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Latest Ordovician-earliest Silurian Tanezzuft Formation shales recovered from core material of the shallow borehole JA-2 drilled in Jebel Asba at the eastern margin of the Kufra Basin, southeastern Libya, yielded well-diversified palynomorph assemblages with transparent and brownish to yellowish vesicles and organic matter (visual kerogen Type 1 and 2) from depth interval 46.20 to 67.82 m. In addition, miospores including cryptospores, and Tasmanites sp.

("Tasmanites with nodules"), scolecodonts, and a stratigraphically significant palaeo-marker, the enigmatic, tubular organic structure Tortotubus protuberans, were also recorded frequently in most samples. Kerogen colour based on miospores (TAI <3) and chitinozoan reflectance indicate an immature facies for oil generation. The two uppermost samples (from 33.33 m and 46.20 m depths) and the lowermost ones (from 67.92 to 73.21 m depth) contain rare palynomorphs and other organic remains and have been partially affected by oxidation.

Furthermore, palynological and palynofacies analysis was carried out on cuttings from an old well (UN-REMSA well), ca. 530 m towards the NNE from well JA-2. The composition of the organic residue is similar in both wells. However, the UN-REMSA well yields fairly numerous chitinozoans, scolecodonts and biofilms but lacks the "thread-like structures" and "Tasmanites with nodules" observed in well JA-2.

. Based on correlation with chitinozoan-bearing strata around the Ordovician-Silurian boundary, the analysed samples from well JA-2 and from the UN-REMSA well are regarded as post-glacial, but still of either latest Hirnantian age, or at least no younger than earliest Rhuddanian. A well-diversified acritarch, miospore and cryptospore assemblage recorded in well JA-2 supports a marginal marine (nearshore) depositional environment. This assemblage is no older than earliest Rhuddanian yet the latest Hirnantian age of the assemblage cannot be completely ruled out as our current knowledge on the post-glacial, latest Hirnantian acritarch and miospore assemblages is poorly documented in North Africa.

Introduction

The precise location of the source rock horizons close to the Ordovician-Silurian boundary is an important question for hydrocarbon exploration in northern Gondwana regions. In areas of anoxic geological setting, typical "hot shale" horizons are easily identified by their peculiar lithology (e.g., black shales), a sharp positive excursion of the gamma-ray curve in the well logs and high total organic carbon (TOC) content (e.g., [START_REF] Lüning | Lower Silurian 'hot shales' in North Africa and Arabia: regional distribution and depositional model[END_REF][START_REF] Lüning | Anatomy of a world-class source rock: Distribution and depositional model of Silurian organic-rich shales in Jordan and implications for hydrocarbon potential[END_REF][START_REF] Lüning | Origin, sequence stratigraphy, and depositional environment of an Upper Ordovician (Hirnantian) deglacial black shale, Jordan-Discussion[END_REF]. These characteristics can also be determined by the visual nature and the abundance of the organic matter including palynomorphs, animal remains and associated amorphous organic matter (AOM).

The main goal of the present study is to record for the first time moderately rich to rich assemblages of acritarchs, chitinozoans, miospores and cryptospores recovered from well JA-2 in Jebel Asba, Kufra Basin, drilled by CASP (formerly known as Cambridge Arctic Shelf Programme) in April-May 2009 (Fig. 1).

Material and methods

Sampling

Core samples from well JA-2 (geographic coordinates: 22°35'49.31''N, 24°7'57.10''E) drilled in the Jebel Asba at the eastern margin of the Kufra Basin (Figs 1 and2) and cuttings (single sample SJS0001) from a pile of drill cuttings surrounding the borehole collar of an abandoned well (geographic coordinates: 22°36'4.52''N, 24°8'4.67''E), apparently drilled by REMSA (Repsol Exploración Murzuq S.A.), some 530 m NNE of well JA-2 have been investigated for acritarchs and chitinozoans. However, we are not certain that the abandoned well was drilled by REMSA, and therefore we name it UN-REMSA well with UN standing for uncertain. Before starting the chemical processes, each core sample was observed under the binocular microscope in order to collect information on its grain size, petrology, and possible macrofossils. The degree of weathering of the rock sample was also evaluated as oxidation of the rock precludes the preservation of the organic matter (Table 1). This information is useful to interpret low chitinozoan abundances: low abundance in non-weathered and low-energy sediments is mainly caused by environmental conditions and the lack of palynomorphs in weathered or high-energy deposits, respectively, are due to oxidation of the organic matter, and to non-deposition of the lighter particles such as acritarchs or chitinozoans.

In well JA-2 (Fig. 2), the lowermost core sample at 73.21 m depth is grey shale. Samples from 67.97 to 69.12 m show evidence of weathering (e.g., oxidation of pyrite crystals; brownish micas) in very fine light coloured sandstone and in whitish (altered?) shale. The uppermost processed samples (33.33 m and 46.20 m) also display evidence of weathering (i.e. beige colour of the silty shale and oxidation of the organic matter). This alternation most likely corresponds to the deepest part of the sub-Recent weathering profile developed in many Saharan regions. In the interval 46.60-67.59 m, the lithology is fairly constant and ranges from grey and greenish shale to grey siltstone with micas. A lithological change is noticed between 67.59 and 67.82 m with the occurrence of very fine sandstone. However, for the microfossils, a major change occurs at 67.97 m with a dramatic drop in abundance of the chitinozoans, possibly related to either the oxidation, noticed in the core samples (Table 1), or to temporary emersion (e.g., during the latest Hirnantian-earliest Rhuddanian post-glacial rebound), which permitted the weathering of the older strata. Ground water circulation in a minor fault also might have caused oxidation of the rock and of its organic matter between 67.82 and 69.12 m. Because no biostratigraphical information is available on the underlying strata, it is not possible to favour one or the other of these hypotheses.

The cutting sample SJS0001 from the UN-REMSA well is susceptible to caving. However, because no strong lithological disparity was noticed in the cuttings collected and investigated, the drilled horizon represents likely dark grey silty shale, which is the most common component of the sample.

Sample preparation

The core material was split into equal parts and prepared separately for acritarch and chitinozoan analysis. For the acritarchs, the samples were treated according to standard palynological preparation methods. A zinc bromide solution (specific gravity 2 g cm -3 ) was used for separation of organic matter, which was then screened using a 15 μm mesh for washing in order to separate the larger organic-walled microfossils. If necessary, samples were also treated with nitric acid.

For chitinozoans, the processing technique developed in the palynological laboratory of Rennes University (see [START_REF] Paris | Palynological and palynofacies analysis of early Silurian shales from borehole CDEG-2a in Dor el Gussa, eastern Murzuq Basin, Libya[END_REF]) was adopted. The palynological slides corresponding to the illustrated material on Plates I to V are housed in the CASP Palaeontological Collection in Cambridge, and the palynological slides corresponding to the illustrated material on Plates VI to XII are housed in the collection of Rennes University under the repository numbers IGR 72951 to 72995.

Palynological results

Marine acritarchs, leiosphaerids, Tasmanites, land-derived plant elements (cryptospores, miospores), and "thread-like structures" possibly related to cyanobacteria or to fungi in association with nearshore chitinozoans, scolecodonts and eurypterid remains are reported in this study (Tables 1 and2). Large organic "blades" or "sheets", called "biofilm", are also present in the organic residues.

Marine phytoplankton and land-derived plant element assemblages

Species from well JA-2

The interval 33.33-69.12 m yielded rich to moderately rich assemblages of acritarchs (Plates I to IV) dominated by Leiosphaeridia spp. The presence of Eupoikilofusa striatifera at 48.18 m, Moyeria cabbotti at 67.82 m and Leiosphaeridia acerscrabrella suggest an age no older than Rhuddanian for this interval. Other accessory taxa present in the studied core samples include Buedingiisphaeridium sp., Diexallophasis denticulata, Filisphaeridium sp., Geron cf. gracilis, Tunisphaeiridium sp., Veryhachium europaeum, V. lairdii and V. trispinosum (Table 2).

The assemblage is dominated by miospores in the upper part of the interval 46.60-53.07 m. Tetrads and other cryptospores are dominant in the interval 48.18-67.82 m. Land-derived spore tetrads are recorded in residues from various depths (see Tables 1 and3 A few scolecodonts identified to the generic level (Plate XII,(1)(2)17) are present in the upper part of the core (Table 1). These jaws of marine worms (polychaetes) occur in nearshore as well as in pelagic deposits. Unusual thread-like and branched structures (Plate IX,1,(6)(7)(8)Plate XII,[START_REF] Hérissé | Core sample at 67.05 m depth; IGR 72974. Elongate and slender specimens with a weakly expressed supra-margin constriction[END_REF]14,18) of unknown biological affinities (plant, cyanobacteria or fungi?) are also present in the organic residues (Tables 1 and3). They are assigned to Tortotubus protuberans Johnson, 1985, which seems restricted to latest Ordovician-earliest Llandovery nearshore deposits in northern Gondwana localities (e.g., Chad, Libya, Oman, Saudi Arabia) and North America (Pennsylvania).

