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[1] In order to improve discrete fracture network (DFN) models, which are
increasingly required into groundwater and rock mechanics applications, we propose a
new DFN modeling based on the evolution of fracture network formation—nucleation,
growth, and arrest—with simplified mechanical rules. The central idea of the model
relies on the mechanical role played by large fractures in stopping the growth of
smaller ones. The modeling framework combines, in a time-wise approach, fracture
nucleation, growth, and arrest. It yields two main regimes. Below a certain critical
scale, the density distribution of fracture sizes is a power law with a scaling exponent
directly derived from the growth law and nuclei properties; above the critical scale, a
quasi-universal self-similar regime establishes with a self-similar scaling. The density
term of the dense regime is related to the details of arrest rule and to the orientation
distribution of the fractures. The DFN model, so defined, is fully consistent with field
cases former studied. Unlike more usual stochastic DFN models, ours is based on a
simplified description of fracture interactions, which eventually reproduces the
multiscale self-similar fracture size distribution often observed and reported in the
literature. The model is a potential significant step forward for further applications to
groundwater flow and rock mechanical issues.

Citation: Davy, P., R. Le Goc, and C. Darcel (2013), A model of fracture nucleation, growth and arrest, and
consequences for fracture density and scaling, J. Geophys. Res. Solid Earth, 118, 1393–1407, doi:10.1002/jgrb.50120.

1. Introduction

[2] Fractures are ubiquitous in geological systems and key
structures for groundwater flow and mechanical resistance of
rocks. It is now clearly demonstrated that the density of
fractures and their spatial organization are controlling
flow and mechanical properties of rock masses. Thus, most
of the predictions in hydrogeology, seismology, and
geomechanics—with application to water resources, mining,
geothermal industry, deep waste isolation, among others—
are dependent on the pertinence of the fracture network
description, although the degree to which it must be is still
an issue [Berkowitz et al., 2000b; Caumon et al., 2009; de
Dreuzy et al., 2001a, b; Paluszny and Matthai, 2010;
Svensson, 2001].
[3] An intrinsic difficulty is to deal with a range of fracture

scales that cover several orders of magnitudes in any
tectonic system, from microfractures smaller than micro- to
millimeters to tectonic faults larger than hundreds of meters
to kilometers. The apparent similarity between fracture

patterns at different scales has long been recognized by
geologists [Tchalenko, 1970] and has led to apply fractal
scaling concepts to fracture networks: fracture patterns are
likely characterized by fractal dimensions; fracture length
distributions appear to be adequately fitted by power laws
(the only mathematical functions that do not require a scale
parameter) from meter to tens of kilometer scales [see the
compilation by Bonnet et al., 2001]. Whatever the model
of fracture organization is, taking account of this large range
of facture scales in mechanical or flow models requires
either high-resolution underground imagery of fracture
networks or the development of pertinent stochastic fracture
network models to replace the lack of observation. Since the
former is still out of reach, most models of fluid flow and
transport processes are based on Statistical Discrete Fracture
Network methods (DFN) [see Jing et al., 2007 for a review],
which are statistical generation methods conditioned to
length and orientation frequency distribution. The positions
of fractures are generally assumed to be random, but this
assumption needs to be further proven since it does not
reflect the complexity of geological patterns [Ackermann
and Schlische, 1997; Darcel et al., 2003a].
[4] The aim of this paper is to develop a stochastic DFN

modeling framework able to match both important properties
that constitute a large part of the complexity of geological
fracture networks: the fracture-to-fracture spatial interactions
and the scaling relationships between fracture lengths and
densities over several orders of magnitude. Both are critical
for defining the DFN connectivity [Berkowitz et al., 2000a;
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Bour and Davy, 1997, 1998; Darcel et al., 2003b; Davy et al.,
2006a; de Dreuzy et al., 2001a]. The method we develop is
based on a simplified modeling of the fracturing processes,
which still enables handling millions of fractures in 3D.
It relies on the main stages of fracture evolution: nucleation,
growth, and arrest. This time-wise process differs from
classical DFN models that only “bootstrap” the current
geological stage.
[5] The basic mechanical concepts are derived from the

“likely” universal model of fracture scaling (UFM) of [Davy
et al., 2010], which theoretically derives a fracture-size
density distribution model from simplified rules of fracture
arrest. The model, which depends only on the topological
network dimension D and on a dimensionless parameter g,
was found to be a good fit for a large number of fracture
datasets, whether they are made of faults or joints. The basic
idea is to highlight the mechanical role of large fractures in
stopping the growth of smaller ones. A strict causality
rule—a small fracture cannot cross a larger one, but the
reverse is likely to occur—obviously simplifies the mechan-
ical reasons for stopping fracture growth [Crampin, 1994,
1999; Pollard and Aydin, 1988; Renshaw and Pollard,
1994; Renshaw and Park, 1997; Renshaw et al., 2003], but
it renders the main mechanical interactions [Nur, 1982;
Segall and Pollard, 1983; Spyropoulos et al., 1999] and is
statistically consistent with the large number of commonly
observed T-like fracture intersections. Additionally and
pragmatically, it is easily manageable in simple stochastic
models. Davy et al. [2010] demonstrated that this pseudo-
mechanical rule entails a quasi-universal density distribution
of fracture sizes, which takes the form of a power law with a
fixed exponent and a quasi-fixed density term. The reason
why this universal distribution emerges is that the
fracture length once arrested is about the distance to its
larger neighbor. This geometrical rule fixes the density of
large fractures. If fractures are smaller than the distance to
the nearest neighbor, they are not suppose to interact
mechanically, and their length distribution is then controlled
by the growth law of isolated fractures (dilute regime).
[6] Davy et al. [2010] show that this two-regime length

distribution is consistent with the statistics derived from a
few detailed mapping studies of natural outcrops or
experiments, with a transition between the “dense” large-
length UFM distribution and the “dilute” small-length one
that was observed to vary from 1–10 m for joint networks
to ~20 km for the San Andreas fault system. They also show
that this so-called UFM generation model leads to
networks, the connectivity and flow properties of which
are significantly different from the classical random
(Poisson statistics) model, even if the fracture length
distributions are identical. This emphasizes the need to
develop this kind of DFN models that mimic fracturing
processes.
[7] In this paper, we discuss possible nucleation, growth,

and arrest rules that “naturally” generate the scaling laws
observed in fracture networks. As in Davy et al. [2010],
we use the fracture-length density distribution n(l, L) as the
statistical descriptor of fracture patterns. n(l, L) dl is the
number of fractures of length in the range [l, l+ dl] within
a volume of typical size L. For geological fracture networks,
n(l, L) has been found to be adequately fitted by the
following scaling laws valid over a large range of scales:

n l;Lð Þ ¼ a l�aLD; (1)

where D is formally the mass (or correlation) dimension of
the fracture-center network that is smaller or equal to the
topological dimension [see Bonnet et al., 2001; Bour et al.,
2002 for more explanations]; a is the power-law length
scaling exponent, and a a the density term that is likely
increasing during fracture growth.
[8] Note that this paper is the first step towards a complete

DFN methodology that can be applied to the modeling of
flow and mechanical properties of fracture-controlled
geologic sites. Such applications require additional informa-
tion on fracture aperture (for hydraulic properties), strength,
and elastic parameters (mechanical properties) that we do
not discuss in this paper. It is no insignificant matter,
considering the critical role of fracture transmissivity
distribution on the macroscopic flow and transport
properties [de Dreuzy et al., 2001a, 2001b, 2002; de Dreuzy
et al., 2010].

