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[1] The distribution of groundwater fluxes in aquifers is strongly influenced by topography,
and organized between hillslope and regional scales. The objective of this study is to
provide new insights regarding the compartmentalization of aquifers at the regional scale
and the partitioning of recharge between shallow/local and deep/regional groundwater
transfers. A finite-difference flow model was implemented, and the flow structure
was analyzed as a function of recharge (from 20 to 500 mm/yr), at the regional-scale
(1400 km2), in three dimensions, and accounting for variable groundwater discharge zones;
aspects which are usually not considered simultaneously in previous studies. The model
allows visualizing 3-D circulations, as those provided by Tothian models in 2-D, and shows
local and regional transfers, with 3-D effects. The probability density function of transit
times clearly shows two different parts, interpreted using a two-compartment model, and
related to regional groundwater transfers and local groundwater transfers. The role of
recharge on the size and nature of the flow regimes, including groundwater pathways,
transit time distributions, and volumes associated to the two compartments, have been
investigated. Results show that topography control on the water table and groundwater
compartmentalization varies with the recharge rate applied. When recharge decreases, the
absolute value of flow associated to the regional compartment decreases, whereas its
relative value increases. The volume associated to the regional compartment is calculated
from the exponential part of the two-compartment model, and is nearly insensitive to the
total recharge fluctuations.
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system into shallow local and deep regional flow compartments, Water Resour. Res., 49, 2274–2286, doi:10.1002/wrcr.20186.

1. Introduction

[2] The distribution of groundwater fluxes within large
deep hydrogeological basin is strongly influenced both by
geology and topography. Rivers that are local minima of
topographic relief are, with a few exceptions, seepage boun-
daries for shallow aquifers. The basic organization of topog-
raphy between hillslope and river network [Montgomery and
Dietrich, 1989, 1992] is likely enhancing groundwater fluxes
at the hillslope scale with short transfer times. Part of
groundwater fluxes is characterized by such short and
shallow pathways. The remaining part is characterized by
larger transit times, deeper pathways, and groundwater
fluxes that can bypass adjacent rivers. The definition of the
shallow and deep aquifers as a function of structural and
climatic variables, as well as the partitioning between them,

is not yet clear. This is however critical for understanding
the water cycle in large areas and to define a sustainable
management of water resource in deep aquifers, in particu-
lar, in a context of climate and recharge change.
[3] Since the pioneering work of Toth [1963], who

derives the distribution of groundwater flow in two-dimen-
sional systems, several theoretical studies have been carried
out to derive groundwater flow as a function of the perme-
ability and topography structures of continents. Analytic
and numerical solutions have been derived by assuming
that the water table is equal to the topography [e.g.,
Cardenas, 2007; Craig, 2008; Dahl et al., 2007; Freeze
and Witherspoon, 1967; Jiang et al., 2011; Winter, 1978;
Zijl, 1999]. These studies have shown the complexity of the
nested flow structures, the importance of location of the
discharge zones, and the sensitivity of the deep flows given
specific water table surfaces. More quantitative analyses,
however, require a full model of the free water surface
where the recharge is imposed rather than deduced from
the surface level. Fixing the water table, either to topogra-
phy or below, actually completely determines the flow
distribution at any depth and the overlying recharge [Liang
et al., 2012; Sanford, 2002].
[4] The spatial distribution of recharge and discharge

areas and their variations with geologic or climatic varia-
bles are the key controls of groundwater pathways.
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Different discharge zone spatial distributions may signifi-
cantly modify the structure of groundwater circulations, as
discussed by Haitjema and Mitchell-Bruker [2005], and
shown conceptually in Figure 1. Under high recharge rates
(Figure 1a), subsurface streamlines are generally short
between recharge areas, which form a very dense hydro-
graphic network. Under lower recharge rates (Figure 1b),
disconnection of rivers induces a general increase of the
groundwater streamline lengths down to lowland discharge
areas. In this context, simple boundary conditions, such as
prescribed hydraulic heads, are much too restrictive in sys-
tems where the spatial distribution of discharge zones is
very sensitive to recharge conditions.
[5] Many case studies involving surface-subsurface

interactions have been carried out either locally or at the
scale of small catchments (see Fleckenstein et al. [2006],
Frei et al. [2009], Goderniaux et al. [2011], Jones et al.
[2008], Scibek et al. [2007], and Sophocleous [2002] for
some examples at the catchment-scale). These studies focus
mostly on shallow (usually less than 100 m) and very per-
meable aquifers ; they aim at characterizing the water bal-
ance terms (groundwater discharge, surface water
infiltrations, and groundwater levels in relation with
streams). An important issue for these studies is to fix or
calculate the recharge areas acting as boundary conditions
of the groundwater flow.
[6] In this study, we focus on the study of the compart-

