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Transdimensional change-point modeling as a tool to investigate
uncertainty in applied geophysical inference: An example
using borehole geophysical logs

Anya M. Reading1 and Kerry Gallagher2

ABSTRACT

Recently developed methods for inferring abrupt changes in

data series enable such change points in time or space to be iden-

tified, and also allow us to estimate noise levels of the observed

data. The inferred probability distributions of these parameters

provide insights into the capacity of the observed data to con-

strain the geophysical analysis and hence the magnitudes, and

likely sources, of uncertainty. We carry out a change-point ana-

lysis of sections of four borehole geophysical logs (density, neu-

tron absorption, sonic interval time, and electrical resistivity)

using transdimensional Bayesian Markov chain Monte Carlo

to sample a model parameter space. The output is an ensemble

of values which approximate the posterior distribution of model

parameters. We compare the modeled change points, borehole

log parameters, and the variance of the noise distribution of each

log with the observed lithology classes down the borehole to

make an appraisal of the uncertainty characteristics inherent

in the data. Our two examples, one with well-defined lithology

changes and one with more subtle contrasts, show quantitatively

the nature of the lithology contrasts for which the geophysical

borehole log data will produce a detectable response in terms of

inferred change points. We highlight the different components

of variation in the observed data: due to the geologic process

(dominant lithology changes) that we hope to be able to infer,

geologic noise due to variability within each lithology, and ana-

lytical noise due to the measurement process. This inference

process will be a practical addition to the analytical tool box

for borehole and other geophysical data series. It reveals the le-

vel of uncertainties in the relationships between the data and the

observed lithologies and would be of great use in planning and

interpreting the results of subsequent routine processing.

INTRODUCTION

The inference of geophysical properties from observed data may

be represented by two end-member schools of thought: (1) “Real

world” techniques, aimed at the routine processing of geophysical

data to infer earth structure using commercially produced software

and (2) “Demonstration algorithms,” aimed at exploring what can

be gained through the inference process using a wide variety of

techniques, which typically are implemented in an academic envir-

onment. Although this is a sweeping simplification, it has sufficient

validity to illustrate a key difference in the way that geophysical

uncertainty is currently approached in practice. In most routinely

applied geophysical modeling, the output is a single model that best

fits the data and uncertainty is viewed as an addendum to this result

(Loke and Barker, 1996; Li and Oldenburg, 1998, 2000; Zelt and

Barton, 1998; Loke et al., 2010). In contrast, much of the research

into demonstration algorithms addresses the nonuniqueness of

models constrained by the available data as the dominant theme

(Stoffa and Sen, 1991; Sen and Stoffa, 1992; Yamanaka and Ishida,

1996; Sambridge, 1999). Some algorithms also enable the investi-

gation of uncertainty as part of the exploration of the parameter

space (Dosso and Dettmer, 2011; Guo et al., 2011; Bodin

et al., 2012b).

In an industry context, we recognize the practical need for a quick

result in geophysical modeling. This need often precludes the rou-

tine use of some of the more intricate demonstration algorithms.

However, we advocate that any geophysical practitioner should

seek information regarding the uncertainties in the data from which
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they are attempting to extract a model, or models, and also the

uncertainties in the model(s). In this spirit, we provide an example

of a recently developed method that may be used as an initial pro-

cessing stage, providing the analyst with a quantitative appraisal of

the uncertainties inherent in modeling lithological boundaries from

borehole geophysical log data. In this situation, lithological bound-

aries, or at least their geophysical signals, are treated as abrupt

changes in the mean value of the signal. Analysis of the significance

of a changing mean in a time series has wide implications for

climate studies and a rich recent literature (e.g., Wu et al. [2007]

and references therein). Much of this work relates to the statistically

robust identification of trends, whereas the focus of our analysis is

the point, or many points, where a mean changes suddenly. The

locations of these discontinuities in the mean are referred to as

“change points.”