2. The Complete Model of Fracture Formation:
Nucleation, Growth, and Arrest

[9] Fracturing is a feedback-loop process where the
growth of fractures modifies their growth properties
(through elastic stresses within the unfractured material)
[Atkinson, 1987; Bourne and Willemse, 2001; Ingraffea,
1987; Kachanov and Laures, 1989; Pollard and Aydin,
1988; Segall, 1984a,1984b]. The complexity of this dynamic
process is directly related to the complexity of the develop-
ing network structure. This (somewhat trivial) statement
illustrates the difficulty to simplify a process that leads in
nature to networks with fracture sizes spanning over orders
of magnitudes [Bonnet et al., 2001].
[10] In addition to describing the geometry and scaling

properties of fractured systems, a DFN description is also
relevant to analyze the main mechanical interactions of
fracture networks that are basic to define fracture growth
[Kachanov and Laures, 1989; Kachanov, 2003]. Although
less versatile than a continuum-mechanics approach
(some assumptions about the shape of fractures and the
homogeneity of elastic properties are required to solve the
mechanical problem), the DFN is particularly well suited
to describe the three main stages of the complete fracture
formation stages—(i) nucleation of fractures, (ii) growth,
that is, propagation of fractures, and (iii) fracture arrest—
and to analyze the properties of the resulting network.
[11] A few studies have put emphasis on the relationship

between the different elements of the fracturing stages and
the produced fracture density distributions, considering
either a full mechanical description of the second and third
stages [Cowie et al., 1993; Cowie et al., 1995; Hardacre
and Cowie, 2003; Kamaya and Kitamura, 2004; Malthe-
Sørenssen et al., 1998; Olson, 1993; Renshaw and Pollard,
1994; Renshaw, 1996] or simplified rules [Josnin et al.,
2002]. The former gives obviously a better description of
the physical processes; however, numerical simulations are
time consuming, and the complexity of the simulated
networks is far to reach those of natural systems in terms
of process dimension (most of them are considering 2D
growing fractures with plane strain hypothesis), fracture
orientations, or range of fracture scales (Figure 1).
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[12] In the following paragraphs, we discuss the different
rules and functions for the 3D network evolution, and we
test the relationship between the fracturing rules and the
fracture length distribution at any stage of the fracturing
history. The time scales to produce these networks in
geological systems is quite long, from several thousand
to million years [Walsh et al., 2002], entailing that the
laws discussed in the next paragraphs are averaging
many of the details of the fracturing process including the
seismic cycle.

2.1. Nucleation

[13] Nucleation of fractures is a complex process both
controlled by the repartition of flaws in matter (pores, grain
boundaries, cleavage planes, etc.) [Engelder, 1987;
Tapponnier and Brace, 1976] and by mechanical controls
that make nuclei active or not [Betekhtin and Kadomtsev,
2005; Ingraffea, 1987; Knauss, 1969]. This results in a
microcrack damaging that eventually leads to the formation
of faults or joints [Ashby and Sammis, 1990; Kranz, 1983;
Reches and Lockner, 1994; Segall and Pollard, 1983]. In
the following, we use the term “nuclei” to name the flaws
that can be considered as growing cracks and “flaws” those
that are not yet activated or growing much slower than
cracks of same characteristics.
[14] In the most simplistic cases, former studies assumed

that the material contains a certain number of randomly
distributed nuclei of about constant length that grows
concurrently to form the eventual fracture network [Olson,
1993; Renshaw and Pollard, 1994; Renshaw, 1996]. More
complex models also allow flaws to be active as nuclei for
further crack growth [Ashby and Sammis, 1990; Betekhtin
and Kadomtsev, 2005; Reches and Lockner, 1994;
Tapponnier and Brace, 1976]. The reason why nuclei forms
is likely related to stress redistribution by growing cracks,
stress increase, thermal activation, chemical corrosion, etc.
[Atkinson and Meredith, 1981; Betekhtin and Kadomtsev,
2005; Buchel and Sethna, 1997; Hamiel et al., 2006; Horii
and Nemat-Nasser, 1985; Reches and Lockner, 1994;
Sethna, 2001]. The feedback loop between fracture
nucleation and growth due to stress redistribution can result
in strikingly different geometries of the eventual fracture
pattern, depending on the initial distribution of weak and
strong area defects [Alava et al., 2006; Davy et al., 1995;
Hansen et al., 1991; Herrmann and Roux, 1990]. Such a

complexity is beyond the scope of this study (see however
the discussion): we aim at simulating networks from simple
geometrical rules rather than time-consuming mechanical
calculations. However, the correlations between nucleation,
growth, and existing fracture patterns, which are
emphasized in the previously cited studies, are likely an
improvement of the current modeling and should be
considered in further studies.
[15] In the following, we assume that in the intact rock,

nuclei are uniformly distributed both in terms of orientations
and positions. The nature of the nuclei length distribution
pN (l) is not a critical point as long as the nuclei are
small. We consider both exponential and power-law
distributions for pN(l):

pN lð Þ ¼ 1

lN
exp � l

lN

� �
(2)

pN lð Þ ¼ 1� b

lN

l

lN

� ��b

; (3)

where l is the nuclei size, and lN is a characteristic length
scale, which is the average nuclei size for the exponential
distribution, and the lower bound of the distribution for
the power-law distribution (in this case, the average length
is b�1

b�2 lN ), and b an exponent.

[16] Finally, we consider two end-member cases where all
nuclei are present in the system with no nucleation, or where
the nucleation appearance rate is constant. The number of
nuclei is noted nN, and the nucleation appearance rate is its
time (t) derivative _nN ¼ dnN

dt .

2.2. Fracture Propagation

[17] Fracture growth is an energy-consuming process that
involves (at least) the creation of new fracture surfaces, the
work done against friction (for modes II and III), and the
creation and deformation of the inelastic process zone
nearby the fracture tip [Cowie and Scholz, 1992a,1992b;
Vermilye and Scholz, 1998]. Open cracks in mode I are
potentially unstable—once the crack length is larger than a
critical value, the crack is likely propagating at wave speed
up to the system limits—but stable growth mode is expected
for mode-II faults, strain-rate or controlled conditions
(unlike constant applied remote stress), or subcritical growth
[Atkinson and Meredith, 1987; Atkinson, 1982, 1984; Cowie
and Scholz, 1992a; Segall and Pollard, 1983]. Most of these
“stable” cases are likely to occur in natural geological
environment [Schultz, 2000; Segall and Pollard, 1983],
although the question whether a Griffith-type instability
instead of a quasi-static growth exists is still debated for
geological tensile cracks under constant stress [Olson and
Schultz, 2011; Scholz, 2010].
[18] In the following, we only consider subcritical-like

fracture growth, where the fracture growth speed is dependent
on fracture length. In addition to its geological relevance, the
case allows us to highlight the close relationship between the
length distribution and the growth law as demonstrated
below. Extrapolation to models where the fracture growth is
independent of fracture length is rather straightforward.
[19] The general form of the growth law in the subcritical

regime is still an issue. Most of the experimental data on rock

Figure 1. Fracture networks obtained from numerical
simulations [Renshaw, 1996] and mapped from granitic
outcrop (Forsmark, Sweden) [SKB, 2004a].
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samples have been obtained for mode I [Atkinson, 1984], and
only a few for modes II and III [Ko and Kemeny, 2011] with
results consistent with mode I. The main fitting or theoretical
models are either power law or exponential model.
[20] The power law was introduced by Charles [1958]