One of the peculiar characteristics of the palynological residues of JA-2 is the occurrence of large "blades" or "sheets" (up to 1 mm thick) of amorphous organic matter (Plate IX,(2)(3)(4)(5)10;Plate XII,(15)(16). The chitinozoans and other palynomorphs are often adhesively associated with amorphous organic matter (Plate IX,[START_REF] Hérissé | Core sample at 67.05 m depth; IGR 72974. Elongate and slender specimens with a weakly expressed supra-margin constriction[END_REF]Plate XI,(14)(15)17) as result of which the processes of the Ancyrochitininae break frequently during sorting of the vesicles. These organic sheets are composed of agglomerated minute particles of several μm in length and less than one μm thick (Plate IX,3 and 10). Pyrite framboids with 10 μm in diameter are recorded, with the exception of a sole specimen of about 500 nm. Under transmitted light microscope, they appear as tiny black spheres in the brownish to yellowish organic sheets. After oxidation with HNO 3 , the pyrite is dissolved and the casts of the framboids are visible (Plate IX,5 and 10). The organic sheets are here called "biofilms", produced by algae or by bacteria. The organic matter in the northern Gondwana "hot shale" has a similar structure with minute "flakes" of organic particles adhesively clumped with the organic-walled microfossils. However, in the JA-2 well samples, the AOM is concentrated in films coating the bedding plane, whereas in the classical "hot shale" this organic matter is a major component of the sediment (up to 30% in some cases). This organic matter may represent remnants of algae.

Species from the UN-REMSA well

Cutting samples (SJS0001) from the UN-REMSA well, located some 530 m NNE of JA-2, yielded sparse acritarchs including Leiosphaeridia sp. and Eupoikilofusa striatifera (Table 2).

Land-derived palynomorphs include Ambitisporites dilutus and a spore tetrad along with Tortotubus protuberance (Table 3). These taxa are also present in the core samples from JA-2.

The sediment was deposited in a shallow marine environment. The sample is rich in AOM with TAI <3, suggesting an immature kerogen with poor source potential.

Chitinozoan assemblages

Species from well JA-2

Most of the processed samples, except the two uppermost (33.33 and 46.20 m) and the lowermost interval (67.97-73.21 m), which are likely to be affected by oxidation (see above), yield well-preserved chitinozoan assemblages with transparent and brownish to yellowish vesicles (Plates X-XI). They are poorly diversified and frequently monospecific assemblages (see Fig. 4). However, the chitinozoan abundance is fairly high as it exceeds 100 specimens per gram of rock in half of the productive samples, and even reaches 430 specimens per gram of rock at 57.58 m (Fig. 2; Table 1). In the other samples, the chitinozoan abundance ranges around 60 to 80 specimens per gram of rock, except at 60.23 and 62.34 m depth where the abundance drops significantly with 23 and 5 specimens respectively per gram of rock. It is worth noting that eurypterid remains (Plate XII,(3)(4)(5)(6) and Tasmanites tzadiensis [START_REF] Hérissé | Late Ordovician-earliest Silurian palynomorphs from northern Chad and correlation with contemporaneous deposits of southeastern Libya[END_REF] (Plate XII,(7)(8)(11)(12)(13) are associated in these two samples (Table 1). This suggests shallower environments with prominent agitation in which the sediment (siltstones with large micas) becomes more mobile so that a selective sorting of the lighter particles occurs.

All the investigated samples, except those from 67.59-67.97 and 73.21 m, are dominated by a single species, Euconochitina moussegoudaensis Paris (in Le [START_REF] Hérissé | Late Ordovician-earliest Silurian palynomorphs from northern Chad and correlation with contemporaneous deposits of southeastern Libya[END_REF], which represents 95 to 100 % of the recovered assemblages (Fig. 4). This species dominates also the chitinozoan assemblages recorded in the Moussegouda shallow core in NW Chad (Le Hérissé et al., 2013) from grey silty shale intervals as in well JA-2. Furthermore, it has been described from the Late Ordovician of Eastern Alborz in northern Iran [START_REF] Ghavidel-Syooki | Palynostratigraphy and palaeogeography of the Upper Ordovician Gorgan schists (southeastern Caspian Sea), Eastern Alborz mountain ranges, northern Iran[END_REF].

E. moussegoudaensis is a simple form (see diagnosis and description by F. Paris in Le Hérissé et al. 2013 and Plate VI, 4a-b, 8a-b;Plate VII, 5;Plate VIII, 3a-b, 4, 5a-b;Plate X, 1, 5-8, 10, 12, 14-16, 18;Plate XI, 16, 18-20). Its conical chamber has gently tapering flanks and a flat to slightly convex bottom, which may be variously affected during the flattening (folded inside or outside the chamber giving a more or less sharp aspect to the margin; see Plate X). No mucron or basal scar has been observed on the available material. The sub-cylindrical neck represents one third or less of the vesicle length, which ranges from ca. 100 to 200 μm. The weak flexure is located at the base of prosome, near the junction of the rica on the chamber inner wall (only visible on the transmitted light photos; Plate X). The wall surface is practically smooth, but at high magnification, SEM observation reveals very tiny granules (Plate VI,4b), which are better expressed on, or near the margin (Plate VI,8b). This species has no highly distinctive features (i.e., ornamentation). However, it can be identified on large populations allowing the appraisal of the intraspecific morphological variations.

During the present study, elongate specimens sharing most of the characters of E. moussegoudaensis Paris have been observed together with the typical form. These slender individuals are tentatively separated from the main morphotype. They are referred to as Euconochitina cf. moussegoudaensis Paris in Fig. 4 and on Plate X, [2][3][START_REF] Hérissé | Core sample at 67.05 m depth; IGR 72974. Elongate and slender specimens with a weakly expressed supra-margin constriction[END_REF]11,[19][20]3,5,11. The vesicle length exceeds 200 μm and may reach 230 μm. A weak constriction is visible at a short distance above the margin (e.g., Plate X,2,[19][20]. It is not clear yet if these elongate and slender vesicles correspond to the end forms within a polymorphic species or if they represent a different species, with a stratigraphical range partly overlapping the total range of E. moussegoudaensis Paris.

Besides the dominating E. moussegoudaensis Paris are subordinate species restricted to one or two samples. Calpichitina sp. (Plate X,13) is restricted to one specimen recorded at 66.85 m depth. The membranous remains visible on the margin are most likely residues of the biofilm somehow glue the vesicle, and not part of a carina as in Pterochitina deichaii.

Two species of Spinachitina -S. oulebsiri [START_REF] Paris | The effects of the final stages of the Late Ordovician glaciation on marine palynomorphs (chitinozoans, acritarchs, leiospheres) in well Nl-2 (NE Algerian Sahara)[END_REF] and Spinachitina verniersi Vandenbroucke in [START_REF] Vandenbroucke | Chitinozoans and the age of the Soom Shale, an Ordovician black shale Lagerstätte, South Africa[END_REF] -are recorded in well JA-2. For the former, the most abundant population is from 67.59 m (Fig. 4) but a few individuals are also recorded at 67.21 and 67.40 m. Spinachitina oulebsiri (Plate VII,6,Plate XI,1,(6)(7)(8)[START_REF] Hérissé | Core sample at 67.05 m depth; IGR 72974. Elongate and slender specimens with a weakly expressed supra-margin constriction[END_REF](10) has a conical chamber and a rather short sub-cylindrical neck (about one third of the vesicle length) ended with a denticulate aperture (Plate VII,9c). The margin bears a crown of ca. 20 slender conical spines of up to 6 μm length (Plate VII,1b,3b,4b and 9b). Butcher (2009, p. 600) included S. oulebsiri in the synonymy list of S. fragilis, which is the index species for the first Silurian chitinozoan biozone [START_REF] Verniers | A global Chitinozoa biozonation for the Silurian[END_REF]. Even if they have close silhouettes, we do not consider the two species as synonyms. This is in agreement with [START_REF] Vandenbroucke | Chitinozoans and the age of the Soom Shale, an Ordovician black shale Lagerstätte, South Africa[END_REF] who reported S. oulebsiri from South Africa (see below). Indeed, S. oulebsiri has not the conspicuous shoulder of the specimens Butcher assigned to S. fragilis from depth 42.50 m in BG-14 in Jordan. Moreover, the populations of S. oulebsiri known in various localities from Algeria [START_REF] Paris | The effects of the final stages of the Late Ordovician glaciation on marine palynomorphs (chitinozoans, acritarchs, leiospheres) in well Nl-2 (NE Algerian Sahara)[END_REF]F. Paris, unpublished data) and South Africa [START_REF] Vandenbroucke | Chitinozoans and the age of the Soom Shale, an Ordovician black shale Lagerstätte, South Africa[END_REF] do not include large specimens (>250 μm) as known in S. fragilis. Based on the discussion below, S. oulebsiri ranges from the late Hirnantian to possibly earliest Rhuddanian (see Fig. 5).

Poorly preserved individuals from 62.34 m are tentatively referred to S. sp. aff. oulebsiri.