The number and locations of the change points, in the general

case, are not known a priori. The inference of these parameters will

be influenced by the level of noise (we return to define this later) in

the observations, and this may itself not be well characterized. The

approach that we employ uses a transdimensional Markov chain

Monte Carlo (MCMC) procedure to infer the posterior probability

distributions of the number and locations of change points, the

expected (or mean) values of rock properties between those change

points and, importantly, the noise associated with each data set

under analysis. The basic philosophy of this approach follows from

Denison et al. (2002) and the mathematical details are given by

Gallagher et al. (2011). Related methodology and applications to

geophysical problems have also been described (Malinverno,

2002; Malinverno and Briggs, 2004; Agostinetti and Malinverno,

2010; Bodin et al., 2012a).

The approach we consider, and demonstrate with an application

to a representative stratigraphic section, could be incorporated in a

realistic workflow as a preliminary stage of log interpretation.

Interpretation of borehole geophysical logs could then follow using

conventional software but with explicit knowledge of the uncer-

tainty inherent in the routine interpretations.

In the examples presented here, we use four data sets: geo-

physical logs which cover the same depth interval recording the

(a) density, (b) neutron absorption, (c) sonic interval time (the

reciprocal of which is seismic velocity), and (d) electrical resistivity.

For these four data sets, we show two demonstration examples:

example 1 spans a depth range covering strong lithological contrasts

and example 2, from the same drill hole, spans a depth range cover-

ing more subtle lithological contrasts.

Transdimensional change-point modeling

The transdimensional change-point problem can be formalized as

follows: given one or more data sets which consist of dependent

variables fðxiÞ, j ¼ 1, N at positions xj and have a noise variance

for each data set given by σ2 (Figure 1), can we identify partitions of

a (depth, other direction, or time) series with an underlying constant

(i.e., mean) signal and so then identify the locations of the change

points where the mean signal changes? We are not in a position to

know in advance how many change points are appropriate, so we

will estimate this from the data in the form of a transdimensional

inference problem (Sambridge et al., 2006).

We may have some idea regarding the (possibly idealized) mea-

surement errors for the downhole instruments, but we prefer not

to make any assumptions regarding what parts of the varying data

series are signal and which are noise (Scales and Snieder, 1998). In

this analysis, we initially consider all nonsignal variation in the data

to be inferred as “noise,” noting that this may contain real signal, but

not always the signal we are interested in. We will examine the in-

terplay between different components of this variation. The total

variation in the data may be expressed as

σ
2
T ¼ σ

2
GP þ σ

2
GN þ σ

2
AN (1)

and is given by the sum of the variation due to the geologic process

(GP), e.g., a dominant lithology change in which we are interested,

the geologic noise (GN) due to natural variations of the observable

(within a single dominant lithology) and the variation associated

with errors in measurement procedures, analytic noise (AN) (Gal-

lagher et al., 2011). If we use transdimensional analysis primarily to

determine a model (dominant lithology/depth structure), we would

like our model to represent variations due to the GP without fitting

variations internal to the dominant lithology at that depth (i.e., GN),

or noise due to measurement error (i.e., AN): i.e., we do not wish to

overfit the data. In this study, we are most interested in what the data

themselves can tell us about the relative importance of noise due to

GP, GN, and AN.

We use a Bayesian approach such that the unknowns are

expressed in terms of probability density functions (Tarantola

and Valette, 1982) with a simple statement of Bayes’ rule being

pðmjdÞ ∝ pðdjmÞpðmÞ; (2)

where pðmjdÞ is the posterior probability density function (PDF) of
the unknown model parameter vector m, containing the unknowns,

given the data vector d. The likelihood function pðdjmÞ is the prob-
ability of the data being observed given the model and the prior

probability density function, pðmÞ is a probability distribution
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Figure 1. An example of the change-point problem for a single set
of noisy data (dots), with a common noise level variance (redrawn
from Gallagher et al., 2011). The noise has a normal distribution
and the standard deviation (1 sigma, σ) is shown as the error bar
in the bottom right. The underlying function from which the data
were generated is shown by the solid line. The inference problem,
using the observed data with an unknown noise level, is to estimate
the distribution for the number and locations of the change points,
and the variance of the noise distribution, from the noisy data.
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reflecting what we think is reasonable to assume about the model

parameters, in the absence of data. An accessible introductory

reference for Bayesian data analysis is Sivia (1996), with more

extensive reviews being provided by Bernardo and Smith (1994)

and Gelman et al. (2004). The approach is placed in the context

of a broad survey of probability theory by Jaynes (2003).