mentalization of aquifers at the continental scale as a func-
tion of climate. Our objective is to quantify the 3-D
partitioning between shallow aquifers, which are likely
connected to adjacent rivers, and deeper ones, and the way
their characteristics are modified with recharge.
[7] To reach these targets and considering the require-

ments discussed earlier, we develop a model that fulfills
several conditions. According to the results of Toth [1963],
which show that deep flow occur at the regional scale

concurrently to shallow circulations, the model has been
implemented at the regional scale, including different
catchments. Groundwater flows are considered in three
dimensions, which is very important in this case because
water circulations may be organized across several scales,
from small scale transfers within first-order basins, to re-
gional intercatchments transfers, and distributed between
shallow and deep aquifers, including horizontal and vertical
flows. The model uses a flexible way to represent water
exchanges between subsurface and surface compartments
as a function of recharge and without imposing a priori
recharge and discharge zones. The model is subsequently
used to simulate flow pathways and transit times (total time
from inlet to outlet, Cornaton and Perrochet [2006]) within
the system. Results are used to implement a compartment
model of the aquifer and to calculate the volumes related to
these compartments as a function of recharge. These scales,
dimensions, and improvements are usually not considered
simultaneously in previous work. They provide new
insights and an efficient way to analyze 3-D water transfers
and to quantify the recharge partitioning between different
subsurface compartments.

2. Model Implementation

[8] The numerical model has been developed to simulate
deep groundwater flow for a synthetic case. The objective
is not to represent real geological conditions but to identify
the key parameters and the general structure of ground-
water circulations in generic shallow and deep aquifers. For
convenience and to include the whole complexity inherent
to a topographic surface, we use a real digital elevation
model as a guideline for the study. Stresses applied as input
of the model are variable in order to test different configu-
rations. The modeled area (1385 km2) includes four main
basins (Aven, Belon, Isole, and Ell�e) in Brittany and other

Figure 1. Conceptual model of deep groundwater circulation under (a) high recharge rates and (b) low
recharge rates.
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smaller rivers flowing directly into the sea or estuaries
(Figure 2). The limits of the area correspond to the hydro-
graphical limits of the four main basins and about 100 km
of coastlines including estuaries. The modeled area can be
described as ‘‘at the scale the Brittany peninsula,’’ as the
size of the model is approximately half of the distance
between the northern and southern coasts, and the
elevations cover the whole range of altitudes in Brittany
(from 0 to �400 m) (Figure 2). Figure 3 shows the relation
‘‘slope-drainage area,’’ calculated using a digital elevation
model (DEM) with a resolution of 25 m. This curve is
achieved considering surface drainage only and enables to
characterize and compare different topographies by quanti-
fying specific parameters. For each point of this DEM, the
slope and surface area that drains through this point are
calculated. The slope is averaged for different area intervals
and plotted in a log-log diagram. The decreasing part of
the curve can be fitted by two straight lines, which intersect
to give an estimate of the first-order catchment area
[Ijjasz-Vasquez and Bras, 1995; Montgomery and Foufoula-
georgiou, 1993]. Applying this technique for the modeled
basins gives an area of approximately 0.5 km2. The large
range of scales between the first-order catchment and the
size of the model allows the representation of both local and
regional water transfers. The vertical extension of the
modeled area ranges from the ground surface to �1000 m
below sea level.
[9] The area is discretized using finite difference square

cells, with lateral dimensions of 200 � 200 m, and simula-
tions are performed with Modflow 2005 [Harbaugh et al.,
2000]. Vertically, 30 finite difference layers are used from
the ground surface to the bottom of the model. Each layer
is composed of 34,617 cells, leading to a total number of
cells around 106. The height of the cells increases from the
ground surface to the bottom of the model as a function of
the total vertical thickness of the area. Boundary conditions
have been specified to all external limits of the model. A

‘‘specified head’’ boundary condition is prescribed to the
nodes located along the coastline in the first cells layer
(Figure 4b) [Harbaugh et al., 2000]. A ‘‘no-flow’’ boundary
condition is prescribed to all other lateral limits and to the
bottom of the model. A ‘‘drain’’ boundary condition (head-
dependent flux) [Reilly, 2001] is prescribed to all top faces
corresponding to the ground surface. Water leaves the sys-
tem only when the hydraulic head is higher than ground
surface elevation. The outward flux is calculated as the dif-
ference between hydraulic head and surface elevation mul-
tiplied by a drain conductance KD. If the hydraulic head is
below the ground surface, there is no flow leaving the
groundwater domain. In this case, the conductance is uni-
formly specified to a large enough value so that, when the

Figure 2. View of the modeled area at the scale of the ‘‘Brittany’’ region.