In well JA-2 (Fig. 4), Spinachitina verniersi Vandenbroucke (in Vandenbroucke et al., 2009) (Plate VI,Plate VII, is fairly abundant at 67.59 m and is represented by a few individuals at 65.74 m (see Fig. 4). This species, first described from the Soom Shale in South Africa [START_REF] Vandenbroucke | Chitinozoans and the age of the Soom Shale, an Ordovician black shale Lagerstätte, South Africa[END_REF], has a vesicle very close to that of S. oulebsiri and even to that of E. moussegoudaensis Paris. However, it is clearly distinguished from S. oulebsiri by the design of the crown of ornaments running on its margin (more densely spaced and irregular granules or blunt spines) (see Plate VII,2a). Closely related specimens (S. cf. verniersi; Plate XI,4) or more questionable individuals referred to as ?S. verniersi (Plate VI,Plate VII,7) due to a poor preservation of the crown on the margin are scattered from 55.53 m depth to 67.82 m depth in well JA-2 (Fig. 4). S. verniersi does not benefit yet from an accurate independent calibration by means of graptolites. However, in South Africa its FAD (First Appearance Datum) is in the Soom Shale Formation, i.e. just above the last Hirnantian glacial deposits (see discussion in [START_REF] Vandenbroucke | Chitinozoans and the age of the Soom Shale, an Ordovician black shale Lagerstätte, South Africa[END_REF]. In Algeria, it also coexists with S. oulebsiri in the M'Kratta Formation above the Hirnantian diamictites of the Hassi el Hadjar Formation (see discussion in [START_REF] Paris | The effects of the final stages of the Late Ordovician glaciation on marine palynomorphs (chitinozoans, acritarchs, leiospheres) in well Nl-2 (NE Algerian Sahara)[END_REF]. S. verniersi is also recorded in the cuttings from the UN-REMSA well (Plate VIII, where it occurs in association with E. moussegoudaensis Paris.

The Ancyrochitininae, abundant at 67.82 m depth, are present sporadically. Plectochitina sp. (Fig. 4) is another form kept in open nomenclature because of its poor preservation. They belong possibly to Plectochitina cf. longispina [START_REF] Achab | Les chitinozoaires de l'Ordovicien supérieur (Formations de Vauréal et d'Ellis Bay) de l'ïle d'Anticosti[END_REF], which is the dominating species at 67.82 m depth (Plate VI,5,10;Plate XI,(13)(14)(15)17). These specimens are assigned to Plectochitina rather than to Ancyrochitina because of the cell-like structure of their long processes (Plate X,15 and 17). The individuals recorded at 67.82 m depth are rather small, e.g. vesicle length ranging from 100 to 120 μm. The length of the processes is about 40 to 60 μm.

These values are very close to the measurements of Ancyrochitina longispina described by [START_REF] Achab | Les chitinozoaires de l'Ordovicien supérieur (Formations de Vauréal et d'Ellis Bay) de l'ïle d'Anticosti[END_REF] in the Ellis Bay Formation of Anticosti Island, Eastern Canada. The Libyan and the Canadian specimens have processes with similar branching. The main difference between the two populations is the less developed branching of the Libyan individuals (2 times branching as a maximum). According to [START_REF] Achab | Les chitinozoaires de l'Ordovicien supérieur (Formations de Vauréal et d'Ellis Bay) de l'ïle d'Anticosti[END_REF] and [START_REF] Soufiane | Chitinozoan zonation of the Late Ordovician and the Early Silurian of the Island of Anticosti, Québec, Canada[END_REF], A. longispina is restricted to the lower member of the Ellis Bay Formation assigned to the early Hirnantian (i.e. extraordinarius graptolite Zone) by [START_REF] Melchin | Restudy of some Ordovician-Silurian boundary graptolites from Anticosti Island, Canada, and their biostratigraphic significance[END_REF]. Recently, [START_REF] Butcher | Early Llandovery chitinozoans from Jordan[END_REF] published a form he called Ancyrochitina sp. C, which displays most of the features of the individuals identified here as Plectochitina cf. longispina, i.e. short vesicle. However, the form illustrated by [START_REF] Butcher | Early Llandovery chitinozoans from Jordan[END_REF] from BG-14 in Jordan is from the upper ascensus-acuminatus Biozone (early Rhuddanian). Obviously, there is an urgent need of clarification of the Ancyrochitininae close to the Ordovician-Silurian boundary, especially the forms with long processes.

Species from the UN-REMSA well

The composition of its organic residue is very similar to most of the residues recovered from well JA-2. It includes fairly numerous chitinozoans, scolecodonts and biofilms. However, neither "thread-like structures", nor "Tasmanites with nodules" (i.e. Tasmanites tzadiensis Le Hérissé in Le [START_REF] Hérissé | Late Ordovician-earliest Silurian palynomorphs from northern Chad and correlation with contemporaneous deposits of southeastern Libya[END_REF] 

Kerogen analysis and thermal maturity

Visual kerogen analysis using transmitted light microscopy was carried out on 23 samples from the interval 33.33-73.21 m (Table 4). The analysis results are summarised in Figure 2 Based on the colour of the miospores, the thermal alteration index (TAI) [START_REF] Staplin | Sedimentary organic matter, organic metamorphism, and oil and gas occurrences[END_REF] is less than 3, indicating an immature palynofacies for oil generation. Acritarchs and cryptospores are consistently pale and light yellow in colour, which probably indicates a lack of thermal alteration. Chitinozoan reflectance yielded R ch values of about 0.6% (Table 5) which equals vitrinite reflectance (R v ) values of about 0.4% when using the equation of [START_REF] Tricker | Chitinozoan reflectance: a Lower Palaeozoic thermal maturity indicator[END_REF]. Sediment with R v of 0.4% is immature for oil generation, supporting the TAI interpretation.

Biostratigraphy, palaeoecology and regional correlation

Marine phytoplankton and land-derived plant element assemblages

The acritarchs assemblage is dominated by thin-walled Leiosphaeridia spp. often in clusters. [START_REF] Dorning | Silurian acritarch distribution in the Ludlovian shelf sea of South Wales and the Welsh Borderland[END_REF] found dominance of thin-walled leiosphaerids in the shallow marine Silurian (Ludlovian) sequence of the Welsh Borderland. The presence of land-derived vitrinite-like macerals and miospores-cryptospores is also indicative of a marginal marine (nearshore) depositional environment for the entire sequence of the studied well JA-2, although the interval 33.33-60.23 m does seem much closer to land with the dominance of land-derived plant remains.

In the late Silurian of the Ghadamis Basin, Al-Ameri (1983) erected six distinct types of palynofacies of which four contained acritarchs indicating increasing distance from the shoreline. [START_REF] Hill | Biostratigraphy, palynofacies and provincialism of Late Ordovician-Early Silurian acritarchs from northeast Libya[END_REF] recognised two Llandoverian palynofacies assemblages in NE Libya. Their southern assemblage located in southern Cyrenaica, north of the present study area, was also dominated by leiosphaerids. [START_REF] Hill | Biostratigraphy, palynofacies and provincialism of Late Ordovician-Early Silurian acritarchs from northeast Libya[END_REF] consider their acritarch assemblage comparable most closely to Palynofacies 3 of Al-Ameri (1983), which is interpreted as inner neritic.

The studied assemblage is also comparable to the land-derived palynoflora (miosporescryptospores and organic structures) of early Silurian (Rhuddanian) age from the Tuscarora Formation in central Pennsylvania, USA (Johnson, 1985). Based on these comparisons the present assemblage was probably deposited closer to the shoreline.

Libya

Acritarch assemblages recorded in well JA-2 are similar to those from other basins in North Africa, the Middle East, and North America (Fig. 3). Kufra Basin [START_REF] Grignani | Palaeozoic and Mesozoic subsurface palynostratigraphy in the Al Kufrah Basin, Libya[END_REF] established a zonation of the early Silurian Assemblage C based on the chitinozoan Ancyrochitina ancyrea. However, the authors reported no early Silurian acritarchs.

The marker acritarchs such as Villosacapsula irrorata, V. setosapellicula and Veryhachium subglobosum restricted to the Late Ordovician (Caradoc-Ashgill) were reported by [START_REF] Grignani | Palaeozoic and Mesozoic subsurface palynostratigraphy in the Al Kufrah Basin, Libya[END_REF] and by [START_REF] Thusu | Sub-surface Lower Paleozoic palynostratigraphy in the Kufra Basin, Libya. Kufra Basin Project[END_REF] Northeast Libya, Cyrenaica [START_REF] Hill | Palynostratigraphy of North-East Libya[END_REF], [START_REF] Hill | Biostratigraphy, palynofacies and provincialism of Late Ordovician-Early Silurian acritarchs from northeast Libya[END_REF] and [START_REF] Richardson | Late Ordovician and Early Silurian cryptospores and miospores from northeast Libya[END_REF] 

North America

The studied assemblage in well JA-2 is closely comparable with the early Silurian (Rhuddanian) assemblage from the Tuscarora Formation in central Pennsylvania, USA (Johnson, 1985).

Common species include L. acerscabrella, T. mediensis, A. dilutus, Rugosphaera cf. tuscarorensis and Tortotubus protuberans.

Chitinozoan assemblages

Available data on chitinozoans from the Ordovician-Silurian boundary increased significantly during the last ten years with the work of [START_REF] Bourahrouh | Chitinozoaires et Palynomorphes de l'Ordovicien supérieur Nordgondwanien[END_REF] (data on Algeria, Morocco, western France and Czech Republic) and the papers of [START_REF] Vandenbroucke | Chitinozoans and the age of the Soom Shale, an Ordovician black shale Lagerstätte, South Africa[END_REF] on the chitinozoans from the Soom Shale of South Africa, and of [START_REF] Butcher | Early Llandovery chitinozoans from Jordan[END_REF] on those of the Mudawwara Shale Formation in Jordan. A few new species are erected in these contributions. However, an extensive taxonomical study of many undescribed new forms from the Late Ordovician-early Silurian of northern Gondwana regions, based on large populations, is now urgently needed.