Our model vector m is such that

m ¼ ðn; c;A;σÞ; (3)

where n is unknown number of change points and c is a vector of

change points with ci, i ¼ 1, n. There are n − 1 partitions separated

by these change points, with the mean of the data in the partition

taking values given in the vector, A. The elements of A are Ail with

i ¼ 1, n − 1, and l ¼ 1, Nd, where n is the number of partitions and

Nd is the number of data sets (borehole logs in this case). Finally, for

each data set, we assume the noise is random, comes from a normal

distribution with a mean of zero and a variance of σ2, and the errors

are not correlated. As explained by Malinverno and Parker (2006),

these assumptions lead to an error distribution with the most uncer-

tainty. This variance of the noise distribution is a parameter to be

inferred for each data set and again we follow the approach de-

scribed in Gallagher et al. (2011). Similar approaches to estimate

the noise (uncorrelated and correlated) have been presented in sev-

eral previous studies (Malinverno and Briggs, 2004; Malinverno

and Parker, 2006; Bodin et al., 2012a).

Modeling of borehole geophysical data

Most borehole geophysical data interpretation is carried out by

large petroleum companies using “in-house” software which is

not in the public domain. Exceptions to this general pattern include,

e.g., Petrolog (2008), Interactive Petrophysics (2010), and Log-

Trans (Fullagar et al., 1999). With the increase in the use of bore-

hole data for such applications as geothermal energy prospecting by

junior (SME) companies, there is a growing need for the reinterpre-

tation of public domain borehole geophysics data. Overviews of the

common configurations of sondes, downhole geophysical data ac-

quisition tools, are available (Dewan, 1983; Labo, 1987). Although

these are not recent texts, they are relevant given that the public

domain data which may warrant reinterpretation could have been

acquired some time ago. In this case, the imperative for a robust

and meaningful geophysical interpretation may be even greater if

some of the matching drill core samples are now in poor condition

or are otherwise unavailable.

The interpretation of observed borehole geophysics logs and in

terms of lithology in commercial software, e.g., LogTrans (Fullagar

et al., 1999) may be made through initial statistical characterization

of a representative control data set. Discrimination of logs from si-

milar formations are then made based on the nearest control class in

multiparameter space. Within the Interactive Petrophysics software,

there is a Monte Carlo simulation function which allows for some

parameter sensitivity testing, however the user must provide error

ranges. Our work here aims to add to such a practical analysis

approaches. We use the data themselves to infer change points

in the data series, and investigate the correlation between such

change points and lithology boundaries/internal structure within

lithologies. The errors are inferred from the data themselves and

are not assumed before the uncertainty analysis. This may enable

additional insights to be made in data-rich environments, whereas

for regions with sparse data and no control data sets, it may enable

interpretations to be made which would not have been possible

before. The analysis that we present in this study highlights the

sensitivity of borehole geophysical logs to variations in lithology

and the uncertainty inherent in using geophysical data to make

predictions of lithology based on similar data.

Data and regional geologic setting

The borehole geophysical log data that we use were recorded in a

well (Boyne River 2C) located in the Nagoorin Graben, in the north

of the New England Orogen of East Australia (Glen, 2005; Howe,

2009; Slater, 2009). The region is prospective for hydrocarbon re-

serves, with carbonaceous shales being discovered in a creek bank

in 1885 and also for enhanced geothermal system style geothermal

energy production. The petroleum lease is held by Arrow Energy

Ltd., and the geothermal lease by Granite Power Ltd. The Nagoorin

Graben is filled with a Tertiary sedimentary sequence, the Nagoorin

Beds, which is almost entirely overlain by Quaternary alluvium

(Henstridge and Hutton, 1987). The Nagoorin Beds comprise sand-

stone with conglomerate and lignitic oil shale overlain by thick

carbonaceous oil shale with intervals of mudstone, siltstone, and

fine-grain sandstone. The depositional environment is interpreted

to be lacustrine with some fluvial influence. The beds dip at 15°

to the west and also include some later intrusive dolerite (Henstridge

and Hutton, 1987; Murray and Blake, 2005; Cawood et al., 2011).