Figure 3. Averaged slope as a function of the upward
drainage area calculated for the modeled area. The red dot-
ted line shows the size of the first-order basin.
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water table reaches the ground surface, the computed head
stays very close to the surface elevation. This kind of
boundary condition conceptualizes the topography as a
drainage system where rivers are fed by groundwater. In
Brittany, this assumption is verified in most cases, except
for very specific topography configurations and very low
recharge rates. The most important advantage is that the
river network is not prescribed along specified lines but
spatially dependent on simulated groundwater conditions
and recharge. When the water table is below the ground
surface, the inflow rate is the recharge rate, which is
imposed uniformly on the top faces of the system.
[10] Parameters of the model correspond to the hydraulic

conductivity and porosity. Results are presented here for a
homogeneous system. The unique value of hydraulic con-
ductivity is adjusted so that the number and position of
active draining cells, simulated with the current and reason-
ably well-known stationary recharge of 300 mm/yr, corre-
spond approximately to the current hydrographical
network, which is considered as groundwater discharge
zones (see above). This approach is possible, thanks to the
specific assumptions of the model, where the water table
and river network are not prescribed but dependent on
recharge and simulated groundwater conditions. This cali-
bration led to a homogeneous hydraulic conductivity of
10�6 m/s.
[11] The model is used to simulate groundwater flow

over the whole domain and to calculate discharge areas,
fluxes, pathway lengths, and normalized transit time. Path-
way length and transit time are calculated using ‘‘particle
tracking’’ [Pollock, 1994]. Since all transit times depend
linearly on the porosity, we normalize them by the porosity
(‘‘time/porosity’’). The hydrogeological model is further

simulated and analysed for different recharge rates under
steady-state conditions. The range of investigated recharge
between 20 and 500 mm/yr is intentionally large to study
contrasted configurations.

3. Results

[12] Figures 5 and 6 show, respectively, the evolution of
groundwater levels and discharge zones (the area where
groundwater exfiltrates into the surface domain) as func-
tions of recharge. Logically, groundwater levels and dis-
charge area increase with input recharge. Under a high
recharge of 500 mm/yr, groundwater levels are strongly
influenced by topography, and discharge areas cover 39%
of the total area. On the contrary, with a low recharge of 20
mm/yr, interception of the groundwater surface by topogra-
phy is limited to the three main rivers, which have a direct
implication on the length of water pathways from recharge
to discharge areas. The blue areas on Figure 6 represent the
discharge zone of the aquifer that corresponds to segments
of the rivers. These segments mainly occur as a continuous
network, except at low recharge, where missing parts are
observed. These missing segments correspond to streams
disconnected from the water table (encircled in red on
Figure 6) and where river leaks into aquifers, which is not
taken into account by the model. Even at low recharge
rate, the density of disconnections remains very limited, and
rivers mainly behave as groundwater drainage elements
[13] Water pathways have been calculated by using the

groundwater model and a standard particle tracking
method. One particle has been placed in each of the 34,617
cells at the top of the water table, and the pathway to the
discharge point has been simulated. The spatial distribution

Figure 4. (a) Plan view of the area, elevation, and boundary conditions and (b) vertical cross section.
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of the pathway lengths is shown in Figure 7 for different
recharge rates. Data are plotted for each particle starting
point. The graphs show that the pathway lengths logically
increase from the discharge areas to the topographic crests.
For high recharge rates, most of the pathways are shorter
than 1 km, emphasizing the role of the dense river network
in delineating small hillslope catchments. Pathways
get longer as recharge rates decrease. For a recharge of
20 mm/yr, a significant part of the pathways are longer than
10 km, and larger hydrogeological catchments are visible.
[14] The distributions of particles transit times over the

whole area show a similar structure as distance pathway
distributions, as time is strongly correlated to distance for
the case of homogeneous permeability conditions assumed
here. Normalized transit times (time divided by porosity)
typically vary from 0 to 50,000 years for a recharge of 500
mm/yr, and from 0 to 300,000 for a recharge of 20 mm/yr.
This is explained by the overall increase of pathway lengths
and decrease of fluxes when recharge decreases. Figure 8
presents a vertical cross-section of the aquifer (location
indicated in Figure 4), indicating at each point the transit
time of the particle intercepting it. The light blue, yellow,
and red colors correspond to finite difference cells inter-
cepted by particles with normalized total transit time (time
from recharge to discharge) lower than 10,000 years,
between 10,000 and 40,000 years, and greater than 40,000
years, respectively. The dark blue color is related to the
unsaturated part of the domain. At high recharge rates, we
observe a predominance of small hydrogeological catch-
ments, as in Figures 5 and 7. Water circulations are more
local, vertical, and deeper than at lower recharge rates. At
low recharge rates, catchments become wider, and circula-
tions are mainly regional and more horizontal. These
graphs constitute a variant compared to the representations
provided by Toth [1963], accounting for recharge varia-
tions and free water table, as well as full 3-D processes.
Note that Figure 8 only shows 2-D sections and that