Independent biostratigraphical control by means of graptolites is now available for some chitinozoan-bearing sections, e.g. Nseirat section, Mauritania [START_REF] Underwood | High palaeolatitude (Hodh, Mauritania) recovery of graptolite faunas after the Hirnantian (end Ordovician) extinction event[END_REF][START_REF] Legrand | Faunal specificity, endemism and paleobiogeography: the post-glacial (Hirnantian-early Rhuddanian) graptolite fauna of the North-African border of Gondwana: a case study[END_REF], Jordan [START_REF] Lüning | Origin, sequence stratigraphy, and depositional environment of an Upper Ordovician (Hirnantian) deglacial black shale, Jordan-Discussion[END_REF][START_REF] Loydell | Graptolites from the Upper Ordovician and Lower Silurian of Jordan[END_REF][START_REF] Loydell | Graptolite biostratigraphy of the E1-NC174 core, Rhuddanian (lower Llandovery, Silurian), Murzuq Basin (Libya)[END_REF], Les Fresnaies section, southern Brittany, France [START_REF] Piçarra | Graptolite faunas of the Llandovery "phtanites" at Les Fresnaies (Chalonnes-sur-Loire, southeastern Armorican Massif): Palaeontology and biostratigraphy[END_REF], and Hlasna Treban, Czech Republic [START_REF] Štorch | The basal Silurian Akidograptus ascensus-Parakidograptus acuminatus Biozone in peri-Gondwana Europe: graptolite assemblages, stratigraphical ranges and palaeobiogeography[END_REF][START_REF] Štorch | The Hirnantian graptolites Normalograptus persculptus and 'Glyptograptus' bohemicus: stratigraphical consequences of their synonymy[END_REF]. All these data now allow a reassessment of the chitinozoan assemblages formerly described in NE Libya by [START_REF] Molyneux | Palynostratigraphy of North-East Libya[END_REF] and by [START_REF] Paris | Late Ordovician and Early Silurian chitinozoans from central and southern Cyrenaica[END_REF].

The occurrence of chitinozoans throughout the penetrated sequence in JA-2 (except the barren lowermost samples; see above) clearly indicates a marine deposit. The rather low diversity of the recorded assemblages, in spite of high abundance (up to 415 specimens per gram of rock), is compatible with deposition in a rather proximal setting to the shoreline. This is consistent also with the occurrence of land-derived cryptospores and miospores in association with vitrinite-like organic matter in the residues. The presence of eurypterids (Plate XII,(3)(4)(5)(6) is also in favour of environments not very far from the shoreline as these animals are regarded as nearshore (e.g., [START_REF] Jones | Upper Silurian eurypterids from the Leopold Formation, Somerset Island, Arctic Canada[END_REF], and in some cases occasionally terrestrial organisms (especially in the late Silurian) (e.g., [START_REF] Braddy | Eurypterid palaeoecology: palaeobiological, ichnological and comparative evidence for a 'mass-moult-mate' hypothesis[END_REF]. The occurrence of Tortotubus protuberans (Plate XII,[START_REF] Hérissé | Core sample at 67.05 m depth; IGR 72974. Elongate and slender specimens with a weakly expressed supra-margin constriction[END_REF]14,18) provides an additional indication of deposition fairly close to the shoreline, as this enigmatic microfossil is usually reported from shallow to terrestrial environments at the Ordovician-Silurian boundary (e.g., [START_REF] Hérissé | Late Ordovician-earliest Silurian palynomorphs from northern Chad and correlation with contemporaneous deposits of southeastern Libya[END_REF].

Ordovician-Silurian boundary

The definition of the base of the Silurian, and thus of the Rhuddanian Stage is a critical point for the calibration of the latest Ordovician-earliest Silurian chitinozoan assemblages. The Ordovician-Silurian boundary first moved from its historical position at the base of the persculptus Biozone, to the base of the succeeding acuminatus Biozone, with the GSSP of the base of the Silurian defined at Dob's Linn in Scotland (see [START_REF] Williams | Stratotypes, 4. The Ordovician-Silurian boundary at Dob's Linn, southern Scotland[END_REF]. The basal Silurian acuminatus Biozone at Dob's Linn was subsequently subdivided into a lower Akidograptus ascensus Biozone and a higher, more restricted Parakidograptus acuminatus Biozone [START_REF] Melchin | A restudy of the Akidograptine graptolites from Dob' Linn and a proposed redefined zonation of the Silurian stratotype[END_REF]. As a consequence, the base of the Silurian (base of the Rhuddanian) is now defined by the first appearance of A. ascensus. This definition was ratified by the International Subcomission on Silurian Stratigraphy (2007). Moreover, recent revisions of graptolites from the ascensus-acuminatus Biozone (e.g., [START_REF] Loydell | Graptolites from the Upper Ordovician and Lower Silurian of Jordan[END_REF][START_REF] Loydell | Graptolite biostratigraphy of the E1-NC174 core, Rhuddanian (lower Llandovery, Silurian), Murzuq Basin (Libya)[END_REF], and references therein) confirm the three-fold divisions of this biozone by Štorch (1996) into lower, middle and upper subzones. In this scheme (see Loydell, 2007, p. 10), A. ascensus ranges in the lower and the middle subzones. All these successive changes had consequences on the accurate dating of the chitinozoan biozones around the Ordovician-Silurian boundary, as there are no direct ties with the GSSP at Dob's Linn (no workable chitinozoan assemblages are available yet; see [START_REF] Verniers | Chitinozoan biostratigraphy in the Dob's Linn Ordovician-Silurian GSSP, Southern Uplands, Scotland[END_REF]. [START_REF] Delabroye | The end-Ordovician glaciation and the Hirnantian Stage: global review and questions about Late Ordovician event stratigraphy[END_REF] briefly reviewed the biostratigraphical inconsistencies persisting in the main diagnostic fossil groups close to the Ordovician-Silurian boundary.

Chronostratigraphical calibration of the Hirnantian and Rhuddanian chitinozoan biozones

Continuous chitinozoan-bearing strata of latest Ordovician to early Silurian age, i.e. not disturbed by Hirnantian glacial events, are very rare in northern Gondwana regions (including peri-Gondwana Europe, sensu Štorch, 1996). At a few localities this boundary can be located with the greatest precision, for example, in the Nseirat section in the Hodh area (Mauritania), which yielded associated abundant graptolites [START_REF] Underwood | High palaeolatitude (Hodh, Mauritania) recovery of graptolite faunas after the Hirnantian (end Ordovician) extinction event[END_REF][START_REF] Legrand | Faunal specificity, endemism and paleobiogeography: the post-glacial (Hirnantian-early Rhuddanian) graptolite fauna of the North-African border of Gondwana: a case study[END_REF] and chitinozoans [START_REF] Paris | Découverte de chitinozoaires à la limite Ordovicien-Silurien en Mauritanie; implications paléogéographiques[END_REF]F. Paris, unpublished data). The Hlasna Treban section in the Prague Basin (Czech Republic) also yielded well studied graptolites [START_REF] Štorch | The basal Silurian Akidograptus ascensus-Parakidograptus acuminatus Biozone in peri-Gondwana Europe: graptolite assemblages, stratigraphical ranges and palaeobiogeography[END_REF][START_REF] Štorch | The Hirnantian graptolites Normalograptus persculptus and 'Glyptograptus' bohemicus: stratigraphical consequences of their synonymy[END_REF] and chitinozoan data [START_REF] Dufka | Chitinozoans and acritarchs from the Ordovician-Silurian boundary of the Prague Basin, Czech Republic[END_REF][START_REF] Bourahrouh | Chitinozoaires et Palynomorphes de l'Ordovicien supérieur Nordgondwanien[END_REF]. Another section is at les Fresnaies, Ancenis Basin, western France, where Hirnantian chitinozoan-bearing diamictites [START_REF] Bourahrouh | Chitinozoaires et Palynomorphes de l'Ordovicien supérieur Nordgondwanien[END_REF]F. Paris, unpublished data) are overlain by Rhuddanian black shale with associated graptolites and chitinozoans [START_REF] Bourahrouh | Chitinozoaires et Palynomorphes de l'Ordovicien supérieur Nordgondwanien[END_REF][START_REF] Piçarra | Le passage Ordovicien-Silurien et la partie inférieure du Silurien (Sud-Est du Massif Armoricain, France)[END_REF][START_REF] Piçarra | Graptolite faunas of the Llandovery "phtanites" at Les Fresnaies (Chalonnes-sur-Loire, southeastern Armorican Massif): Palaeontology and biostratigraphy[END_REF]F. Paris, unpublished data). The Ordovician-Silurian boundary can also be located with the greatest precision in well BG-14 in southern Jordan where graptolites [START_REF] Loydell | Graptolites from the Upper Ordovician and Lower Silurian of Jordan[END_REF] and chitinozoan [START_REF] Butcher | Early Llandovery chitinozoans from Jordan[END_REF] have been studied. In southern Saudi Arabia chitinozoans occur in the MKSR-1 well, just below and within graptolite-bearing black shale assigned to the early Rhuddanian [START_REF] Paris | Biostratigraphy and palaeogeographic affinities of Early Silurian chitinozoans from central Saudi Arabia[END_REF]. Other important controls should be obtained from the graptolite-bearing sequence in the E1-NC174 core in the Murzuq Basin (Libya) as chitinozoans are also reported [START_REF] Butcher | Chitinozoans from the middle Rhuddanian (lower Llandovery, Silurian) 'hot' shale in the E1-NC174 core, Murzuq Basin, SW Libya[END_REF] with abundant early Rhuddanian graptolites [START_REF] Loydell | Graptolite biostratigraphy of the E1-NC174 core, Rhuddanian (lower Llandovery, Silurian), Murzuq Basin (Libya)[END_REF].