Although the borehole geophysical logs and lithology logs were

made for the purpose of hydrocarbon exploration, the subsequent

identification of the Nagoorin Graben as a geothermal prospect

has led to a reanalysis of the data on different terms. The oil shales

and coal beds were of primary interest initially, with the rock ther-

mal properties of the sedimentary sequence lithogies, and any inter-

nal variation of these properties, now being of considerable interest.

We use this combined borehole geophysical log and lithological log

data set as an illustrative case: the lithology structure inferred from

the change-point model can be compared and contrasted to the ac-

tual lithology log, allowing us to assess the importance of different

sources of variation in the data (as implied by equation 1).

METHODS

We aim to generate an ensemble of values which approximate the

posterior distribution of change points, expected borehole log

values, and variance (although we present the square root of the

variance). Because we do not know the number of change points

in advance, our problem is transdimensional: that is, the number

of model parameters is, in itself, an unknown which we estimate

as part of the analysis. To solve this problem, we use a reversible

jump MCMC sampling approach (Green, 1995, 2003). There are

recent applications of this technique and related approaches in earth

sciences (Malinverno, 2002; Malinverno and Leaney, 2005; Jasra

et al., 2006; Bodin and Sambridge, 2009; Charvin et al., 2009; Hop-

croft et al., 2009; Agostinetti and Malinverno, 2010; Gallagher,

2012). In the description following, we briefly summarize the algo-

rithm described by Gallagher et al. (2011), which includes mathe-

matical details in the supplementary material.

The MCMC sampling is an iterative process and proceeds by

considering two sets of model parameters, the current and proposed

models, mc and mp. The initial current model is chosen randomly

Change-point modeling and uncertainty WB91



from the prior, and, at each iteration, the current model is perturbed

to produce the proposed model. This step can be written as

mp ¼ mc þ uσm; (4)

where σm is a scale factor vector for the model perturbation and u is

a random number vector drawn from an appropriate distribution

(typically a normal distribution with a mean of zero and a variance

of one). The scale factor needs to be chosen so that the sampler

moves around the model parameter space in an efficient way. This

proposed model is then accepted or rejected according to an accep-

tance criterion, which includes a random component, such that ac-

ceptance is more likely for a better data fit and rejection is more

likely for a poorer data fit.

Acceptance is determined using the Metropolis-Hastings criter-

ion defined as

αðmp;mcÞ ¼ Min

!

1;
pðmpÞpðdjmpÞqðmcjmpÞ

pðmcÞpðdjmcÞqðmpjmcÞ

"

; (5)

in which the first term in the ratio is the prior for each of the two

models, the second term is the likelihood ratio, and the third term is

the proposal function ratio. The likelihood function provides a mea-

sure of the probability of the N observed data sets (d1; d2; : : : dN)

given the predictions from a given model m and is specified as

pðd1;d2 : : :dNd
jmÞ ¼

Y

Nd

l¼1

Y

n

i¼1

Y

kil

j¼1

1

ð2πσ2l Þ
1
2

e
−1
2

#

di;j;l−fi:lðxÞ

σl

$

2

;

(6)

where fi:lðxÞ is the predicted function value (the mean for out pur-

poses) for the data di:l, from the lth data set between the ith and the

i-lth change points with kil.

Intuitively, it may be expected that this process will lead to sam-

pling progressively better data-fitting models which will tend to be

more and more complex. However, the Bayesian approach avoids

this, as complex models are penalized through the prior. This is a

property known as “natural parsimony” (Jefferys and Berger, 1992;

Mackay, 1992; Malinverno, 2002; Jaynes, 2003).

