hamaker constants for the TiO2-H2O-TiO2 interface, comprised between 5.89 and 

8.71 2010 J, are in agreement with those reported in the literature. This confirms that 

DLVO theory is relevant to predict aggregation kinetics of TiO2 NPs if the double layer 

interaction energy is estimated accurately.  

The DA and SEI methods predict similar stability ratios, except at the lowest ionic 

strengths (lower to 10
-3

 M KCl) because DA overestimates significantly interaction 

energies when the interaction range can be similar to or longer than the size of 

nanoparticles. We also find that, in these physicochemical conditions, TiO2 NPs 

aggregation kinetics are controlled by the local structure of the aggregate, whereas, at 

high ionic strengths, when the interaction range is shorter than the size of the 

nanoparticles, TiO2 NPs aggregation kinetics are controlled by nanoparticles. 

In the future, our approach can be used to predict the stability ratios of TiO2 

nanoparticles immersed in other aqueous electrolytes and to predict the stability ratios 

of other metal oxides nanoparticles. It can also used to better understand the 

contribution of each process (aggregation, deposition) that affects the mobility of NPs in 
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a flow-through column experiment. It can also contribute to quantitatively estimating 

the effect of the chemical composition of pore water (pH, ionic strength, the chemical 

nature of dissolved species) on the NPs reactive transport processes in porous media. 
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Appendix A 

According to Derjaguin approximation, interaction energy V between two spherical 

particles can be expressed as a function of the interaction energy per unit area between 

two infinite flat plates E by: 





d

rhrEdV d)(2)(DA  , 
(A1) 

where d is the separation distance between the two spherical particles of radii 1a and 2a  

(see Fig. 1). The distance between two elements of surface, h, can be written by: 

21 zzHh  , (A2) 

where H is the distance between the centers of the two spherical particles of coordinates 

21 and zz . Eq. (A2) can be written again by: 
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(A3) 

Eq. (A3) can be simplified if the two closest surfaces (PAQ-PAQ) are only taken into 

account. This leads to: 
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(A4) 

Derivative of Eq. (A4) gives: 
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(A5) 

In the DA approach, radii are significantly larger than interaction distance. This implies:  

   raa 21,min . (A6) 

Therefore, by considering approximation (A6) in Eq. (A5), it follows: 
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Finally, by combining Eqs. (A1) and (A8), the final DA equation is obtained: 
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By combining Eqs. (3) and (A9), the attractive van der Waals interaction energy 

between two spherical particles can be calculated by [28]: 

 21
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aaA
V


 . 

(A10) 

The repulsive interaction energy due to the overlapping of the diffuse layers of the two 

spherical particles is estimated by combining Eqs. (4) and (A9): 
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In the case of the surface element integration method, we can separate the surface of 

each particle ( 1S  and 2S ) into two hemispherical surfaces (PAQ and PA’Q) (Fig. 1). 

Four interaction energy terms are needed to calculate the total interaction energy 

between the two surfaces ( 1S  and 2S ). The signs of these terms depend on the different 

combinations of the signs of 
11 kn  and 

22 kn  . The total interaction energy is the sum 

of all four interaction energy terms. The total interaction energy between two spherical 

particles, SEIV , can be calculated by [51]: 

4321SEI VVVVV  , (A12) 

where Vi (i =1, 2, 3, 4) is the surface-surface interaction energy. It can be written as: 
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where E is the interaction energy per unit area between two infinite flat plates separated 

by a distance h and is expressed by Eqs. (3) and (4) for VDW and EDL interactions, 

respectively. 
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Appendix B 

Ohshima [57] developed a very useful analytical equation to accurately estimate (κa) 

as a function of the particle size and Debye length: 

 
 312

1
1

a
af





 , 

(B1) 

where δ can be described by: 

ae 





21

5.2
. 

(B2) 

The internal conductivity of the particle, p , can be estimated using the so-called 

differential self-consistent model applied for disk-shaped particles [61, 63]: 
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2F , (B5) 

where ae is the radius of elementary NP and  is the intra-aggregate porosity. Eq. (B3) 

has the advantage of not being restricted to any ea  values.  

The electrical conductivity of bulk water, b , is calculated by: 


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b
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iiAb czNe
1

1000  , 
(B6) 

where N is the number of types of ions and 
b

i  is the ionic mobility in bulk water (in m
2
 

s
-1

 V
-1

). 