The concurrent ranges of the chitinozoans and graptolites in these sections are used here for more precise dating of numerous previously published chitinozoan assemblages close to the Ordovician-Silurian boundary (Fig. 5).

In the present study on core samples from JA-2, the comparison focuses chiefly on the chitinozoan data available for Libya, with a particular attention paid to the chitinozoan assemblages from the Kufra Basin, e.g. KW-2 core-drill [START_REF] Grignani | Palaeozoic and Mesozoic subsurface palynostratigraphy in the Al Kufrah Basin, Libya[END_REF][START_REF] Hérissé | Late Ordovician-earliest Silurian palynomorphs from northern Chad and correlation with contemporaneous deposits of southeastern Libya[END_REF]F. Paris, unpublished data), cores from wells A1-NC43 and B1-NC43 [START_REF] Grignani | Palaeozoic and Mesozoic subsurface palynostratigraphy in the Al Kufrah Basin, Libya[END_REF], and cuttings from H6000 and W5174 [START_REF] Paris | Late Ordovician-Early Silurian chitinozoan biostratigraphy in Jebel Dalma, Kufra Basin, Libya. Kufra Basin Project[END_REF] (Fig. 5). Correlation is also proposed with other Libyan regions, e.g. well CDEG-2a in the eastern Murzuq Basin [START_REF] Paris | Palynological and palynofacies analysis of early Silurian shales from borehole CDEG-2a in Dor el Gussa, eastern Murzuq Basin, Libya[END_REF]. The Silurian chitinozoans of Al-Ameri (1989) from Western Libya, however, are not discussed here as they correspond to assemblages younger than the material recovered from the sub-surface of the Kufra Basin. Older data from Cyrenaica [START_REF] Molyneux | Palynostratigraphy of North-East Libya[END_REF][START_REF] Paris | Late Ordovician and Early Silurian chitinozoans from central and southern Cyrenaica[END_REF], which did not benefit from an independent calibration in terms of graptolite biozones, can now be updated. The correlations are extended to cores in other countries, e.g. Moussegouda, northern Chad (Le [START_REF] Hérissé | Northern Gondwana palynomorphs from the Ordovician-Silurian boundary beds: The example of northern Chad. Sedimentary basins of Libya[END_REF][START_REF] Hérissé | Late Ordovician-earliest Silurian palynomorphs from northern Chad and correlation with contemporaneous deposits of southeastern Libya[END_REF].

In Moussegouda, the occurrence of glacio-marine deposits with typical Late Ordovician chitinozoans and acritarchs ca. 15 m below the first E. moussegoudaensis chitinozoan assemblage must be stressed, as this demonstrates that the E. moussegoudaensis dominated assemblage is clearly post-glacial. In well KW-2, E. moussegoudaensis occurs in the shale referred to the Tanezzuft Formation (Le [START_REF] Hérissé | Late Ordovician-earliest Silurian palynomorphs from northern Chad and correlation with contemporaneous deposits of southeastern Libya[END_REF]. Below 54 m of this Tanezzuft Formation shale, the well penetrated sandstone of the Mamuniyat Formation for 7 m. No chitinozoans are reported from this sandy member but typical latest Ordovician chitinozoan assemblages are present in the neighbouring wells of A1-NC43 (core 3, Mamuniyat Formation) and B1-NC43 (core 5; but supposed to belong to the Tanezzuft Formation in [START_REF] Grignani | Palaeozoic and Mesozoic subsurface palynostratigraphy in the Al Kufrah Basin, Libya[END_REF]. The lithostratigraphic position of the latter core sample, however, is confusing (see discussion in [START_REF] Grignani | Palaeozoic and Mesozoic subsurface palynostratigraphy in the Al Kufrah Basin, Libya[END_REF]Grignani et al., , p. 1163)). No graptolites have been identified in JA-2 or in Moussegouda, but [START_REF] Grignani | Palaeozoic and Mesozoic subsurface palynostratigraphy in the Al Kufrah Basin, Libya[END_REF] reported "Climacograptus medius" (now Normalograptus medius) in the KW-2 cores. If the identification is correct, this means that the corresponding samples can be of late Hirnantian as well as of Rhuddanian age as this species ranges across the Ordovician-Silurian boundary (see Loydell, 2007, text in fig. 6). In areas of JA-2 and KW-2, we do not have unweathered material from the overlying formations. In Moussegouda, the shale sequence with the moussegoudaensis chitinozoan assemblage is directly overlain by barren white sandstone referred to the Akakus Formation. No biostratigraphical data are available in the Silurian part of A1-NC43 and B1-NC43. Consequently, the top of the moussegoudaensis assemblage is not constrained in the Kufra Basin, even when this structure is extended to northern Chad.

The ranges of S. oulebsiri and S. verniersi, two taxa represented in the moussegoudaensis assemblage, have been used to better constrain its chronostratigraphic assignment. S. oulebsiri ranges in late Hirnantian post-glacial deposits, especially in the Nseirat section (Mauritania), where it coexists briefly with Belonechitina pseudarabiensis and Cyathochitina caputoi. The latter have their Last Appearance Datum (LAD) higher up in the section in the well-dated upper ascensus-acuminatus Biozone of early Rhuddanian age. The lower part of the Nseirat section (with S. oulebsiri) yields abundant Normalograptus graptolites attributed to the persculptus Biozone [START_REF] Underwood | High palaeolatitude (Hodh, Mauritania) recovery of graptolite faunas after the Hirnantian (end Ordovician) extinction event[END_REF], i.e. of late Hirnantian age. However, the specific assignment of these Normalograptus have been recently contested by [START_REF] Loydell | Graptolites from the Upper Ordovician and Lower Silurian of Jordan[END_REF] who rejected the specimens of N. persculptus illustrated by [START_REF] Underwood | High palaeolatitude (Hodh, Mauritania) recovery of graptolite faunas after the Hirnantian (end Ordovician) extinction event[END_REF] from his well-documented synonymy list for N. persculptus (Loydell, 2007, p. 43).

Because the durations of the related glacial events are significantly shorter (ca. 10 ky) than the range of the recorded chitinozoan species (ca. 1 Ma or more), the Hirnantian glacial climax can be regarded as isochronous at the scale of the northern Gondwana chitinozoan biozonations. Indeed, several typical Late Katian species, e.g. Calpichitina lenticularis, Armoricochitina nigerica, Desmochitina gr. minor, Lagenochitina baltica, L. prussica (see [START_REF] Paris | The effects of the final stages of the Late Ordovician glaciation on marine palynomorphs (chitinozoans, acritarchs, leiospheres) in well Nl-2 (NE Algerian Sahara)[END_REF], and references therein) range through the Hirnantian, up to the end of the main melting phase of the ice cap, in the latest Hirnantian. Fortunately, some taxa have a more restricted range and proved to be helpful for subdividing the latest Ordovician. Tanuchitina elongata, the index species of the next to last Ordovician chitinozoan biozone [START_REF] Paris | The Ordovician chitinozoan biozones of the northern Gondwana Domain[END_REF] has its FAD before the first drastic sea level fall characterising the beginning of the Hirnantian glacial climax. This FAD is located just above the base of the Hirnantian as documented in the Anti-Atlas, Morocco [START_REF] Loi | The Late Ordovician glacio-eustatic record from a high-latitude storm-dominated shelf succession; the Bou Ingarf section (Anti-Atlas, Southern Morocco)[END_REF] and in the Prague Basin by [START_REF] Bourahrouh | Chitinozoaires et Palynomorphes de l'Ordovicien supérieur Nordgondwanien[END_REF] where T. elongata is recorded in association with Normalograptus osjuensis. The latter graptolite is regarded as slightly preceding the FAD of N. extraordinarius, the index graptolite of the base of the "new" Hirnantian stage (see [START_REF] Chen | Late Ordovician to earliest Silurian gaptolite and brachiopod biozonation from the Yangtze region, South China, with a global correlation[END_REF][START_REF] Chen | The global boundary stratotype section (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System)[END_REF]) and thus T. elongata begins also just below the base of the Hirnantian. The species is recorded up to the uppermost Kosov Formation (Hirnantian) in the Prague Basin [START_REF] Bourahrouh | Chitinozoaires et Palynomorphes de l'Ordovicien supérieur Nordgondwanien[END_REF] where N. persculptus is present [START_REF] Štorch | The Hirnantian graptolites Normalograptus persculptus and 'Glyptograptus' bohemicus: stratigraphical consequences of their synonymy[END_REF]. The total range of T. elongata is therefore latest Katian-late Hirnantian.