After a number of iterations, known as the “burn-in,” the samples

should then become representative of the posterior distribution (i.e.,

are drawn from the target posterior distribution). Accepted models

from further postburn-in iterations are then used to infer the char-

acteristics and uncertainties of the model ensemble. A representa-

tive single model is given by the expected (or mean) model, rather

than a best data-fitting model, with model parameter values at each

depth x being given by a weighted mean of the posterior probability

for each model parameter. When using multiple data sets, we as-

sume that they all have common change-point locations, whereas

the mean values between change points and the noise variance

can differ for each data set. We use a uniform prior, with a limit

on the number of change points between 1 and the number of data

(401). The initial number of change points is taken to be 10% of the

range and there is no minimum distance between change points,

except that we do not allow more than one change point between

any two data points, as they would not be constrained. The data are

all zero-meaned and scaled to have unit variance (for each data set),

hence, a range of 0 to 1. All results are rescaled back to the appro-

priate dimensions (units) for each data set for interpretation.

RESULTS

The results of the change-point modeling are shown (Figures 2

and 3) together with the lithology log (center), the input data (left

panels) and the expected models of the observed geophysical prop-

erties and their upper and lower values (right panels). Figure 2

shows the results from the section of the borehole between 200

and 240 m, which includes intrusive igneous layers, and is charac-

terized by high-contrast lithology boundaries and Figure 3 shows a

group of lithologies from 280 to 320 m which are characterized by

low-contrast lithology boundaries. The input sonic interval time log

has been preprocessed to show delay time reciprocal (DTR) values

which vary in the same sense as the long-spaced density (LSD) and

other logs. Summary remarks on the characteristics of the interface

between lithology pairs and on the internal variability of the litho-

logical units (based on Figures 2 and 3) are provided (Tables 1 and

2). In comparing the location and probability of the inferred change

points with the recorded lithology, we can determine the informa-

tion inherent in the geophysical response and anticipate strengths

and shortcomings of using this information (i.e., these borehole

logs) to determine lithology in other boreholes where logged core

may not be available. In some cases, a peak in change-point prob-

ability occurs at a lithology contact, in other cases there is a poor

correspondence. Thus, we show the potential of using change-point

modeling to highlight which boundaries can be identified, and

which cannot, by the information contained within the bore-

hole logs.

The change-point analysis highlights two properties of the lithol-

ogy interfaces, as recorded in the response of the geophysical para-

meters: the sharp/intermediate/broad location (i.e., resolution of the

depth) of the change point and the strength of the contrast (i.e., the

relative probability of a change point at a given depth). The coal

layers are characterized by sharp, strong contrasts with silt and car-

bonate mudstone (Table 1). Some interfaces between other sedi-

mentary lithology pairs are generally broadly defined with weak

contrasts, or seemingly absent in the geophysical response. Other

interfaces between sedimentary lithology pairs (e.g., those with

one unit being sandstone or silt) are sharply defined, and moderate

or strong in contrast. Interfaces involving igneous lithologies are

well-defined, with a weak contrast in geophysical response in

the case of the tuff and a strong contrast in the case of the dolerite.

The coal beds, coaly shale, and carbonate mudstone mostly show

few internal change points (Table 2), indicating low internal varia-

bility at the resolution of the logging tools. There are, however,

some exceptional cases such as the coal bed at 204 m which is

strongly layered. Claystone, mudstone, sandstone, and silt units

all show tightly defined internal change points indicating bedding

which produces a strong response in the geophysical observables

with no obvious change in lithology. Again, there are some excep-

tions to this generalization, such as the mudstone unit between

301 and 303 m deep which shows little internal variability. The

“stepped” appearance of the expected resistivity (EAL) model at

the dolerite interfaces (200–205, 227–234 m on Figure 2), and

the numerous implied change points, is considered an artifact of

the model parameterization which we return to in the discussion

section.
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The transdimensional features of the MCMC sampling may be

seen in the probability of the number of change points, n, which

varies between 66 and 70 for the high contrast lithology sections

and between 60 and 66 of the lower contrast section (Figure 4).