groundwater flow can be perpendicular to these sections.
When going deeper in the system, circulation cells are
enlarged and their shape thoroughly changes. This is, for
example, quite visible for the case of a recharge equal to
100 mm/yr (Figure 8), and this is explained by 3-D topog-
raphy and flow transfers.

4. Interpretation With a Two-Compartment
Model

[15] The distributions of pathway lengths and normalized
transit times are also shown in Figures 9 and 10, where the
probability density function is plotted against different
classes of length and time. Studying the transit time distri-
butions allows analyzing water transfers and volumes
within aquifers. As further discussed in section 5, different
transit time statistical models have been developed in the
past and are typically used to interpret environmental trac-
ers or stable isotopes time series [Maloszewski and Zuber,
1982, 1996; McGuire and McDonnell, 2006]. Here, the
focus is somewhat different. Experimental transit time dis-
tributions are used as a blueprint of the organization of cir-
culations and the compartmentalization of aquifers.
[16] Transit time and pathway length distributions dis-

play two different regimes (Figure 9). The first regime cor-
responds to short circulations within first-order basins
(�0.5 km2) (length< 1500 m, time/porosity< 5�103

years). The second regime corresponds to more regional
and deeper circulations well modeled by an exponential
decrease (straight line in Figure 9). For the transit time dis-
tribution, the exponential distribution is characteristic of
transfers within homogeneous aquifers with uniform
recharge [Gelhar and Wilson, 1974; Haitjema, 1995;
Lerner and Papatolios, 1993]. The idea of this study is to
assume that the two regimes of the transit time distribution
(Figure 9) identify two different compartments. The first
one is linked to the faster component and closely related to

Figure 5. Evolution of groundwater levels as a function of recharge.
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topography. The second one is linked to the slower compo-
nent, more characteristic of the whole reservoir, with more
regional and deeper water transfers. The transit time distri-
butions f1(t) and f2(t) issued by these two compartments are
represented by the two terms of equation (1), which is used
to fit the full transit time distributions f(t).

f tð Þ ¼ �1 � f1 tð Þ þ �2 � f2 tð Þ (1)

where �1 and �2 give the proportion of ‘‘fast’’ and ‘‘slow’’
components relatively to the whole distribution, and their
sum is equal to 1 (equation (2)). Considering the interpreta-
tion in two different compartments, both terms have occur-
rence from 0 to þ1 but highly different probabilities.

Z

þ1

0

�1 � f1 tð Þ þ �2 � f2 tð Þð Þ � dt ¼ �1 þ �2 ¼ 1: (2)

[17] According to previous results, the slow term f2(t)
corresponds to the exponential model of equation (3),
where Tc2 is the characteristic time of the distribution.

f tð Þ ¼ �1 � f1 tð Þ þ
�2

Tc 2
� exp

�t

Tc 2

� �

: (3)

[18] The fast term f1(t) is not a simple exponential as
f2(t) but a more complex function resulting from the diver-
sity of the local watersheds (Figure 9). Its precise shape
likely comes from the details of the topography as well as
from the nested circulation structure close to the topogra-
phy. In Figures 9 and 10, the second slow regime of both
the pathway length and the transit time distributions has
been fitted by the exponential model. The characteristic
length Lc2 (from the exponential fit) increases as recharge
rates decrease, and ranges from 1.6 km to 8 km for recharge
rates of 500 and 20 mm/yr, respectively (Table 1). This
confirms the longer paths observed in Figure 7d, due to the
disconnection of upstream areas. The normalized character-
istic time Tc2 (time divided by porosity) increases from
8300 to 57,000 years, for recharge rates decreasing from
500 to 20 mm/yr (Table 1), because of velocity reductions
and pathways lengthening. The weight of the second term
�2, which gives the proportion of recharge attributed to the
slow or regional compartment, increases as total recharge
decreases, and ranges from 0.22 to 0.90. For small recharge
rates and reduced discharge zone area, regional circulations

Figure 6. View of the effective draining cells in function
of different recharge values (R). Red circles correspond to
area where a significant river section becomes perched
above the water table. (a) R¼ 500 mm/yr, draining cells :
39% of the area, (b) R¼ 300 mm/yr, draining cells : 25% of
the area, (c) R¼ 100 mm/yr, draining cells : 10% of the
area, and (d) R¼ 20 mm/yr, draining cells : 2% of the area.