At present, Spinachitina oulebsiri Biozone is the last Ordovician chitinozoan biozone in the northern Gondwana biozonation [START_REF] Webby | Stratigraphic Framework and time slices[END_REF]. This species coexists for a time with the last typical Ordovician chitinozoan species (see above) and thus its lower part is late Hirnantian in age. The LAD of S. oulebsiri is documented in the lower part of the Nseirat section (up to MSE-10) where it is associated with other chitinozoans with dominating Cyathochitina caputoi and rare Belonechitina pseudarabiensis. This chitinozoan assemblage coexists with numerous Normalograptus assigned to N. persculptus by [START_REF] Underwood | High palaeolatitude (Hodh, Mauritania) recovery of graptolite faunas after the Hirnantian (end Ordovician) extinction event[END_REF], but not included in the synonymy list of this species proposed by [START_REF] Loydell | Graptolites from the Upper Ordovician and Lower Silurian of Jordan[END_REF]. Additional information is available from the MKSR-1 well (southern Saudi Arabia) where S. oulebsiri is restricted to strata below the 'hot shale' horizon yielding numerous C. caputoi associated with graptolites of the acuminatus Zone [START_REF] Paris | Biostratigraphy and palaeogeographic affinities of Early Silurian chitinozoans from central Saudi Arabia[END_REF]discussion in Paris et al., 2013).

According to the graptolites, S. oulebsiri may therefore extend into the uppermost Hirnantian or the lowermost Rhuddanian. Based on the synonymy proposed by [START_REF] Vandenbroucke | Chitinozoans and the age of the Soom Shale, an Ordovician black shale Lagerstätte, South Africa[END_REF], S. oulebsiri is present in the United Kingdom [START_REF] Vandenbroucke | Upper Ordovician chitinozoan biostratigraphy from the Asghill (Cautley district) and Pus Gill section (Dufton dsistrict, Cross Fell Inlier), Cumbria, Northern England[END_REF][START_REF] Vandenbroucke | An Upper Ordovician chitinozoan biozonation in British Avalonia (England and Wales)[END_REF]. This species is reported from other localities devoid of accurate independent age control, e.g. Soom Shale in South Africa [START_REF] Vandenbroucke | Chitinozoans and the age of the Soom Shale, an Ordovician black shale Lagerstätte, South Africa[END_REF], several wells in Algeria, including Nl-2 [START_REF] Paris | The effects of the final stages of the Late Ordovician glaciation on marine palynomorphs (chitinozoans, acritarchs, leiospheres) in well Nl-2 (NE Algerian Sahara)[END_REF], and sections in Argentina [START_REF] De La Puente | Quitinozoos del Ordovicico de la Cuenca Andina central (noroeste Argentino) y su aplicacion a la bioestratigrafia, paleobiologeigrafia y paleoambientes[END_REF]. It is also present in JA-2 in SE Libya (see Fig. 4). In these localities, it is worth noting that S. oulebsiri without the typical Late Ordovician species but associated with S. verniersi, occurs in postglacial deposits. This confirms that the climax of the Late Ordovician glaciation ended within the persculptus Biozone.

Slightly higher in the Nseirat section (from NSE-11 to NSE-18) B. pseudarabiensis and C. caputoi dominate the chitinozoan assemblages. They are associated with S. debbajae in strata referred to the lower-middle subzone of the ascensus-acuminatus Biozone based on its graptolite content [START_REF] Underwood | High palaeolatitude (Hodh, Mauritania) recovery of graptolite faunas after the Hirnantian (end Ordovician) extinction event[END_REF] and on the comments provided by [START_REF] Loydell | Graptolites from the Upper Ordovician and Lower Silurian of Jordan[END_REF].

From NSE-18 onward, B. pseudarabiensis is associated with S. fragilis (morphotype with a shoulder) and with graptolites of the ascensus-acuminatus Biozone from NSE-18. A similar situation occurs also in Jordan [START_REF] Butcher | Early Llandovery chitinozoans from Jordan[END_REF], in BG-14 core sample at 42.5 m depth assigned by [START_REF] Loydell | Graptolites from the Upper Ordovician and Lower Silurian of Jordan[END_REF] to the upper subzone ascensus-acuminatus Biozone. In the Les Fesnaies section, western France [START_REF] Bourahrouh | Chitinozoaires et Palynomorphes de l'Ordovicien supérieur Nordgondwanien[END_REF]F. Paris, unpublished data), and in Hlasna Treban section, Czech Republic [START_REF] Dufka | Chitinozoans and acritarchs from the Ordovician-Silurian boundary of the Prague Basin, Czech Republic[END_REF][START_REF] Bourahrouh | Chitinozoaires et Palynomorphes de l'Ordovicien supérieur Nordgondwanien[END_REF] identical S. fragilis specimens are associated with graptolites of the ascensus-acuminatus graptolite Biozone described respectively by [START_REF] Piçarra | Graptolite faunas of the Llandovery "phtanites" at Les Fresnaies (Chalonnes-sur-Loire, southeastern Armorican Massif): Palaeontology and biostratigraphy[END_REF] and by Štorch (1996).

In Libya, in the Murzuq Basin, a chitinozoan assemblage similar to that of the upper middle part of the Nseirat section, i.e. S. fragilis "with shoulder" associated with Ancyrochitininae specimens with long branched processes (provisionally identified as A. cf. ramosaspina) is reported from the interval 47.48-50.64 m (core 20 to core 23) in well CDGE-2a (see [START_REF] Paris | Palynological and palynofacies analysis of early Silurian shales from borehole CDEG-2a in Dor el Gussa, eastern Murzuq Basin, Libya[END_REF]. In the Kufra Basin, in cuttings samples (W5174 and H6000) abundant B. pseudarabiensis coexist with Ancyrochitininae (long processes branched at their distal end, provisionally referred to as A. gr. ancyrea in Paris et al. (2008a). Based on the chitinozoan data from Jordan newly published by [START_REF] Butcher | Early Llandovery chitinozoans from Jordan[END_REF] on BG-14 core samples accurately dated by graptolites [START_REF] Loydell | Graptolites from the Upper Ordovician and Lower Silurian of Jordan[END_REF], the two Kufra assemblages from W5174 and H6000 can be correlated with the upper part of the ascensus-acuminatus graptolite Biozone of Jordan, where S. fragilis is no longer present (Butcher, 2009, text in fig. 7).

The re-evaluation of previous chitinozoans from Libya enables more accurate dates for assemblages. For instance, the chitinozoans recovered from JI-81A, E1-81 and A1-81 wells of southern Cyrenaica [START_REF] Molyneux | Palynostratigraphy of North-East Libya[END_REF][START_REF] Hill | Palynostratigraphy of North-East Libya[END_REF][START_REF] Paris | Late Ordovician and Early Silurian chitinozoans from central and southern Cyrenaica[END_REF] are updated with regards to the range of the chitinozoan key species selected in the present report (Fig. 5). In well J1-81A, cuttings from 12150 ft to 13240 ft, yielded caved specimens of S. debbajae, S. oulebsiri, and E. moussegoudaensis mixed with well-characterised in-situ Hirnantian species. This means that below the Middle Devonian, and above the Upper Ordovician strata, this well penetrated Rhuddanian deposits (see stratigraphical interpretation on Figure 5). In well E1-81, the Ordovician-Silurian beds seem rather better developed, as there is a large interval of ca. 100 m separating core 4 of early Rhuddanian age (abundant Sphaerochitina solitudina consistent with the upper subzone of the ascensus-accuminatus Biozone), from core 5 of Hirnantian age (elongata Biozone) (Fig. 5).

Conclusions

The chitinozoan assemblages recovered from the 35 m thick shaly to silty sequence in well JA-2 are characterised by dominant Euconochitina moussegoudaensis and by the sporadic, but stratigraphically important presence of Spinachitina oulebsiri, S. verniersi, and highly branched Angochitininae. These characteristics are shared by the chitinozoan assemblages observed in the ca. 100 m thick shale dominated sequence penetrated by the Moussegouda well (northern Chad;

Le [START_REF] Hérissé | Late Ordovician-earliest Silurian palynomorphs from northern Chad and correlation with contemporaneous deposits of southeastern Libya[END_REF] and in the 4 core samples analysed previously in the KW-2 shallow core (Kufra Basin, Libya; see [START_REF] Grignani | Palaeozoic and Mesozoic subsurface palynostratigraphy in the Al Kufrah Basin, Libya[END_REF][START_REF] Hérissé | Late Ordovician-earliest Silurian palynomorphs from northern Chad and correlation with contemporaneous deposits of southeastern Libya[END_REF]. The Moussegouda area is geologically regarded as part of the Kufra Basin (see e.g., [START_REF] Lüning | Origin, sequence stratigraphy, and depositional environment of an Upper Ordovician (Hirnantian) deglacial black shale, Jordan-Discussion[END_REF] and therefore, the more complete data available on this well can be of some help in interpreting the core from well JA-2 and cuttings from the UN-REMSA well where the overlying and underlying strata are not documented by samples.