(and known as the Charles’ law) and widely used in the
literature to describe the crack tip velocity in the subcritical
regime: v ¼ dl

dt ¼ CKm [Atkinson, 1984; Das and Scholz,
1981; Kamaya and Kitamura, 2004; Newman and Raju,
1981], where K is the stress intensity factor, and m is the
stress-corrosion index or the subcritical fracture growth index.
m can vary widely and depends on the fracture growth
mechanism and rock type [Atkinson, 1987]. Olson [2003,
2004], shows that the density and organization of fractures
are directly related to m; when m goes to infinity, only the
largest nuclei propagates, while all fractures develop indepen-
dently of their length when m is 0. If fractures are relatively
independent of each others, the value K is proportional to
the square root of the fracture length, so that the fracture-
growth-rate equation now writes:

v lð Þ ¼ dl

dt
¼ Cla; (4)

where a is the growth exponent, and C is a parameter
assumed constant, which depends on the remote stress.
[21] Exponential models were based on thermodynamic

theories developed for slow fracture growth in mode I
[Darot and Gueguen, 1986; Dove, 1995; Vanel et al.,
2009]. The crack tip velocity is expected to be proportional
to an exponential Arrhenius-type term, where the activation
energy, G, is the energy release rate during growth.
Considering the dependency of G on the fracture length l,
these models predict that the fracture growth rate should
increase exponentially with length:

v ¼ dl

dt
¼ C exp

l

lc

� �
; (5)

where both constant C and lc depend on temperature,
stress, and elastic properties of rock materials [Vanel et al.,
2009]. Note that there is another exponential expression,
where the fracture growth rate is proportional to the
exponential function of the intensity factor K, which in turn
is proportional to the square root of the fracture length
l [Dove, 1995].
[22] Whatever the growth law, because of its fast increase

with length fractures become infinite in a finite time. The so-
called time to rupture tr is characteristic of the growth law

and depends on the initial nuclei length lN: tr ¼ lN 1�a

a�1ð ÞC for

the power law (equation ((4)), and tr ¼ lc
C exp � lN

lc

� �
for

the exponential law (equation ((5)).
[23] In the next paragraph, wewill discuss the fracture length

distribution produced by the growth equations ((4) and ((5).

2.3. Fracture Size Distribution for Freely Growing
Fractures

[24] The fracture size distribution can be calculated from a
balance between time t and t+ dt. A fracture set n(l,t)� dl at
the time t will grow to n(l+ v(l)dt, t+ dt)� dl ’ at the time
t + dt, where dl0 is the transformation of the length range
dl by the fracture growth: dl’ ¼ dl � 1þ dv

dl dt
� �

; the fracture

balance must also incorporate the set of nuclei produced
during dt: _nN tð ÞpN l þ v lð Þdtð Þ � dl’ � dt . In the limit where
both dl and dt go to 0, this gives the general differential
equation [see also Sano et al., 1981; Sornette and Davy, 1991]:

@n

@t
þ @ vnð Þ

@l
¼ _nN tð ÞpN lð Þ: (6)

a) Case where the nucleation rate _nN is constant and non-nil

[25] This equation has a stationary solution if both _nN and
v(l ) are time independent and non-nil:

nst lð Þ ¼ _nN
v lð Þ 1� PN lð Þð Þ: (7)

with PN lð Þ ¼
Z 1

l
pN lð Þdl is the complementary cumulative

probability distribution of nuclei, which is supposed to vanish
rapidly. Thus, for all lengths such as PN(l)<<1, the stationary
distribution length nst lð Þ is the ratio nst lð Þ ¼ _nN

v lð Þ, proportional
to the nucleation rate by the inverse of the growth rate func-
tion. An exponentially increasing growth rate (see previous
paragraph) will eventually produce an exponentially decreas-
ing distribution length, while Charles’ law is consistent with a
power law:

nst l≫lNð Þ ¼ _nN
C

l�a; (8)

which is only controlled by the parameters C and a of the
growth law and by the nucleation rate _nN , independently of
the nuclei length distribution.
[26] There is no obvious analytical solution for the

nonstationary regime, but the solution may be approached
by posing: n l; tð Þ ¼ _nN

v lð Þ ey l; tð Þ þ 1� PN lð Þð Þ , with ey l; tð Þ a

non-stationary dimensionless term that obeys a quite simple
transport equation:

1

v lð Þ
@ey
@t

þ @ey
@l

¼ 0: (9)

v(l), the speed term of the above equation, is increasing
with l; we thus expect the stationary regime to be reached
faster for large lengths than for small ones.
[27] We can also conjecture about the time scale of the

process. Indeed, the above equation shows that v(l) is the
only function that links time and length scales. In this
dynamical system, the natural length scale is the nuclei
length lN. A natural time scale would be the ratio to ¼ lN

v lNð Þ,
which characterizes the very first stage of nuclei growth.
This time scale is of the same order of magnitude as the time
to rupture tr as defined in the previous paragraph (tr ¼ to

a�1 for
the power-law equation, and tr ¼ to

lN
lc

for the exponential
function); it is likely the time to reach the stationary solution.

b) Case where N nuclei are present at t = 0 and no
nucleation rate
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[28] If all fractures are present since beginning, the length
distribution at any time t reflects the shift of the initial nuclei
length distribution pN(l) by the growth rate equations ((4)
and ((5). The density distribution of fracture at any time
t is directly related to the initial nuclei length distribution
at t = 0 by a one-to-one correspondence relationship:

n lð Þ dl ¼ n lt¼0ð Þdlt¼0;

where lt= 0 is the corresponding nuclei length. The initial
density distribution n(lt= 0) is the product of the total number
of nuclei N by the frequency distribution of nuclei size pN.
The fracture length l(t) is obtained by integrating the
growth-rate equation from its initial value: For the power-
law growth model (equation ((4)), this gives:

l tð Þ ¼ lt¼0
1�a � a� 1ð ÞCt� � 1

1�a:

[29] Thus, we can derive n(l) at any time t by deriving
l with respect to lt = 0. We obtain the following expression
for n(l):

n lð Þ ¼ N � pN lt¼0ð Þ � l

lt¼0

� ��a

and lt¼0 ¼ l1�a þ a� 1ð ÞCtð Þ
1

1� a:

(10)

[30] As long as l1� a<< (a� 1)Ct (i.e., t is large enough),
n(l) is a power law, the exponent of which is minus the
growth-rate exponent a:

n lð Þ ¼ N �
pN a� 1ð ÞCtð Þ 1

1�a

� �
a� 1ð ÞCtð Þ� a

1�a
� l�a: (11)

[31] The expression is valid for all lengths, where pN(lt=0) is
not nil. The equation predicts (1) that the density term of the
length distribution is proportional to the number of initial nu-
clei, and that it varies (slightly actually) with time (Figure 9a).
[32] A similar expression can be obtained for the exponen-

tial model (equation ((5)):

n lð Þ ¼ N � p lt¼0ð Þ exp �l=lcð Þ
exp �lt¼0=lcð Þ

and lt¼0 ¼ �lc � ln exp �l=lcð Þ þ Ct

lc

� �
:

(12)

[33] If t is large enough t >> lc
C exp �l=lcð Þ� �

, the above
equation transforms into an exponentially decreasing function,
the proportionality coefficient of which decreases with time:

n lð Þ ¼ N � pN �lc ln
Ct

lc

� �� �
lc
Ct

� exp �l=lcð Þ (13)

c) Which growth law is for geological fractures?