Figure 7. Spatial distribution of groundwater pathway
lengths (m) across the modeled area and according to dif-
ferent input recharge rates. Data are plotted for each parti-
cle starting point. (a) R¼ 500 mm/yr, (b) R¼ 300 mm/yr,
(c) R¼ 100 mm/yr, and (d) R¼ 20 mm/yr.
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Figure 8. Visualization of volumes intercepted by particles with normalized transit times included in
different intervals and evolution as a function of the total recharge flux. Results are shown for the cross
section highlighted in Figure 4. Top figure represents the topographic evolution on the cross section.

Figure 9. Probability density functions of pathway length and transit times for a recharge of 300 mm/yr,
calculated using the model and particle tracking. A single particle has been placed at the top of the water
table in each of the 34,617 cells covering the domain, and the pathway to the discharge point has been
simulated. Distributions of (a) pathway lengths and (b) travel times.
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dominate and the total distribution may tend to a simpler
exponential model (Figure 10).
[19] This two-compartment model, fitted to the experi-

mental data, provides information on the organization of
groundwater circulations in the modeled domain. It gives
insights about the evolution of characteristic values and,
more interesting, about the partitioning of flows between
the two compartments. The volume of the second slow
compartment Vc2 can be approximated from the knowledge
of �2 and Tc2 in the following way. Equations (2) and (3)
partition the flow into the two compartments. The flow
through the second compartment is simply expressed by

Qi ¼ Ai � R ¼ �i � AT � R (4)

where

[20] Qi : recharge associated to compartment i [L
3T�1] ;

[21] R : recharge flux over the domain [LT�1] ;
[22] AT : total recharge area [L

2] ;
[23] Ai : recharge area associated to distribution i or area

where input particles belong to distribution i [L2].
[24] Assuming along the exponential model derived in

simple homogeneous watersheds [Haitjema, 1995] that the
residence time is, as a first approximation, the volume of
the aquifer divided by the flow through it, it directly gives
Vc2 as

Vc 2 ¼ Q2 � Tc 2: (5)

where Vc2 [L
3] is the aquifer volume attributed to the sec-

ond compartment.

Figure 10. Probability density functions of pathway length and transit times, calculated using model
and particle tracking. A single particle has been placed at the top of the water table in each of the 34,617
cells covering the domain, and the pathway to the discharge point has been simulated. Distributions of
(a) pathway lengths and (b) travel times.

Table 1. Characteristic Values of Pathway Length (Lc2), Normalized Transit Time (Tc2), and Proportion (�2) for Distribution 2

R¼ 500 mm/yr R¼ 300 mm/yr R¼ 100 mm/yr R¼ 20 mm/yr

Characteristic length: Lc2 (m) 1,700 2,000 3,125 8,000
Normalized characteristic time
(time/porosity): Tc2 (yr)

8,300 10,500 17,700 57,000

Proportion of particles: �2 0.22 0.29 0.55 0.90
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[25] Using this model for the interpretation of the results
presented in Figure 10 gives the evolutions of Tc2, �2, Q2,
and Vc2 according to the recharge flux (Figure 11, log-log
diagrams). Vc2 is expressed as a proportion of the total
aquifer volume. The characteristic time Tc2 and the coeffi-
cient �2 decrease as recharge flux increases, as already
shown in Figures 9 and 10 and Table 1. The absolute flow
rate associated to the second deep compartment (Q2)
increases with recharge flux. The parameter evolutions of
Tc2 and Q2 with recharge R are best fitted by power laws,
as shown in Figure 11, Tc2 � R� and Q2 � R� with expo-
nents equal to �¼�0.61 and �¼ 0.58, respectively. The
proportion of recharge feeding the second compartment rel-
atively decreases with increasing recharge as Q2/R � R��1.
According to equation (5), the volume attributed to the sec-
ond compartment evolves as a product of two functions
V2¼Q2� Tc2¼�R�þ�¼�R�0.03 (Figure 11). This means
that recharge only marginally modifies the volume attrib-
uted to the deep/slow compartment. Figure 11d also shows
the volume of the partially saturated zone (VNS), included
between the water table and the ground surface, and
the volume of the fast or local compartment, calculated as
the complementary part relatively to the total volume
(equation (6)).