The specific surface conductivity, s , due to the electromigration of counter-ions in the 

Stern layer and to the electromigration of hydrated counter-ions and co-ions in the 
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diffuse layer, can be calculated as a function of pH and salinity using Revil and 

Glover’s electrokinetic transport model [60]: 
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where 
St

i  
is the ionic mobility of adsorbed counter-ions at the Stern layer (in m

2
 s

-1
 V

-

1
), StΓi  

is their surface site density (in sites m
-2

), and “” and “” stand for cations and 

anions, respectively. As shown in Eq. (B7), the specific surface conductivity, s , 

depends on the surface site density of adsorbed counter-ions at the Stern layer, StΓi , and 

on the electrostatic potential at the OHP, d . 
StΓi and d

 
can be calculated using an 

extended Stern model (ESM, Fig. 3), which describes the electrochemical properties of 

the TiO2/water interface [8, 18]. 
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Figure captions 

Fig. 1. Two interacting spherical particles with radii a1 and a2. The centers of the 

spheres are origins of two body-fixed coordinate systems, with their z axes directly 

facing each other. The xy planes of these coordinate systems are parallel to each other 

(from Bhattacharjee et al. [51]). 

Fig. 2. Effect of the electrical double layer around the particle on the applied electrical 

field. Non-conducting particles (a.) and conducting particles (b.) (from Lyklema and 

Minor [55]). Du is the Dukhin number, which is defined as half the ratio of surface 

electrical conductivity to bulk electrical conductivity. 

Fig. 3. The simplified sketch of the extended Stern model (ESM) of Leroy et al. [18]. 

M
+
 are metal cations (e.g., Na

+
 or K

+
) and A


 are anions (e.g., Cl

−
). OHP is the outer 

Helmholtz plane, which corresponds here to the shear plane where the zeta potential () 

is defined. Q is the surface charge density of the three different layers (mineral surface, 

0Q , Stern, Q , and diffuse layer, dQ ). C is the capacitance between the “0-plane” and 

the “-plane” ( 1C ), and between the “-plane” and the “d-plane” ( 2C ). 

Fig. 4. “Observed” zeta potentials of pure TiO2 NPs versus pH at 10
-4

, 10
-3

, and 10
-2

 M 

KCl from Snoswell et al. [22] (a; squares) and calculated using the approach of Leroy et 

al. [18] (b; circles). The curves are the ESM predictions assuming  d [18]. 

Fig. 5. The predicted Dukhin numbers of (a) an elementary NP and (b) an aggregate 

versus pH at 10
-4

, 10
-3

, and 10
-2

 M KCl. The mean radius of elementary NPs is equal to 

6 nm ([22]), and the radius of the aggregate is optimized by decreasing the cost function 

 



L

i

d iiR
1

2

obs

2 )()(  using the Simplex algorithm [66] (where L is the number of 

experimental values). The intra-aggregate porosity is equal to 10 %.  
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Fig. 6. The aggregation behavior of two nanoparticles (a) and of two aggregates (b) 

showing that stability is determined by the two nanoparticles involved if the range of 

interaction (defined by the thickness of the diffuse layer) is largely inferior to their size 

(from Schwarzer and Peukert [69]). 

Fig. 7. Stability ratios versus salinity (KCl) (in log scale) at three different pH values 

(pH = 6.3, 6.7, and 8.4). Experimental data from Snoswell et al. [22] (squares) and 

model predictions with DA (solid lines) and SEI (dotted lines). Two cases are 

considered: the effective interaction radius is constant with pH (a) and the effective 

interaction radius varies with pH (b). 

Fig. 8. Interaction energy profiles calculated by DA (solid lines) and SEI (dotted lines) 

at three different pH values (pH = 6.3, 6.7, and 8.4) and in the case of a constant 

effective interaction radius. a. Salinity of 10
-2

 M KCl. b. Salinity of 10
-1.5

 M KCl. 
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Table 1. Optimized parameters of our aggregation kinetics model (constant effective 

interaction radius). 

Parameters           DA           SEI 

mind  nm 14.3   14  

HA  2010 J 2.089.5   2.068.7   

ia  nm
 112.16   168.28   

2R  0.63 1.48 
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Table 2. Optimized parameters of our aggregation kinetics model (variable effective 

interaction radius; distances are expressed in nm). 

Parameters DA SEI DA SEI 

mind   14.2   17.2   66.1  66.1  

HA  2010 J 2.081.6   2.032.8   2.013.7   2.071.8   

ia  (pH = 6.3) 180.31   144.65   171.33   187.67   

ia  (pH = 6.7) 182.17   136.29   108.19   191.30   

ia  (pH = 8.4) 199.8   135.12   176.5   197.7   

2R  0.11 0.13 0.17 0.23 

 