[34] Choosing a fracture growth law consistent with
geological dynamics is a tricky issue, which is beyond the
aim of this paper. However, we point out that there are clearly
inconsistencies between geological fracture characteristics and

experimental data obtained on rock samples, or any kind of
solid materials. If power laws and exponential functions have
been found to adequately fit the length distributions of
geological faults [Bonnet et al., 2001; Korvin, 1989], the
parameters retrieved from fault length distributions are totally
inconsistent with those deduced from fracturing experimental
data. The subcritical growth index of the Charles’ law was
found to be larger than 30 [Atkinson, 1984; Ko and Kemeny,
2011], entailing exponents a larger than 15, while the
power-law length exponents a of faults are rarely larger than
4 [Bonnet et al., 2001]. It is even worst for exponential fits,
where atomic scale processes are invoked for experimental
data [Darot and Gueguen, 1986], while the length scale of
fault length distributions are meter to kilometer scales.
[35] These basic abovementioned arguments highlight the

difficulty to upscale laboratory experiments at the crustal
scale. Mechanical heterogeneities, propagation mode, and
chemical processes induced or not by fluid flow are likely
making the geological fracture growth law an issue. In this
first paper, we choose fracture growth laws that remain
consistent with measured fault length distributions. Since
many analyzed length distributions are power laws [Bonnet
et al., 2001] (with however notable exceptions when
fragmentation is likely the dominant process [Korvin,
1989]), we use the power-law equation (5) as a proxy for
the growth of geological fracture, in the domain where
it does not interact with others. An extrapolation to
exponential functions can be quite easily done.

2.4. Fracture-to-Facture Interaction and Fracture
Arrest

[36] As recalled in the “Introduction” section, the UFM
rule imposes the arrest of fractures when they encounter
larger ones. Basically, a fracture propagates until it intersects
larger fractures. This rule is, however, not univocal since it
makes the fracture propagation vanish beyond such fracture
intersections, but it does not tell anything about the fracture
growth in other directions. We define different growth/stop
models according to the number of degrees of freedom of
the fracture growth. The first and basic degree of freedom
is the fracture radius. A fracture that uniformly grows (in
directions) from a fixed center has only one degree of
freedom. Its growth will be stopped as soon as it intersects

Mode A Mode B

Figure 2. Illustration of the two different arrest rules.
(Left) Mode A. (Right) Mode B. Fractures 2 and 3 are fixed.
Fracture 1 is drawn at two different stages: light blue for the
first stage where the fracture is still growing; dark blue for
the second stage corresponding to the point where fracture
stops growing. See text for details.
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the first larger fracture. We define this as the mode-A growth
model (Figure 2, mode A).
[37] An additional degree of freedom can be added by

allowing the fracture center to move if necessary (Figure 2,
mode B). Let us assume that the growth rate of the fracture
1 is inhibited by the intersection with a larger fracture 2.
At this point, the fracture 1 is tangential to 2; it can continue
to grow in all other directions as long it remains tangential to
2. This can be achieved in different ways depending on the
distribution of fracture growth rate along the edge of fracture
1. If we assume that fractures remain disk-shaped (uniform
growth rate along the edge), there is only 1 additional degree
of freedom since the fracture center can only move along the
line perpendicular to fracture 2 in order to maintain fracture
1 tangential to fracture 2. This mode is further called mode-B
growth (Figure 2).
[38] Additional degrees of freedom can be added by

relaxing the disk-shape hypothesis (e.g., truncated ellipses).
In this paper, we only examine mode-A and mode-B
growth models.
[39] For any mode of arrest, the UFM framework defined

in Davy et al. [2010] predicts that during the growth of a
fracture system, once mechanical interactions between frac-
tures become dominant, a likely unique regime appears. It
is called the UFM “dense” regime to reflect that this regime
effectively defines the densest possible values of fracture
size distribution.
[40] In either mode A or mode B (Figure 2), the length of

the arrested fracture l is equal to twice the distance between
the fracture center and the closest larger fracture plane dP. To
calculate the density distribution, we relate dP to the average
distance between fracture centers d and assume that there is
a dimensionless ratio g so that l= gd. With this assumption,
the density distribution of the dense regime is:

ndense lð Þ ¼ DgDl� Dþ1ð Þ; (14)

with D the topological—either fractal or Euclidian—
dimension associated to fracture centers [Davy et al., 2010]
that can be calculated with box-counting methods. Thus
defined, g is a geometrical number related to local spatial
conditions around fractures, that is, fracture orientation
distribution and also potentially fracture arrest mode.
[41] The UFM dense regime is characterized by a self-

similar distribution, the length scaling exponent of which
is adense =D+ 1. The density term, DgD depends only on
the g parameter, the possible variations of which are further
investigated in section 4.
[42] Beyond the fracture length scaling, the UFM model

leads to specific fracture-to-fracture interactions and spatial
organization. The latter is reflected in the apparition of
“T” fracture terminations in addition to classical “X”
fracture intersections otherwise observed when fracture
positions are independently assigned (like in stochastic
Poissonian models).

2.5. Combination of Nucleation, Growth, and Arrest

[43] When independently considered, both the dilute
(freely growing fractures) and dense (stopped fractures)
regimes have stationary density limits defined by equations

((8) (or ((11)) and ((14), respectively. The three main
regimes can be defined, as sketched in Figure 3: a regime
partly controlled by the nuclei distribution for the smallest
lengths (part 1), a regime controlled by the growth law and
nuclei rate (independently of the nuclei length probability
distribution) for intermediate lengths (part 2), the UFM
dense regime for the largest fractures (part 3). The scale
for which both stationary density distributions are equal is
given by:

lc ¼ DgD C

_nN

� � 1
Dþ1�a

: (15)

[44] This general scheme should still be qualitatively valid
when considering the three main stages of fracturing (nucleation,
growth, and arrest) but with important differences. Indeed,
since the total number of fractures and of fracture lengths
is continuously increasing during the fracturing process
(both by nucleation and fracture growth), the dense regime
should spread towards smaller and smaller fractures—
which is equivalent to say that arrested fractures become
smaller and smaller. The combination of the stationary
density equations ((8) (or ((11)) and ((14), although it is an
interesting reference, cannot define the stationary regime of
the whole fracturing process.