Vtotal ¼ Vc 1 þ Vc 2 þ VNS : (6)

[26] To corroborate the global organization of circula-
tions in two compartments, effective volumes have been
calculated on the finite difference grid using the transit
time map established on the pathways of the particles
(Figure 8). Each cell is given the total transit time of the
particle crossing it. The affectation of the cell to the fast

and slow volume may be ambiguous for transit times
around the crossover between the two distributions. To
resolve this ambiguity, we take the approximation that the
two volumes are sharply separated. The volume Vc2est of
the ‘‘deep-slow’’ compartment corresponds to the cells
intercepted by the �2 proportion of particles having the
highest transit times. Figure 11d shows that Vc2est approxi-
mates Vc2 well. The slight overestimation of a few percents
comes from the sharp separation assumption. The volumes
attributed are displayed on Figure 12 on the finite differ-
ence grid, for different values of the total recharge flux.
The graphs correspond to the vertical cross section indi-
cated in Figure 4 and already used in Figure 8. The light
blue and yellow colors correspond to cells intercepted by
particles from both terms of the two-compartment model
(equation (1)). The red color corresponds to cells crossed
by particles from both compartments and the dark blue
color to the unsaturated part of the domain. On these
graphs, the volumes associated to the first term of equation
(1) correspond to local transfers and are located in the
vicinity of discharge points. The volume Vc2est of the
second exponential term is regional and includes
topographic crests. As shown in Figure 11d, the volume
associated to ‘‘regional’’ water transfer only increases
slightly with decreasing recharge flux. The shape of the
circulation cells is however modified, with wider cells asso-
ciated to low recharge rates.

5. Discussion and Implications

5.1. Two-Compartment Model

[27] In this study, a two-compartment model (equation
(1)) is used to fit the transit time distributions calculated

Figure 11. Evolution of (a) the characteristic time Tc2, (b) �2, (c) recharge flow rate Q2 and (d)
the volume proportion corresponding to the different compartments as a function of the total recharge
flux R.
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experimentally with the numerical model. Other statistical
models are available to characterize transit time distribu-
tions [McGuire and McDonnell, 2006]. Commonly used
distributions, such as the ‘‘piston-flow,’’ ‘‘exponential pis-
ton-flow,’’ ‘‘exponential,’’ ‘‘linear’’ and ‘‘dispersion’’
model, are discussed in their context and compared by
Maloszewski and Zuber [1982, 1996]. Haitjema [1995] per-
formed catchment-scale modeling work and found expo-
nential transit time distributions. Luther and Haitjema
[1998] conclude that these distributions are valid for con-
fined and unconfined aquifers in homogeneous or piecewise
heterogeneous aquifers, as long as the ratio of volume to
recharge remains uniform, based on 2-D numerical simula-
tions with river-aquifer interactions implemented as ‘‘speci-
fied head’’ boundary conditions on a fixed and simple river
network. They also show how the shape of the residence
time distribution can be modified when aquifer heterogene-
ities are few and distinct. Kirchner et al. [2000, 2001]
rather suggested gamma law to model transit time distribu-
tions and justified it with an advection-dispersion model.
Fiori and Russo [2008] and Fiori et al. [2009], who per-
formed complex, three-dimensional numerical simulations
at the scale of a hillslope, also concluded on gamma distri-
butions to represent transit time in the hillslope. Cardenas
[2007] carried out physically based numerical simulations

in a vertically two-dimensional domain representing the
Toth problem [Toth, 1963] and calculated transit time dis-
tributions characterized by a power law behavior. These
theoretical models are commonly used in specific catch-
ments, using environmental tracers or stable isotopes to
estimate mean transit times or perform hydrograph separa-
tion [Leray et al., 2012; McGuire and McDonnell, 2006].
Models are generally used to represent observed tracer time
series in river or groundwater baseflow and tracer input
at the level of the ground surface [e.g., Asano et al.,
2002; Maloszewski et al., 1983; Rodgers et al., 2005;
Uhlenbrook et al., 2002]. Other studies also apply and
compare a combination of different models to fit tracer
time series [e.g., McGuire et al., 2005; Weiler et al., 2003].
[28] Some of these available models, such as the piston-

flow, linear, or simple exponential model, are clearly not
usable in our study because their shape does not correspond
to what is actually observed in this case. The more flexible
gamma model, as used by Kirchner et al. [2000] and Fiori
and Russo [2008], could possibly be used, but this model
does not differentiate processes or reservoirs. The two-
compartment equation (equation (1)) offers several advan-
tages. First, it is consistent with the exponential distribution
of long transit times and uses a limited number of parame-
ters. Second, it offers an efficient way to differentiate and