The analysed samples from well JA-2 and the UN-REMSA well are regarded as post glacial, but are still either of latest Hirnantian age, or at least no younger than earliest Rhuddanian if one follows [START_REF] Loydell | Graptolites from the Upper Ordovician and Lower Silurian of Jordan[END_REF] arguments for the Mauritania material. This uncertainty is indicated by a blue stripe on the graph (Fig. 5) summarising the reassessment of previously reported chitinozoan assemblages from Libya. However, an alternative interpretation, based on an environmental control of the range of the chitinozoans, cannot be definitively ruled out, even if the chitinozoans are not usually deeply affected by environmental factors. Because the moussegoudensis chitinozoan assemblages are so far restricted to the rather nearshore environments of the Kufra Basin (including Chad), the proliferation of E. moussegoudaensis may reflect an environmental control rather than a stratigraphically restricted range. If so, the absence of E. moussegoudaensis in Rhuddanian sections with a graptolite control (deeper environments) would simply be a result of differences in the bathymetry of the depositional areas.

Based on the discussion above on chitinozoan biostratigraphy and palaeoecology, it appears that the studied section records an assemblage of latest Ordovician to earliest Silurian age. The acritarchs, miospores and cryptospores assemblage recorded seem to be no older than earliest Rhuddanian. However, several key post-glacial, latest Hirnantian sections, especially the Nseirat section in Mauritania and Anti-Atlas section in Morocco, where post-glacial Hirnantian chitinozoan assemblages have been documented, need to be investigated for acritarch and miospore content, for possible extension of the reported earliest Rhuddanian species to the latest Hirnantian. Table 1. List of the main palynological and lithological data for the samples processed from well JA-2 and the UN-REMSA well for chitinozoan analysis. Table 2. Range and relative frequencies (counted number of species) of the acritarchs recorded in the processed samples from well JA-2 and the UN-REMSA well. Table 3. Range and relative frequencies (counted number of species) of the sporomorphs and Tortubus portuberans recorded in the processed samples from well JA-2 and the UN-REMSA well.

Tables

Table 4. Kerogen analysis data (grain count of all sizes undertaken under transmitted light) on samples from well JA-2 and on cutting samples (SJS0001) from the UN-REMSA well. Numbers are in percentages.

Table 5. Chitinozoan reflectance (R ch ) values in % of core samples from well JA-2 (provided by John E. A. Marshall, University of Southampton). The measured reflectance values (average) have been corrected against a standard which was measured at the start and end of every sample series. For every sample the corrected value is close to the average value, showing that there has been not much instrumental drift during reflectance measurements. The vitrinite reflectance (R v ) values in % were calculated using the equation in [START_REF] Tricker | Chitinozoan reflectance: a Lower Palaeozoic thermal maturity indicator[END_REF]. chitinozoan abundance and kerogen analysis data (see also Table 4). See text for explanation Fig. 3. Selected palynomorph species with stratigraphic ranges and regional occurrences in North Africa, the Middle East and USA [START_REF] Becip | Regional subsurface biostratigraphy of Ghadamas Basin (Internal Report)[END_REF][START_REF] Jardiné | Distribution stratigraphique des Acritarches dans le Paleozoïque du Sahara Algerien[END_REF]Johnson, 1985;[START_REF] Molyneux | Palynostratigraphy of North-East Libya[END_REF][START_REF] Hill | Biostratigraphy, palynofacies and provincialism of Late Ordovician-Early Silurian acritarchs from northeast Libya[END_REF][START_REF] Keegan | Palynostratigraphy of the Lower Palaeozoic, Cambrian to Silurian, sediment of the Hashemite Kingdom of Jordan[END_REF][START_REF] Hérissé | Stratigraphy and paleogeographic significance of Silurian acritarchs from Saudi Arabia[END_REF][START_REF] Paris | Palynological and palynofacies analysis of early Silurian shales from borehole CDEG-2a in Dor el Gussa, eastern Murzuq Basin, Libya[END_REF] and comparison with the present study. [START_REF] Grignani | Palaeozoic and Mesozoic subsurface palynostratigraphy in the Al Kufrah Basin, Libya[END_REF]3: Paris et al., 2008;4: Molyneux and Paris, 1985;5: Paris, 1988;6: Paris et al., 2012;7: Le Hérissé et al., 2013;8: Butcher, 2009;9: Paris et al., 1998;[START_REF] Spinachitina Verniersi Vandenbroucke | Core sample at 67.59 m depth; IGR 72981 (N49/3). Vesicle with granules concentrated on the margin. However, they are not clearly arranged in crown. Plate VIII. Chitinozoans and one scolecodont from cuttings (no depth provided) from the UN-REMSA well, Kufra Basin, Libya; IGR 72995. Scale bar = 100 μm[END_REF]11, Bourahrouh, 2002;12: Piçarra et al., 2002;13: Dufka and Fatka, 1993. Red line: exclusive Late Ordovician species; blue line: exclusive early Silurian taxa; black line: taxa ranging possibly through the Ordovician-Silurian boundary. The blue stripe corresponds to a brief but poorly constrained time slice of uppermost Hirnantian or lowermost Rhuddanian age (i.e. "interregnum" between the top of the persculptus and the base of the ascensus graptolite biozones; see discussion in [START_REF] Legrand | Faunal specificity, endemism and paleobiogeography: the post-glacial (Hirnantian-early Rhuddanian) graptolite fauna of the North-African border of Gondwana: a case study[END_REF]. 
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  ) but mostly in the interval 55.53-62.34 m. Miospores are represented by Ambitisporites dilutus, Archaeozonotriletes chulus var. chulus and trilete spores. Cryptospores are represented by Dyadospora murusdensa, Rugosphaera sp. and Tetrahedraletes medinensis. The presence of these miospores and cryptospores are consistent with an early Silurian (Llandoverian, Rhuddanian) age for the assemblage.

  have been observed in this residue. The cuttings from the UN-REMSA well (sample SJS0001) yield a chitinozoan assemblage very close to that observed in well JA-2. Euconochitina moussegoudaensis Paris (Plate VIII, 2a-b; 4, 5a-b) is again the dominant species. It is accompanied by rare Cyathochitina caputoi Da Costa, 1971 (Plate VIII, 1). C. caputoi (the thick carina form), which is usually very abundant close to the Ordovician-Silurian boundary is not observed in well JA-2. A few Spinachitina verniersi (Plate VIII, 6a-c, 9a-b, 10a-b) and damaged Ancyrochitininae(Plate VIII,(7)(8) (broken processes do not allow any specific assignment) are also present in this assemblage and are assigned to the latest Hirnantian-earliest Rhuddanian (see Fig.5).

  . The interval 33.33-46.20 m is completely dominated by semi-structured (Type 3), vitrinite-like material. No acritarchs or miospores were recorded in this interval. The interval 46.60-67.40 m is generally dominated by AOM (Type 1) but semi-structured, vitrinite-like material continues to show its presence throughout the interval (see Appendix A). A high number of acritarchs along with miospores/cryptospores are also documented. Leiospheridia spp. dominate in numbers, and spiny acanthomorph acritarchs are low in numbers. The interval 67.59-73.21 m, with the exception of core at 69.92 m depth, in which AOM dominates, is abundant in semi-structured, vitrinite-like material.

  from cutting samples from Jebel Dalma. Murzuq Basin Paris et al. (2012) reported an early Llandovery palynomorph assemblage from well CDEG-2a in Dor el Gussa and recorded palynomorph species which are also present in the present study including Buedingiisphaeridium sp., Diexallophasis denticulate, Eupoikilofusa striatifera, Leiofusa estrecha, Veryhachium. europaeum, V. trispinosum, Dyodospora murusdensa and Tetrahedraletes medinensis. Ghadamis Basin Richardson and Ioannides (1973) reported a rich assemblage of Silurian acritarchs from two wells, C1-34 and B2-34, from the Akakus and Tanezzuft formations in the Ghadamis Basin. The recorded species in common with the present assemblage include Eupoikilofusa striatifera, Veryhachium trispinosum, Diexallophasis denticulata, Leiosphaeridia acerscabrella, Leiofusa estrecha, Geron cf. gracilis, Tetrahedraletes medinensis and Dyadospora murusdensa.