2.6. Numerical Implementation

[45] We propose a 3D time-wise DFN generation method
based on the above described theoretical model. It is developed
within the software platform H2OLAB [de Dreuzy et al.,
2010; Erhel et al., 2009a, b; Pichot et al., 2010]. Fractures
are modeled by disks and are embedded in a 3D polyhedron.
[46] The fracture nucleation and propagation are

implemented following sections 2.1 to 2.3. In practice, a vir-
tual time t is simulated, starting from t= 0 to the end of the
process. This time line is divided in time steps Δt; for each
time step, new fractures are generated (nucleation) and frac-
ture propagation is applied.
[47] At each time step, _nNΔt nuclei are generated. These nu-

clei are created at a time that is uniformly spread within the
time step, in order to better reproduce a continuous nucleation.
[48] Fracture length is increased according to equation ((4),

which yields:

Figure 3. Illustration of the length distribution of the correlated
3D-DFN models.
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l t þ Δtð Þ ¼ l tð Þ1�a þ 1� að Þ�C�Δt
� � 1

1�a
: (16)

[49] The generation scheme is sketched below:

1) Initialization: t := 0

Then the dynamic process starts. It is composed as follow:

2) Set t := t + t

3) Nucleation stage:

define new nuclei 

keep new nuclei only if no intersection with existing fractures,

4) Fracture growth stage - Eq. (16)

5) Computation of intersections

6) Fracture-length reduction according to mode A or mode B

7) Check ending criteria

If criteria are fulfilled, go to step 8),

else, return to step 2).

Finally, the generation is stopped:

8) Finalization, computation of intersections and statistics on the DFN.

[50] Note that the nuclei are not added in the system if
they are arrested by the existing fracture network. The effec-
tive nucleation rate is, thus, likely decreasing with time as
the space available for new nuclei is decreasing. This point
will be discussed in the next paragraphs.
[51] During one time step, a fracture may grow so that it

intersects more than one (in mode A) or two (in mode B)
fractures. In such case, the intersected fractures are sorted
according to their respective distance to the growing frac-
tures and the arrest rule accordingly applied. The time step
is reduced to minimize such conflicts.
[52] In practice, the DFN is generated in a cubic volume of

side L. Nucleation occurs only in the cube. Borders of the
generation cube act as limits, beyond such fractures are not
allowed to grow. No edge effects have been detected with
these rules mainly because the total surface of fractures is
rapidly much larger than the boundary surfaces, and the
contribution of the latter to stopping internal fractures
becomes negligible.
[53] In principle, the DFN can grow until there is no more

available space to put new nuclei or to propagate one frac-
ture. Some ending criteria are defined:
[54] 1. Nucleation is stopped when no nuclei can be added

in the system, and no fracture can grow anymore;
[55] 2. Nucleation is stopped after a while, so as to obtain

a fixed length distribution;
[56] 3. Nucleation is stopped when the targeted fracture

density is achieved.

3. Numerical Simulations of the DFN Model

[57] The model described in the previous paragraph is de-
fined by a set of assumptions (Table 1) and parameters:
p lð Þ; _nN tð Þ for nucleation; C, a for the growth law; mode
A or B for the arrest condition. Length, density distribution,
and time are given in an dimensionless form by normalizing
with the characteristic length lo and/or the characteristic time
to: t0 = t/t0, l0 = l/l0 , n0(l0) = n(l) * l0, pN0(l ’) = pN(l) * lo, and

_nN
0
t’ð Þ ¼ _nN tð Þ � to . The characteristic length scale lo is the

nuclei length lo = lN, and the time scale to is to ¼ lN
v lNð Þ ¼

1
ClN a�1, which is close to the time to rupture for nuclei of size lN.

3.1. Freely Growing Fracture Distribution

[58] The numerical model is first used to check the
stationary density regime of the free growth regime and to
calculate non-stationary stages of the fracture growth phase.
Figure 4 illustrates the different density distributions
obtained at dimensionless times of 0.1 to 5 with model pa-
rameters given in the figure legend. The stationary solution
of the growth process (equation ((7)) is reached at t0 close
to 0.5, the time necessary for a fracture of initial length lN
to grow to infinity. At this point, the amount of new frac-
tures compensates the fracture propagation and the final
length density distribution tends to the expected power
law (equation ((8)), with a scale exponent a (i.e., the
growth exponent) and a density term a equal to the ratio
between nucleation rate _nN and growth coefficient C.
[59] The variations in the density distribution, observed at

large length (l0 ≥ 50), simply reflect the small number of
large fractures. In the example, only 30 fractures are larger
than l0 = 50, 1400 than l0 = 10, and 6� 105 larger than l0 = 1
(i.e., the smallest nuclei).

3.2. Density Distribution of the Complete Fracturing
Model with Nucleation, Growth, and Arrest

[60] Now, all the stages of the fracturing process are con-
sidered to yield DFN, the statistical characteristics of which

Table 1. Summary of the Model Assumptions

Features
Nucleation �Spatial Distribution: Uniform

�Orientation Distribution: Uniform, One Set, or
Three Sets
�Length Distribution: Power Law or Exponential
�Nucleation Rate: Constant or All Nuclei Present
at t = 0

Growth Power Law Equation
Fracture Arrest Mode A or Mode B

100 101 102
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

n'
( l

')

l'

 dilute regime

t'=5·10-3

t'=0.1
t'=0.2
t'=0.5
t'=5

Figure 4. Evolution with time of the length distribution of
the freely growing model without arrest. The parameters for
the simulations are a power-law nuclei distribution pN(l )
with b = 5 and lN = 10

�2, a nucleation rate _nN ¼ 19, a growth
law with C= 1 and a= 3, and a system size L= 1.
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are analyzed. The numerical parameters of the growth process
are the ones used in the previous section (Figure 4). The
numerical model covers more than two orders of magnitude
of fracture length, from l0 equal to 1 to the dimensionless
system L0 size equal to 100. The growth parameters are cho-
sen such that the critical transition dimensionless transition
scale lc0 = lc/l0 (equation ((15)) is close to 10. We, thus, expect
both the dilute and dense regimes to be observed within this
range of length scales. The arrest rule is applied in mode A
(section 2.4). Plots of several stages of the DFN distribution
are displayed in Figure 5. Corresponding 2D trace map views
(defined by 2D cutting of the 3D DFN) of the generated DFN
are provided in Figure 8.
[61] At the earliest stages of the generation, most of the

fractures still belong to the nuclei distribution (t0 = 5�10�3).
The density distribution is comparable to the free-growth
model (see Figure 5a) up to t0 = 0.1, although all fractures
larger than 10 are already arrested (Figure 5b). The UFM
dense regime is well defined in the density distribution from
t0 = 0.1.
[62] At t0 about equal to 0.5, the density distribution is a

combination of both the stationary regime of the free-growth
(dilute) regime (for l0 < lc0) and the dense UFM regime (l0 >
lc0). lc0, the transition scale between both regimes, is as de-
fined as in equation ((15). All fractures larger than lc0 (=10)
are arrested, as well as a significant part of smaller fractures.
[63] For time t0 larger than 0.5, the UFM regime spreads

over a very large range of fracture scales. It is only limited
at small scale by the nuclei distribution. Except the smallest
fractures, no or few fractures are anymore growing (t0 = 5 in
Figure 5).
[64] At any time, the UFM regime corresponds to an upper

density limit of the eventual distribution. In this example, the
UFM dense regime (equation ((14), red dashed line in Fig-
ure 5a) can be clearly identified for t0 ≥ 0.5, with an estimated
density term (DgD in equation ((14)) equal to 2.1. Figure 6
shows the lower limit lt of the UFM regime defined from vi-
sual observation of the density distribution. lt exhibits a fast
exponential decrease for time smaller than 0.25 down to lc;
after, the decrease continues but much slower. The produced
DFN is, therefore, in the dense regime above lt and in a
mixed regime (partly dense, partly dilute) below lt.
[65] To illustrate the evolution of the bulk fracture density,

we then calculate the mass density dm, which is the total sur-
face of fractures produced within the system:

dm ¼
ZL
l0

n lð Þ pl
2

4
dl; (17)