The variation in the number of change points, n, with iteration num-

ber during the sampling, is represented (Figure 5) by the values

from between five and six million iterations, well past the burn-

in period of sampling, and representing part of the MCMC sampling

of the posterior probability of the model parameter shown. Figure 5

also shows the likelihood values along the same section of the

chain. The lack of trends and the “fuzzy,” rather than “blocky,” char-

acter to the likelihood value plots is an indication that the sampling

of the chain is stationary. In addition, we monitor the acceptance

rates for each parameter type. For each of the four logs, we have

the location of the change points, the change-point mean, and the

noise variance, as well as the number of change points. Generally,

an acceptance rate of 0.15–0.5 indicates that the stationary

distribution has been sampled efficiently (e.g., Roberts and

Rosenthal, 2001).

The distributions of the variance of the noise for each geophysical

observable are shown as histograms (Figure 6). The noise is as-

sumed, as for many physical problems, to be represented by a

zero-mean normal distribution and the parameter that we estimate

is the variance of that normal distribution. We infer a distribution on
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Figure 2. Borehole geophysical log data from a well near Ubobo, Queensland, Australia (Boyne River 2C) and results of the change-point
analysis. The depth interval, 200–240 m, is characterized by strong lithological contrasts. The observed data are the logs on the left
hand side: LSD (g∕cm3), Neutron Log (NL; counts), DTR (equivalent to seismic velocity [km∕s]), and electrical array log (ohm-m). PCP ¼
ðposteriorÞ probability of change point represented by the bars on the right of the lithology log. The panels on the right show the inferred
structure for the expected model (the mean of the predicted values between each change-point pair) and the dashed lines represent the 95%
credible intervals about the expected values. Lithology abbreviations are given in Table 1. Lithologies are shown by color, with thicker units
and some mixed lithology units annotated beside the log. Coal ¼ black, coalyshale ¼ gray, carbonate mudstone ¼ magenta, claystone ¼
cyan, sandstone ¼ yellow, silt ¼ purple, dolerite ¼ dark orange, tuff ¼ red, coreloss ¼ pale yellow (marked x).
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that parameter, with a form dependent on the information in the

data. The upper plots show the total noise variance distributions

for the high-contrast section and the lower plots show total noise

values for the low-contrast section. In plotting the total noise var-

iance, we are combining the variances over different lithologies

(i.e., we do not distinguish in these summary plots between strata

with different GN). The plots effectively show the variance due to

the high-frequency internal variability in the dominant lithology of

each section and hence provide a maximum value for the AN. The

x-axis values differ for each of the two sections, but the x-axis

ranges (maximum value to minimum value) for each parameter

are the same, to facilitate comparison between the two sets of plots.

The mean value of noise variance, and also the range in this para-

meter, inferred for the neutron (porosity), seismic velocity, and

electrical resistivity logs (NL, DTR, and EAL) is greater for the

high-contrast section. The range in noise parameter for the LSD

is slightly wider for the low-contrast section, and the mean some-

what higher, due to the high density variability within some lithol-

ogies. We explore further details of the inferred noise parameter

values in the discussion that follows.

DISCUSSION

We first consider the likely contributions to the varying variation

between the lithological structure, uncertainty and the noise inferred

at different depths and for the different lithologies. Following this

appraisal, we discuss practical aspects of the data collection and

some possible refinements for using transdimensional inference

to investigate uncertainty in applied geophysics.

Considering equation 1, which separates the sources of variabil-

ity in the input data into those due to GP, GN, and AN, we now
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examine the noise variability with depth in our two sections of bore-

hole and associated geophysical logs (Figure 7). In this figure, we

have plotted the 95% credible interval on the inferred mean values

between partitions. Credible intervals are the Bayesian equivalent of

the more well-known confidence intervals, although their interpre-

tation is somewhat different, being the specified probability range of

the posterior distribution for a given model parameter (see Bernardo

and Smith [1994] for a discussion). The mean values can change

during the sampling as the change-point structure (and so the data

contained between two change points) changes. The credible inter-

val range therefore reflects the resolution of the mean values as a

function of depth. Note that these credible intervals have been

plotted after removing the expected model (i.e., zero meaned).