  recorded early Silurian (Llandoverian) acritarchs from the Cyrenaica Platform. Several species recorded from Cyrenaica are common with the present assemblage and include Eupoikilofusa striatifera, Diexallophasis denticulata, Tunisphaeridium sp., and Buedingiisphaeridium sp.. 4.1.2. Chad Le Hérissé et al. (2013) reported latest Ordovician-earliest Silurian palynological assemblages from the Moussegouda shallow borehole (21°40'N, 18°36'E) drilled in the Erdi Basin, northern Chad in the early 1960s. The Erdi Basin and the Mourdi Basin in northwest Sudan are considered to be the southern extensions of the Kufra Basin to the north in Libya. The presence of several stratigraphically restricted acritarchs reported from core 9 (220-221A m) from the Moussegouda borehole such as Neoveryhachium sp. A, Veryhachium subglobosum and Villosacapsula setosapellicula clearly support an age no younger than Late Ashgill for this interval. V. subglobosum and V. setosapellicula were also recorded by Grignani et al. (1991) in their assemblage 'B' in the Kufra Basin. None of these species were recorded in our study. The absence (except in the basal part) of these species together with the common presence of Tasmanites tzadiaensis Le Hérissé et al. (2013) and many reported acritarchs and chitinozoans, cryptospores and miospores in cores 8-2 from the Moussegouda well in Chad and those in well JA-2 in Libya support their close chronostratigraphic and ecological similarities. The oldest recorded early Silurian (late Rhuddanian) local Biozone LI1 was first reported by Hill and Molyneaux (1988) from an exploratory well (E1-81) in Cyrenaica northeast Libya and recently by Paris et al. (2012) from a shallow borehole (CDEG-2) in Dor el Gussa, eastern Murzuq Basin. In both areas, the incoming of marker species Diexallophasis caperoradiola, Multiplicisphaeridium fisherii and Oppilatala eoplanktonica clearly support a Late Rhuddanian age. None of these species were either recorded in Le Hérissé et al. (2013) in the Moussegouda well or in the present study in the JA-2 well. Based on these observations, it is inferred that the post-Ashgillian interval in the Moussegouda well (cores 8-2) and in well JA-2 may represent a time interval between the latest Ordovician and earliest Silurian. However, the presence of Geron cf. gracilis, Moyeria cabotii, Tunisphaeridium sp., Ambitisporites dilutus and Archaeozonotriletes chulus var. chulus and Tortotubus protuberans in well JA-2 does appear to demonstrate an early Silurian age for the JA-2 assemblage. Furthermore, we cannot rule out the extension of the well JA-2 sequence to the post-glacial latest Hirnantian because the post-glacial latest Hirnantian acritarch and miospore assemblage is poorly documented in North Africa. The palynomorph content in both wells is supportive of a marginal marine (nearshore) environment and may represent a post-glacial pre-Tanezzuft Formation (sensu stricto) sedimentary sequence. 4.1.3. Algeria Jardine et al. (1974) recorded early Silurian acritarch assemblages from the Algerian Sahara and established Palynozones G1 and G2. Species common to the Algerian and present assemblage include Diexallophasis denticulate, Eupoikilofusa striatifera, Leiofusa estrecha and Veryhachium trispinosum.

4. 1

 1 .4. Saudi Arabia Le Hérissé et al. (1995) recorded early Silurian (Llandovery, Rhuddanian and Aeronian) palynomorphs assemblage from Saudi Arabia. They recorded Buedingiisphaeridium sp., D. denticulata, E. striatifera, Filisphaeridium sp., Geron sp., Moyeria cabottii and Tunisphaeridium sp.. 4.1.5. Jordan Keegan et al. (1990) recorded early Silurian palynomorphs from two exploration wells of the Hashemite Kingdom of Jordan. The morphotypes Geron gracilis, D. murusdensa, Ambitisporites dilutus and Archaeozonotriletes chulus var. chulus are present in zone JS-3 (early Llandoverian) of Jordan and are also recorded in the present study.
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 1 Fig. 1. Map of Libya showing surface outcrops with Paleozoic rocks (dark grey colour) and the

Fig. 2 .

 2 Fig. 2. Lithological log of the core from well JA-2 together with biostratigraphic age,

Fig. 4 .

 4 Fig. 4. Range, relative frequencies and abundances of the chitinozoans recorded in the processed
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 5 Fig.5. Correlation table for some Gondwana chitinozoan-bearing strata around the Ordovician-

  

  

  

  

  

  

  

  

  

  Tetrahedraletes medinensisStrother & Traverse, 1979, emend. Wellman and Richardson, 1993. Slide no. 6782-5. Core sample at 67.82 m depth. England finder location: K31-2. Plate II. Scale bar = 10 μm. 1: Rugosphaera tuscarorensis Strother & Traverse, 1979. Slide no. 5758. Core sample at 57.58 m depth. England finder location: J37-1. 2: Dyadosphaera murusdensa Strother & Traverse, 1979. Slide no. 5758. Core sample at 57.58 m depth. England finder location: f41-2. 3: Tetrahedraletes medinensis Strother & Traverse, 1979, emend. Wellman & Richardson, 1993. Slide no. 5758. Core sample at 57.58 m depth. England finder location: J29-2. 4: Veryhachium lairdii group (Deflandre) Deunff, 1954 ex Loeblich, 1970. Slide no. 6782-5. Core sample at 67.82 m depth. England finder location: W28. 5: Archaeozonotriletes chulus var. chulus (Cramer) Richardson & Lister, 1969. Slide no. 6759. Core sample at 67.59 m depth. England finder location: J29-3. 6: Dyadosphaera murusdensa Strother & Traverse, 1979. Slide no. 6782. Core sample at 67.82 m depth. England finder location: F21-1. 7: Tasmanites sp. Slide no. 4818. Core sample at 48.18 m depth. England finder location: J41. 8: Veryhachium lairdii group (Deflandre) Deunff, 1954 ex Loeblich, 1970. Slide no. 6782-5. Core sample at 67.82 m depth. England finder location: X21-1. Plate III. Scale bar = 10 μm. 1: Leiosphaeridia sp. Slide no. 5758-1. Core sample at 57.58 m depth. England finder location: R44-3. 2: Rugosphaera sp. Slide no. 5758-2. Core sample at 57.58 m depth. England finder location: T22.

	Plate I. Scale bar = 10 μm.
	1:	Rugosphaera tuscarorensis Strother & Traverse, 1979. Slide no. 5758-3. Core
		sample at 57.58 m depth. England finder location: S34-1.
	2:	Lophozonotriletes sp. Slide no. 5758-3. Core sample at 57.58 m depth. England
		finder location: S34-4.
	3:	Tortotubus protuberans Johnson, 1985. Slide no. 5758. Core sample at 57.58 m
		depth. England finder location: L28.
	4:	Ambitisporites dilutus (Hoffmeister) Richardson & Lister, 1969. Slide no. 5553.
		Core sample at 55.53 m depth. England finder location: T10.
	5:	Dyadosphaera murusdensa Strother & Traverse, 1979. Slide no. 5758. Core
		sample at 57.58 m depth. England finder location: V37.
	6:	Ambitisporites dilutus (Hoffmeister) Richardson & Lister, 1969. Slide no. 6759.
		Core sample at 67.59 m depth. England finder location: H45-2. Note: The slide
		number corresponds to the core sample depth in cm.
	7:	Ambitisporites dilutus (Hoffmeister) Richardson & Lister, 1969. Slide no. 6782-5.
		Core sample at 67.82 m depth. England finder location: L31-2.
	8:	
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	(m)
	depth
	Sample

Leiosphaeridia spp. Solisphaeridium spp. Eupoikilofusa striatifera Tasmanites spp. Veryhachium trispinosum Veryhachium trispinosum (large) Leiosphaeridia spp. (clusters of small) Veryhachium sp. (4 spined) Dictyotidium spp. Leiosphaeridia spp. clusters Diexallophasis denticulata Geron cf. gracilis Leiofusa sp. Multiplicisphaeridium spp. Veryhachium europaeum Veryhachium lairdii Filisphaeridium sp. Micrhystridium sp. (8 spined) Diexallophasis spp. Leiosphaeridia spp. (small) Veryhachium sp. cluster Cymatiosphaera spp. Tunisphaeridium spp. Goniosphaeridium spp.

  

							form)
			Leiosphaera small	Buedingiisphaeridiumsp.	Leiofusa estrecha	Leiosphaeridia acerscarbrella	Moyeria cabottii	Veryhachium trispinosum (globular
	JA-2					
	33.33					
	46.20					
	46.60	C	R			
	48.18					

Table 2 Click here to download Table: Table 2.docTable 3 .
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	(m)
	depth
	Sample

Ambitisporites dilutus Ambitisporites spp. Dyadospora murusdensa Tetrad clusters Tetrad indet. Trilete spores Verrucate spores Archaeozonotriletes spp. Tetrahedraletes medinensis Archaeozonotriletes chulus var. chulus Lophozonotriletes spp. Tetrahedraletes medinensis Reticulate spores Rugosphaera tuscarorensis Tortotubus protuberans

  

	JA-2
	33.33
	46.20
	46.60

Table 3 Click here to download Table: Table 3.docTable 4 .
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	Sample depth (m)	Vitrinite -lilke, semistructered	Amorphous organic matter	Cutinite	Acritarchs	Inertinite	Vitrinite-like, degraded	Exinite spores	Exinite resinite	Exinite Tasmanites	Intertinite semifusinite
	JA-2										
	33.33	100									
	46.20	100									
	46.60	21	30	1	42	1	4				
	48.18	20	35		40	1	1	3			
	50.73	12	50		26	1		11			
	53.07	15	50		31			4			
	55.53	40	35		22				3		
	57.58	30	44		18			8			
	60.23	52	16		28			4			
	62.34	34	38		24			3			
	64.02	32	46		17			5			
	65.74	25	61		11	1		2			
	66.21	45	31		20			4			
	66.85	5	63		25			7			
	67.05	15	78		6			1			
	67.21	55	18		27						
	67.40	2	90		8						
	67.59	50	6		19	6		19			
	67.82	20	15		50		1	13		1	
	67.97	22	45		27			6			
	68.42	100									
	69.12	80	11		8						1
	73.21	100									
	UN-										
	REMSA										
	SJS0001	5	89		2		2	2			

Table 4 Click here to download Table: Table 4.doc
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