[66] Figure 7a shows that the dimensionless density d0m=
dm�l0 follows the same evolution regimes as lt: it increases fast
up to time t0 =0.5 and thereafter continues to increase but at
much smaller rates. The effective nucleation rate (Figure 7b),
which do not take account of nuclei intersecting pre-existing
fractures, is decreasing in this modeling as the available space
for nucleation VN is decreasing with time. VN can be estimated
as VN=VTotal� dm� lN, where dm� lN is the volume around
the pre-existing fracture network that is not available for fur-
ther nuclei. Figure 7b shows that the nucleation rate decreases
as VN for time t0 ≤ 1 and slightly slower thereafter. The slight
discrepancy may be due to the simplistic formula used to de-
fine VN that does not take account of fracture overlapping.
[67] Figure 8 shows 2D trace maps derived from the 3D

fracture networks at different times. At the early stages, the
network is characterized by a few large fractures that grow
fast after nucleation, surrounded by small nuclei that have
not yet grown. These large fractures act as barriers for
later fracture development, and the network density then
increases in between the arrested fractures. In 3D, there are
only a few X-type fracture intersections and a large number
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Figure 5. (a) Evolution with time of the length distribution with mode A and other parameters same as in
Figure 4. (b) Percentage of arrested fractures.
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Figure 6. Evolution of the limit of the UFM regime (i.e.,
the smaller fracture length lt that follows the UFM distribu-
tion) with dimensionless time t0.
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of T-intersections. Note that in 2D, because of stereological
effects (observing a 3D structure from a 2D map), fractures
may seem to be disconnected (in Figure 8 for instance),
while they are actually not in 3D (as quantified in Figure 5b
for instance). This is a difficulty when attempting to demon-
strate the UFM organization from outcrops.
[68] The case where all nuclei are initially present with no

nucleation rate has also been investigated (Figure 9). The
density distribution of freely-growing fractures (Figure 9a)
is well described by the equations ((10) and ((11): the length

distribution eventually stabilizes into a power law, the expo-
nent of which is�a with a the growth-law exponent; the den-
sity term is slightly increasing with time as well as the lower
bound of the distribution, emphasizing the continuous length
increase of nuclei. With UFM arrest rule, here in mode A
(Figure 9b), the behavior is very similar to the case where nu-
clei are progressively created. The density distribution shows
both regimes: the free-growth model for small lengths, and
the UFM regime for large lengths. The transition length lc0
is decreasing with time, emphasizing the spreading of the

Figure 8. Illustration of the DFN generation and evolution (same as Figure 5). 2D trace map views—(xy)
plane, z=0—from a 3DDFN generation with the following parameters: a power-law nuclei distribution with
b= 5 and lN=10

�2, a nucleation rate _nN ¼ 19, a growth law with C=1 and a=3, and a system size of length
L=1.The fractures generated between the previous and the current time steps are displayed in red.
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UFM regime towards small lengths. The equation of the UFM
regime is exactly similar to the one obtained for the nucle-
ation-rate case.
[69] The results presented in this paragraph have been

obtained with a power-law nuclei length distribution. The re-
sults are similar for other types of nuclei length distribution
except in the range of lengths that overlap the initial nuclei
distribution lengths.

4. The Dimensionless Density of the UFM Mode

[70] The density term of the UFM mode dUFM is a dimen-
sionless parameter that is still to be assessed (see equation
((14)). Davy et al. [2010] postulates that dUFM depends only
on the network dimension D and on the ratio g between the
fracture length and the distance to intersecting fracture:
dUFM=DgD. Considering this definition, g and thus dUFM
are thought to depend mainly on both parameters. The frac-
ture orientation and the fracture arrest mode. In the present
section, we investigate the possible variations of dUFM.
[71] Since dUFM defines the static stationary regime for

dense networks, it is not likely dependent on the way this
regime is reached, and thus on any nucleation and growth-
law parameters. We indeed verify that dUFM is independent
of the parameters C, a, _nN , and pN(l).
[72] By definition, dUFM describes the relationship

between the fracture length and the fracture density. This
parameter is potentially dependent on the details of the arrest
rule and on fracture orientations, which both affect fracture
intersections and thus the ratio between arrested fracture
length and the distance to larger fractures. Both aspects are
reviewed below.

4.1. dUFM and the Mode of Fracture Arrest

[73] The generation mode (mode A and mode B, see
section 2.4) influences the possible length that a fracture
can reach before being arrested. In mode A, a fracture stops
after the first intersection with a larger fracture; in mode B, it
can grow further until it crosses a second larger one, entailing
densities larger than those in mode A. This is illustrated in
Figure 10, where two DFNmodels with uniform orientations,
only differing in their arrest mode, lead to slightly different
UFM dense regimes. As expected, the scaling length exponent

of the UFM regime is identical for both modes; only the den-
sity term is different, equal to 2.1 and 3.0 in modes A and B,
respectively.

4.2. dUFM and the Orientation Distribution

[74] The density term dUFM is dependent on the probabil-
ity of fracture intersection, which itself is known to be
strongly dependent on the fracture orientation distribution
[Balberg et al., 1984]. At the extreme, if fractures are all
perfectly parallel, no intersection is possible and large
lengths are not inconsistent with large densities, entailing
large values for dUFM.
[75] In order to assess the link between fracture orientation

distribution and the density term of the UFM regime, we
consider fracture sets, the pole orientation of which varies
in both dip and strike by an angle θ. Formally, the dip and
strike orientation distribution of nuclei are defined by
a Gaussian distribution centered on the average with a
standard deviation sθ= θ.
[76] We then consider two orientation models: (i) a one-

set model, where fractures are strictly parallel if θ= 0, and
subparallel if θ is greater than 0 (see an example of 2D trace
map in Figure 11a), and (ii) a three-set model constituted of
three fracture sets, the average orientation poles of which are
perpendicular (Figure 11b).
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Figure 9. Evolution with time of the length distribution with no nucleation rate. All the 65,571 nuclei are
present at the simulation start; this number is the same as in the case with nucleation rate for t0 =0.5 (Figure 5).
Other parameters are the same as in Figure 5. (a) Model with no arrest conditions (freely growing fractures).
(b) Model with mode A arrest rule.
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[77] Intensive simulations are performed to assess numeri-
cally the density term dUFM (=DgD) of the UFM distribution
and its relation to fracture orientations. In each case, the DFN
generation is stopped when a constant mass density is
reached, and final density terms are averaged over 20 realiza-
tions (the statistical variability is less than 6%). The one-set
and three-set cases, with θ= 15�, are displayed in Figure 12.
It shows that the final density term is larger for the one-set
model than for the three-set orthogonal model.
[78] Table 2 and Figure 13 summarize the values of dUFM

associated to the various types of pole orientation distribu-
tions (uniform in the range 0–360�, one set, and three or-
thogonal set) both in mode A and mode B.
[79] Depending on the anisotropy and arrest mode, the

density term varies from 2.0 up to 32. Whatever the orienta-
tion distribution, the density term in mode B is larger than
that in mode A by 50% (factor close to 1.5). For the one-
set case, the density term is found to vary with θ as:

dUFM ¼ 2

sin θð Þ for mode A; dUFM ¼ 3

sin θð Þ for mode B (18)