The change points which correspond to GP variations, or lithology

boundaries identified in the visual log often show relatively large

95% credible intervals where the probability distribution for a

change point is relatively diffuse, or broad. This could reflect a lack

of depth resolution on a single change point, or that we are dealing

with several closely spaced change points. Two examples are indi-

cated for a strong and weaker contrast (e.g., A1 and A2: Table 1 and

Figure 7). In borehole geophysical analysis, such changes are the

desired structural variations in the model. We wish to be able to

distinguish between variations due to GP (our signal, the dominant

lithological structure) and those due to GN and AN (noise or signal

we are not interested in, e.g., geophysical variation within a single

lithology or AN/measurement error).

Further consideration of change-point structure, and variation in

the credible interval ranges, provides some insight into the likely

GN variations (B1–B8: Table 2 and Figure 7). Claystone, mudstone,

sandstone, and silt lithologies clearly show that they are likely to

give rise to a GN response in the geophysical logs. The magnitude

of this noise is as large, and may be larger (e.g., B7) than the sought-

after response reflecting the dominant GP. Table 2 shows represen-

tative values for the GN response for all the main lithologies in this

study. This is information which could be extremely valuable in

preparing data for, and interpreting the results of lithology classi-

fications from other software. The inferred values of the square root

of the variance, σ, where there are no change points or lithology

changes provide a maximum limit on the practical AN response

of the geophysical logs. Two examples are given, C1 and C3,

for the high- and low-contrast lithology sections (Figure 7). At these

points, there are neither changes in lithology identified in the visual

log (i.e., no GP response) nor change points within a lithology (i.e.,

no strong GN response). These values are good indications of the

Table 1. Summary of the characteristics of lithology
interfaces highlighted by the change-point (CP) analysis.
cbmst ! carbonate mudstone, clayst ! claystone,
mudst ! mudstone, sst ! sandstone, coalysh ! coalyshale.

Lithology 1 Lithology 2

Interface
characteristic

Sharp/intermediate/
broad CP location

Strong/moderate/
weak contrast

Coal Silt Sharp Strong

Coal cbmst Sharp Moderate

coalysh Coal Absent —

coalysh cbmst Broad or absent Weak

cbmst clayst Broad or absent Weak or moderate
(e.g., A2, 289 m)

clayst coalysh Intermediate Moderate

clayst mudst Absent —

mudst cbmst Sharp Moderate

sst Silt Sharp Moderate

sst mudst Sharp Moderate

Silt Coal Sharp Strong (e.g., A1,
207 m)

Silt mudst Sharp Moderate

Tuff Coal/cbmst Sharp Weak

Dolerite Coal Intermediate Strong

Dolerite cbmst Intermediate Strong

Table 2. Summary of internal variability of significant
lithologies as highlighted by the change-point analysis.
Lithology names are given in the caption to Table 1.

Lithology Internal variability Example

Coal Most beds show low internal variability.
A few beds layered

B1

coalysh Low internal variability B2

cbmst Low internal variability B3

clayst Thick, well-defined beds B4

mudst Thick, well-defined beds. Some
show low internal variability

B5

sst Strongly bedded B6

Silt Strongly bedded B7

Dolerite Mostly low internal variability.
Some porosity variation

B8
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of the borehole log.
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effective AN response, the practical uncertainty in the measuring

system, taking all factors into consideration. Example C2 shows

a counterexample, where no change points are identified, but there

are lithology changes in the visual log (although not extreme, the

lithologies being coal or coaly shale). The values for the AN re-

sponses in this case, across the four geophysical logs, are clearly

greater than the example at C1. If we assume that the AN response

of the measuring systems is constant, then we can interpret these

greater values of σ (C2 in comparison to C1) to include a compo-

nent of GP and GN response. In this case the geologic response, be

it “process” or “noise” is below the level at which our method infers

a change point, reflecting the information contained in the data

about such changes.