Figure 12. Approximated volumes corresponding to both terms of equation (1) as a function of the
total recharge flux. Results are shown for a cross section visualized in Figure 4.
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quantify two different compartments and circulations
related to topography-driven flow. The � coefficients in
equation (1) are very sensitive in the fitting procedure,
which provides a very limited uncertainty related to the
magnitude attributed to both terms of the model. The first
term integrates local water transfers, closely related to the
topographic features, and the importance of these transfers
is well established by the coefficient �1. The second term
of equation (1) relates to more regional water transfers
within the whole aquifer. An important added value of this
study pertains to the use of this two-compartment model in
relation with local and regional water transfers but also to
the possibility to calculate the associated volumes using the
simple exponential of equation (1)’s second term. The
main conclusion of this analysis is that the volume attrib-
uted to the ‘‘regional’’ or ‘‘slow’’ compartment is signifi-
cantly less sensitive to the recharge variations, compared
with the characteristic times and � coefficient sensitivities
(Figure 11). The shape of circulation cells can, however,
change significantly (Figure 12). The methodology used
here constitutes an efficient tool to segregate and quantity
local and regional processes from a quantitative point
of view.

5.3. Influence of Topography

[29] Topography is the critical parameter that controls
the flow partitioning between aquifers and rivers [Toth,
1963] as well as the transit lengths and times in ground-
water. McGlynn et al. [2003] found a positive correlation
between the mean residence time and the median subcatch-
ment area. McGuire et al. [2005] highlighted the impor-
tance of the flow path length and flow path gradient on
residence times. The results of our study are qualitatively
consistent with these conclusions; but we bring new quan-
titative elements on the impact of recharge rates tested over
a large interval. The distribution of groundwater discharge
outlets is clearly controlled by topography, which in turn
controls the partitioning between deep and shallow ground-
water compartments.
[30] The fast local shallow compartment always con-

nects hillslopes to adjacent rivers. Its extent is thus con-
trolled by the average hillslope size, which is known to be
a characteristic geomorphic feature that can be observed on
the classical slope-area relationship of geomorphologists
[Ijjasz-Vasquez and Bras, 1995; Montgomery and Dietrich,
1992]. For Brittany, the average hillslope area is about
0.5 km2, entailing a characteristic length scale of about
0.5–1 km (Figure 3). The hillslope length is similar to the
average flow pathway length of the shallow compartment
(Figure 10).
[31] The shallow compartment exists no more in regions

where channels are dry; in this case, the recharge mainly
feeds the deep aquifer. This observation explains two
results of our study: (1) The fact that the characteristics
(distance and transit time) of the shallow compartment
remain almost unchanged when changing recharge rate. (2)
The fact that the percentage of recharge feeding the deep
compartment increases when decreasing recharge (and con-
sequently river density).
[32] This result concerning recharge was also observed

by Gleeson and Manning [2008] for generic and smaller
mountainous basins. For the regional compartment, we

observe that the average transit times and pathway lengths
increase when recharge decreases. This is likely due to
both the decrease of hydraulic gradient between recharge
and discharge zones (Figure 5), and to the decrease of river
density that entails an increase of the distance between
recharge inlets and discharge outlets as shown in Figures 7
and 10. Figure 13a shows this decrease of the characteristic
length Lc2 with increasing recharge; it also emphasizes
that the hillslope size is likely a lower limit of Lc2 at large
recharge.
[33] In order to understand the link between the flow

pathway lengths and topography characteristics, we calcu-
late for each simulation the critical drainage area, Ac, below
which the piezometric surface differs from topography. To
do this, we calculate the slope-drainage area of each piezo-
metric surface and compare it to its equivalent for topogra-
phy (Figure 3). Both curves are identical at large areas but
differs below Ac. Ac quantifies the drainage area of actual
channel heads and thus measures the drainage density. Fig-
ure 13b shows the evolution of Ac with recharge. Logically,
it decreases with increasing recharge and varies in the same
way as 0.15 � Lc2

2. This relation demonstrates that the
flow pathway length is on average a simple function of the
drainage density.

Figure 13. Evolution of the (a) characteristic length (Lc2)
and (b) critical drainage area (Ac) as a function of the total
recharge flux (R).
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5.3. Modeling Issues and Possible Improvements