[80] The sin�1 correction conveys the geometrical correc-
tion between the fracture length necessary to intersect an-
other fracture and the distance between fracture centers.
[81] For the three-set perpendicular model, the density

term is about constant for θ larger than 15�. For smaller θ,
it slightly increases by a factor of 1.5 (mode A) or 2.5 (mode
B). In this case where the sets are orthogonal, fractures are
easily intersecting a fracture from one of the two other sets,
and the distance between intersecting fractures is about in-
sensitive to θ.

5. Discussion

[82] The model presented in this paper is basically a ver-
satile way to generate fracture systems; it is much simpler
and faster than models based on complete fracture mechanics.
It enables to produce geometries with the same length-density
scaling as natural fracture networks. Based on initially
uniformly distributed nuclei, the combination between
fracture growth and arrest finally yields complex networks
with spatial correlations involving fracture tips, position,

orientation and size, together with power-law size distribu-
tions where the exponents of which are controlled either
by the free growth rate or by interactions between frac-
tures. Such characteristics are much more realistic than
otherwise widely used random (Poissonian) DFN models,
where fracture geometrical characteristics are indepen-
dently stated and randomly generated, leading to a lack
of spatial correlations.
[83] The model does not encounter the typical computa-

tion limitations due to the complexity inherent to resolution

a) b)

Figure 11. 2D trace map views of 3D DFNs with (a) one single set and (b) three orthogonal fracture sets.
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Figure 12. DFN pole orientation distribution influence on
the DFN structure and UFM dense density term.

Table 2. Values of DgD for Varying Fracture Pole Orientation Dis-
tributions, Both in Mode A Mode B

Pole Orientations Variability dUFM in Mode A dUFM in Mode B

One Set 5 22 33
15 7.2 11.8
30 3.6 6.3
45 2.5 5.1

Three Orthogonal Sets 1 3.1 7.5
5 2.4 5
15 2 3.7
30 2 3.1
45 2 3.0

Uniform 2 3.0
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of fully mechanical approaches; on the reverse, its capacity
to reproduce real properties of natural fracture systems is
possibly limited by an oversimplification of mechanical
rules. We review below the potential limitations.
[84] There is no explicit rule to stop fracture generation.

Currently, the DFN density continues increasing until there
is no more space for fractures to nucleate (from the mini-
mum size lN) or grow. However, we do observe that the den-
sity increases rapidly up to dimensionless time of 0.5, i.e.,
the time necessary for the smallest nuclei to reach the largest
scale. Thereafter the fracture density increase is much
slower. The specific point t0 ~ 0.5 is thus close to a quasi-sta-
tionary regime; at this point, the fracture length distribution
is defined at small length by the free-growth (dilute) regime
(i.e., the stationary length distribution eventually yielded by
the fracture growth law), and at large lengths by the UFM
(dense) regime. After t0 = 0.5, the DFN growth is much
slower than before, since it becomes more and more difficult
to add active nuclei in the system. Finally, the fracture net-
work stops growing when the distance between fractures is
as small as the characteristic nuclei length scale lN. Adding
energy considerations on the fracturing process would be a
possible improvement to the model. In quasi-static fracturing
process (neglecting heat dissipation, wave radiation, and
plastic deformation), the potential energy is partitioned into
elastic deformation and creation of new fracture planes
[Griffith, 1920]. It is thus likely increasing with fracture den-
sity and growth. Studying this energy increase could be use-
ful for determining the eventual final stage of the fracturing
process. Although this issue is beyond a simple DFN model,
it could be useful to find the rule-of-thumb reasons that de-
termine when the fracturing process stops.
[85] The second limitation is relative to nucleation (nuclei

are viewed as “activated” flaws, i.e., potentially growing).
Currently, the model nucleation is uniformly distributed
through space. In reality, nucleation is more likely locally
conditioned by local stress field variations, especially in-
creased in the vicinity of the tips of previous fractures. Since
the UFM regime is defined by fractures large enough to inter-
sect each others, we do not expect a significant consequence

on the model size distribution. However, beyond a certain
level, local stresses may limit the nucleation itself and yield
a natural final stage of the fracture system growth as immature
as those observed for small time evolution (for instance t0 =
0.2 in Figure 5a, which is not far from what is observed for
the San Andreas fault system). In a further work, we aim to
study this process in the same spirit as random-fuse models
[Hansen et al., 1991; Zapperi and Nukala, 2006].
[86] A similar reasoning can be applied to the growth rate

formulation, which is likely proportional to the stress inten-
sity factor K. This entails a dependency of orientation and
growth rate on the local stress field. The calculation of the
local stress field would dramatically reduce the model per-
formance and thus its capacity to simulate complex net-
works, but simple rules can be sought to account either for
the orientation of the remote stress field (case of isolated
fracture growth) or for the vicinity of larger fractures in a
simplified stochastic way. Note, however, that this improve-
ment requires knowing the tectonic (or body) stress field that
occurred during the fracture network growth.
[87] An additional improvement of the model can be done

by considering different stages of the tectonic history if it is
observed that the different fracture families form as a se-
quence in time. This sequential nucleation or growth can
be easily introduced in this modeling framework.
[88] Finally, the fracture disc-shape assumption, which may

be reasonable when fractures are isolated and only growing
with respect to far field stress (isotropic growth), deserves to
be improved when fractures are going to be arrested by others
and then may be subjected to anisotropic growth.
Furthermore, fracture shape, arrest configuration, and fracture
intersection sizes are closely related. The interplay between
these three elements may also have an indirect effect on the
fracture density term dUFM.
[89] In the proposed model, a fracture is stopped tangent

to a blocking fracture, so that the intersection between both
is just a point. In nature, intersections can be larger and form
channels or zones of weakness with consequences on rock
strength and permeability [Abelin et al., 1991]. To our
knowledge, no observations or data analyses are available
to better constrain fracture intersection sizes in 3D. Further
work is required to learn more about the length distribution
of fracture intersections, for instance from a stereological
analysis of intersection patterns observed on detailed 2D
outcrop trace maps. If the fracture intersection is allowed
to be larger than a single point, this will entail a systematic
increase of fracture radius in the UFM regime, and thus an
increase of the fracture density term dUFM. This effect can
be evaluated as follows: according to equation ((14), an in-
crease of all fracture lengths by a coefficient e (l0 = (1 + e)l)
will increase the distribution density by (1 + e)a� 1�1 or
(a�1)e if e<<1. Since a = 4 in the UFM regime, the density
increases is three times the average length increase, which
may be not negligible. Note that the H2OLAB software plat-
form, with which the present numerical modeling is devel-
oped, describes fractures as truncated ellipses. Dealing with
large intersections can thus be easily implemented.
[90] Despite the above mentioned limitations, the proposed