In this study, our goal is to investigate the uncertainty in the logs

with a view to subsequently using similar infor-

mation to infer lithology in similar boreholes

which may have been drilled without preserving

the core. Our analysis shows clearly which litho-

logical contrasts correspond with a statistically

detectable response in the geophysical logs

and those which are much less likely to be in-

ferred from the geophysical data. It also allows

a maximum value for the AN response to be de-

termined. We also provide a quantitative apprai-

sal of the GN response for each lithology. We

note that the GN response (e.g., B4 and B7)

may be very strong, and often associated with

a change point that is tightly defined in depth

(showing as a narrow range in the probability

of change-point depth plots). Thus, a representa-

tive section of a borehole may be used to explore

the uncertainties in the available data and an

overall appraisal of the sensitivity of the geophy-

sical response to the change in lithologies, i.e.,

the desired inference goal in the routine analysis

of similar data from many other boreholes.

The sondes (downhole tools) used to acquire

borehole geophysical log data are often 1–2 m

or more in length, recording measurements, as

in the data we use in this demonstration, at

0.1-m intervals. This has the advantage of redu-

cing short wavelength noise, producing a re-

sponse that is a more faithful representation of
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the bulk rock property (e.g., density). The disadvantage can be that

recorded values are smeared or averaged as the sonde passes over

lithological contacts. The inferred σ value due to a change in lithol-

ogy is influenced by the sonde length. In this work, we are not at-

tempting to replicate the physics of the data acquisition process, as

in a deterministic modeling process, we are using the underlying

variations in the observed data, from wherever they might arise,

to understand how the observed data relate to what we might want

to infer. Hence, the exact mechanism of the change in σ is not im-

portant, so long as similar sondes are used collecting the data sets

for the transdimensional change-point uncertainty analysis and the

subsequent routine processing.

In the method presented here, we have restricted the modeled

values of the geophysical logs between change points (contained

in the vectorA, equation 3) to be constant values (i.e., a zeroth order

polynomial). This constraint may be relaxed through the use

of a higher-order regression function (e.g., a polynomial) between

change points (Gallagher et al., 2011). For example, a first-order

polynomial, rather than a constant value, would remove the multiple

step structures (implying multiple, closely spaced change points)

occasionally evident where there are steep gradients over a rela-

tively long proportion of the data series (e.g., the EAL at 202

and 228 m). Indeed, in a more general case, the order of the poly-

nomial between pairs of change points may itself be treated as a

parameter to be estimated. Our emphasis in this work is the identi-

fication and analysis of the way in which the noise variance changes

with the visual dominant lithology log, hence, provided such multi-

ple steps are not misidentified as internal change points, the simpler

analysis procedure using constant values between change points re-

mains appropriate. It is worth noting that the expected model is ef-

fectively a smoothed version of many individual models which are

all just a series of constants between change points. However, the

expected model can be more complex in that it can have gradients

(due to smoothing) and so potentially capture subtle transitions be-

tween two lithologies better than an individual model taken from the

sampled ensemble (e.g., the best data-fitting model).
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Figure 7. Inferred change points plotted with the 95% credible interval ranges for (a) the high-contrast section (200–240 m) and (b) the low-
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CONCLUSION

Transdimensional change-point analysis may be used to make an

appraisal of the inferred lithology, depth structure, and noise

contributions from a representative section of stratigraphy and

the associated geophysical logs. The appraisal provides an insight

into the noise in the data due to GP (variation between dominant

lithologies), GN (variation within a lithology) and analytical (mea-

surement) noise. Thus, the varying sources of uncertainty in the

data, and hence the ability of the geophysical data to constrain

lithology in subsequent analysis, can be investigated directly as part

of the inference process. This approach could be employed in the

routine processing of borehole geophysical log data to gain a pre-

liminary understanding, from one representative section, of the abil-

ity of the data to constrain the anticipated lithology contrasts in

other wells. The approach would generalize readily to any geo-

physical investigation where one or more noisy data series is used

to infer a model with contrasts in structure along a section, or

with depth.
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