[34] In this study, the simulations have been performed
using a real topography of South Brittany, characterized by
a first-order catchment area of approximately 0.5 km2. The
resolution of the finite difference grid has been chosen
according to this topography. The use of 200 � 200 m cells
implies that each first-order catchment is covered by 12
cells on an average. This is actually necessary to ensure
that these basic catchments are represented by more than
one cell, so that flow can be simulated at this scale.
[35] The size of the modeled domain was chosen to

include three main watersheds. This was intended to simu-
late the evolution of a large range of hydrogeological
basins, according to recharge conditions (Figures 6 and 7).
According to previous works and the results of this study,
the total area of the modeled domain should not change
transit times as long as each watershed is hydrologically in-
dependent of the others. In real systems, we know that there
exist deep fluxes in between large watersheds that should
be considered for calculating transit times. They are likely
of very small proportion of the total for high recharge rates
but may be nonnegligible for low recharge rates when the
water table is deeper. In this study, the modeled domain
includes major rivers and main topographic crests between
northern and southern Brittany coasts. We therefore
assume that the boundaries of the model correspond to the
limits of permanent hydrogeological basins. Considering
a larger domain should not influence the distributions
[Marani et al., 2001].
[36] Finally, the bottom of the model has been arbitrarily

fixed to 1000 m below the sea level. Modifying the eleva-
tion of this limit will clearly have an influence on the transit
times (see the second term of equation (1)). This influence
remains to be studied but does not change the conclusions
regarding the methodology followed in this study.

6. Conclusions and Perspectives

[37] A regional-scale finite difference flow model was
implemented to study the partitioning of recharge between
different groundwater compartments. The model covers an
area of 1400 km2, a depth of 1 km, and the topography is
characteristic of a Brittany watershed outflowing in the
Atlantic Ocean. The fact of using a genuine topography is
intended to capture the complex wavelength structure of
this critical parameter for the groundwater-surface
exchanges. The modeling cannot be considered per se as a
regional study, but we wish that the topographic pattern has
some general properties encountered in similar regions.
‘‘Drain’’ boundary conditions have been used on the whole
modeled surface so that the river network is not prescribed
but dependent on simulated groundwater conditions.
Different recharge conditions, from 20 to 500 mm/yr, have
been applied as input for the model, and transit time distri-
butions have been calculated by use of particle tracking.
[38] The transit-time and travel-distance distributions

exhibit an exponential trend for the longer times/distances.
This is consistent with a slow, large and deep reservoir.
At shortest times/distances, the distribution significantly
departs from the previous exponential trend. There is not a
single characteristic time or distance scale as for the previ-
ous compartment, but a range of values that are much

smaller. The analysis of particle paths shows that this is a
shallow compartment that links hillslopes to the neighbor-
ing river. The dichotomy between a shallow and a deep res-
ervoir is valid for all recharge fluxes that have been
explored by the simulations. However, the time and length
scales are different for both compartments and influenced
by the total recharge rate. This emphasizes the critical role
of the river network, which is both the by-product and the
boundary condition of groundwater fluxes. A denser net-
work will favor shorter travel distances for both shallow
and deep compartments.
[39] The results underline the importance of an adequate

representation of these discharge zones in numerical mod-
els. This is particularly crucial in systems where the tempo-
ral variability of the recharge rates and the sensitivity of the
discharge zones repartition are expected to be high. The
use of drain or seepage face boundary conditions over the
whole domain constitutes a useful and flexible solution.
[40] The double-compartment model allows us to easily

quantify the partitioning of recharge between both
compartments and the volumes associated to the related
compartments. The evolution of �2 coefficients shows that
the proportion of the total recharge feeding the regional
compartment increases as recharge decreases (proportion-
ally to �recharge�0.4). Absolute recharge rates to this
compartment (Q2), however, decrease with total recharge
(proportionally to �rechargeþ0.6). Characteristic time (Tc2)
increases as recharge decreases (proportionally to
�recharge�0.6). As the volume associated to regional water
transfers is equal to the product of Q2 and Tc2, it is shown
that this volume is relatively less sensitive to total recharge
and only decreases slightly when recharge increases.
[41] Finally, the numerical simulations allowed to visual-

ize 3-D circulation cells, as those provided by Toth [1963]
in 2-D. The occurrence of local and regional transfers is
also observed, but the shape of circulation cells is modified
with depth due to 3-D effects.
[42] In summary, the originality of this work is linked to

the analysis of flow structure as a function of recharge, at
the regional scale, including deep aquifer, in 3-D, and
representing variable discharges zones using flexible
river-aquifer boundary conditions. This work studies and
quantifies ‘‘local’’ and regional processes using a double
compartment model, and related volumes in the aquifer.
The analysis can provide important information for exam-
ple in the context of nonpoint source contamination and the
fate of solute as a function of the time spent in the aquifer.
[43] Future work should be devoted to increase the com-

plexity of the system. Introducing a heterogeneous geology,
such as shallow more permeable units and deep bedrock
should favor shallow groundwater flow. It would be inter-
esting to study how the compartments model is applicable
in this case and how the distributions and volumes
presented in this paper are modified. Similarly, the flow
structure according to recharge fluctuations is probably not
the same, considering a relief characterized by deep can-
yons or small hills. Studying different topography features
would bring new insights regarding their influence.
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