DFN model naturally produces, from very few rules, the
widely observed power-law and even self-similar, density
distributions of natural fracture systems. The obtained density
is consistent with fracture network measurements. Davy et al.

mode A subparallel
mode B subparallel
mode A subperpendicular
mode B subperpendicular

1 10
1

10

7

3

2

2*sin(θ)-13*sin(θ)-1

sin(θ)-1

UFM

Figure 13. Evolution of the UFM density dUFM as a func-
tion of the angular variability θ (see text).
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[2010] has shown that the scaling and density of the UFM
model is consistent with different kinds of fracture systems:
joint and fault systems in different places of Norway
(Hornelen basin [Bour et al., 2002; Odling, 1997]), of Swe-
den (Forsmark, Simpevarp, and Laxemar [Darcel et al.,
2004; Darcel et al., 2009; Fox et al., 2007; La Pointe et al.,
2008; SKB, 2004b; Stephens et al., 2008; Wahlgren et al.,
2008]), and of the San Andreas fault system [Bour and Davy,
1999; Davy, 1993]. Most of the observations on natural frac-
ture systems were made from 2D outcrop mapping, for which
the density terms of the length density distribution was calcu-
lated [Davy et al., 2010]. For Sweden and Norway joint sys-
tems, the UFM regime is well defined above 3–5m, with
the expected 2D power-law length exponent of 3 and an ap-
parent 2D density term varying between 2.2 to 4.5. The 3D-
equivalent density, calculated by applying stereological rules
[Davy et al., 2006b; Piggott, 1997], has been found to vary
between 3 and 5.5 (indicated by a grey-shaded rectangle in
Figure 13 of Davy et al. [2010]) for the Simpevarp [Darcel
et al., 2004] and Forsmark sites [Darcel et al., 2006]. This
range is consistent with both arrest modes A and B, as long
as the orientation variability (equivalent to θ in the previous
paragraph) is larger than 20�–30�. Such range of orientation
anisotropy is currently observed on borehole logs and outcrop
maps. No similar 3D analysis has yet been performed for the
Hornelen basin and San Andreas fault system. A more thor-
ough analysis will require a complete stereological analysis
for each borehole log and outcrop map. This is beyond the
scope of the present study. This work is, however, starting
as part of continuing investigations conducted by the SKB
Company at the Äspö HRL and Forsmark sites.
[91] Because of its particular spatial correlations and inter-

section properties, the application of the present framework
to flow and mechanical modeling may end up in new rela-
tions between DFN geometrical properties (density, scale)
and consecutive flow or mechanical properties. This is likely
to have consequences on flow as illustrated in the very first
calculations presented in Davy et al. [2010]. Another geo-
metrical characteristic of the DFN produced with this model
is that the transition length lc between the dilute and dense/
UFM regimes is actually a characteristic block size for
unfractured domains. Fractures smaller than lc are poorly
connected, and thus hardly define blocks in 3D. In the
UFM regime (fracture length larger than lc), fractures form
an interconnected network, the distance of which between
fractures is about lc. This block size is a critical parameter
for any mechanical study of rock mass (see for instance
[Hoek and Brown, 1997]).
[92] The promising capacity of the UFM model to reflect

geometrical observations finally reinforces the potential of
this model to be also relevant for modeling flow and me-
chanical applications of natural systems. Moreover, the
UFM length distribution, the scaling properties of which
are fully defined, fixes an upper limit of any fracture size dis-
tribution model that cannot be bypassed. Such characteristic
strongly reduces uncertainty in the DFN modeling.

6. Conclusion

[93] In this paper, we aim to improve stochastic DFN
models by developing a method which reproduces the main
stages of fracture evolution while preserving the currently

observed scaling characteristics. The model combines, in a
time-wise process, a spatially uniform nucleation of
fractures, a power-law model of fracture growth and a
growth arrest rule when fracture intersects another larger
one. The latter aspect was firstly described in Davy et al.
[2010]. Thus defined, the generation process naturally cre-
ates internal spatial correlations, together with multiscale
fracture size distributions, producing statistical properties
that are equivalent to those of real fracture systems.
[94] The statistical properties of produced DFNs were an-

alyzed by calculating the density distribution of fracture
length n(l), which describes the relationship between frac-
ture length and density. n(l) can be divided in three regions:
for small lengths, it is mainly controlled by the size distribu-
tion of nuclei; for intermediate lengths, it depends on both
the fracture growth law and nucleation rate, converging to
a well-defined power law with a scaling exponent equal to
minus the growth rate exponent. At large lengths, n(l) con-
verges to the self-similar UFM regime defined in Davy
et al. [2010], where the scaling exponent is �(D+ 1), with
D the (possibly fractal) topological dimension of the net-
work centres. The dimensionless density term, dUFM, is a
function of the fracture (thus nuclei) orientation distribution,
and of the details of the arrest rule.
[95] The relative importance of the three above-mentioned

regimes evolves throughout the generation process. At earli-
est times, most of the fractures belong to the initial nuclei
size distribution. The total fracture mass (i.e., sum of fracture
areas) is growing at constant rate up to the time necessary
for the smallest nuclei to reach the largest scale. At this inter-
mediate stage, for which no fracture can grow freely anymore,
n(l) follows both the stationary free-growing regime and the
dense/UFM, respectively, below and above a transition
scale. After that time, if more nuclei are activated, the frac-
ture mass goes on increasing (but at a much slower rate),
and the UFM/dense regime tends to spread toward smaller
and smaller fracture lengths.
[96] The UFM/dense regime is the most striking feature of

produced DFN. While fractures are growing, it spreads out
from the largest length (about the system size) to smaller
and smaller lengths. The scaling exponent is uniquely de-
fined, but the density term depends on the mode of arrest
(factor 2/3 between mode A and mode B) and on the
eventual fracture orientation distribution. The UFM density
distribution is in good accordance with several field cases
(especially for the Laxemar and Forsmark sites in Sweden
and Hornelen basin in Norway). Finally, this model strongly
reduces uncertainties inherent to any DFN modeling exer-
cise. The UFM regime is also an upper limit of any fracture
length distribution where T-intersections prevail (which
seems to be the general rule in fracture systems). This brings
an interesting constrain to any DFN modeling.
[97] Improving DFN modeling is of primary importance to

improve flow and mechanical modeling of underground sys-
tems, especially in a context where data are very scarce with
regard to the fracture network complexity. Identifying some
basic rules of fracture organization as we do in this paper is
an interesting way to come closer to geological complexity.
The good adequacy of the UFM model with simplified me-
chanical rules and with field data observations reinforces the
potential of this model to be also relevant for the application
to flow and mechanical modeling of natural fractured systems.
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