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Abstract. Predictions of marine ice-sheet behaviour require
models that are able to robustly simulate grounding line mi-
gration. We present results of an intercomparison exercise
for marine ice-sheet models. Verification is effected by com-
parison with approximate analytical solutions for flux across
the grounding line using simplified geometrical configura-
tions (no lateral variations, no effects of lateral buttressing).
Unique steady state grounding line positions exist for ice
sheets on a downward sloping bed, while hysteresis occurs
across an overdeepened bed, and stable steady state ground-
ing line positions only occur on the downward-sloping sec-
tions. Models based on the shallow ice approximation, which
does not resolve extensional stresses, do not reproduce the
approximate analytical results unless appropriate parameter-
izations for ice flux are imposed at the grounding line. For
extensional-stress resolving “shelfy stream” models, differ-

ences between model results were mainly due to the choice
of spatial discretization. Moving grid methods were found to
be the most accurate at capturing grounding line evolution,
since they track the grounding line explicitly. Adaptive mesh
refinement can further improve accuracy, including fixed grid
models that generally perform poorly at coarse resolution.
Fixed grid models, with nested grid representations of the
grounding line, are able to generate accurate steady state po-
sitions, but can be inaccurate over transients. Only one full-
Stokes model was included in the intercomparison, and con-
sequently the accuracy of shelfy stream models as approxi-
mations of full-Stokes models remains to be determined in
detail, especially during transients.
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1 Introduction

Recent years have seen significant effort invested in devel-
oping numerical marine ice sheet models that are intended
to have the capability of accurately representing the motion
of an ice-sheet grounding line. This effort has seen a vari-
ety of models emerge. However, it is unclear to what ex-
tent these models agree with one another and how well they
are able to model real marine ice sheets. The purpose of the
MISMIP Marine Ice Sheet Model Intercomparison Project
is to address the first issue, examining how well marine ice
sheet models agree with one another. A second purpose of
the experiments is to assess how well the numerical schemes
used solve the partial differential equations on which they
are based. Not all the models used in marine ice sheet sim-
ulations employ the same governing equations, but many of
them share basic characteristics.

Theoretical arguments, due to Weertman (1974) and
Thomas and Bentley (1978), indicate marine ice sheets have
one or more distinct equilibrium shapes and that only those
with grounding lines located on downward slopes could be
stable to small perturbations. That is, only if the ground-
ing line is located on a downward slope should a slightly
perturbed ice sheet return to its original steady state over
time. By contrast, later work suggested that they could ex-
hibit “neutral equilibrium” (Hindmarsh, 1993), that is, a per-
turbation in grounding line position away from steady state
could result in a distinct, new steady state close to the orig-
inal one. This issue has continued to dominate studies of
marine ice sheets and numerical simulations in particular.
The impetus for the intercomparison has been provided –
amongst others – by the papers of Vieli and Payne (2005),
Pattyn et al. (2006), Hindmarsh (2006) and Schoof (2007a,b,
2011). These have demonstrated not only the strong possi-
bility of numerical artifacts in marine ice sheet simulations,
but also the importance of grid resolution and of accurate
representation of the sheet-shelf transition zone. The papers
above have also shed some light on the question of steady
states and their stability. No stable steady states were found
on upward-sloping ice sheet beds, in line with the earlier the-
ory of Weertman (1974) and Thomas and Bentley (1978), but
some of the numerical results in Vieli and Payne (2005) and
Pattyn et al. (2006) have left open the possibility of “neutral
equilibrium”. Using an analytical approach based on asymp-
totic expansions, Schoof (2007a) concluded that these results
were likely to be numerical artifacts for parameter regimes
in which there was significant sliding, predicting instead the
existence of discrete steady states dependent only on accu-
mulation rates, bedrock geometry and parameters describing
ice deformation and basal sliding. However, in the absence
of basal sliding,Nowicki and Wingham (2008) raise the pos-
sibility of non-unique steady states.

In addition to the question of whether steady states are dis-
tinct and whether their stability is controlled by bed slope,
other important issues to address are (i) how do equilibria de-

pend on bed geometry and the physics of sliding at the bed,
ice viscosity and gravitational forces as well as accumulation
rates, (ii) is hysteresis under changes in forcing and internal
physical properties possible when the bed is overdeepened,
(iii) to what extent is high grid resolution, especially near
the grounding line, necessary to obtain reliable results, and
(iv) is high resolution particularly important when modelling
transients?

Here we use the development of a boundary layer the-
ory for sheet-shelf interactions with rapid sliding (Schoof,
2007a) to facilitate an intercomparison exercise. This the-
ory takes a complementary approach to numerical marine ice
sheet models: it uses a systematic set of approximations to
“parameterize” the sheet-shelf transition zone in a simpler
“shallow ice” model, yielding a relationship between flux
across the grounding line and ice thickness at the same lo-
cation. The difference with other models is that the theory is
not specific to a particular numerical method. Importantly, it
allows steady states to be computed semi-analytically and at
low computational cost, and this has been used to guide the
experimental design for the present intercomparison.

The boundary layer refers to a zone a few kilometres to
tens of kilometres upstream of the grounding zone (Hind-
marsh, 2006; Schoof, 2007a) where the flow changes from
shelf-like at the grounding line (with significant extensional
stresses) to sheet-like further upstream (with flow dominated
by shear stresses). It is expected that producing an accurate
solution within the boundary layer is crucial to computing
grounding line motion accurately in numerical simulations
(Schoof, 2007a; Goldberg et al., 2009), and this idea lies be-
hind much of the experimental design of this intercompari-
son.

This paper describes the results of the first Marine Ice
Sheet Model Intercomparison Project (MISMIP), based on
an idealised two-dimensional ice sheet geometry. In total, 27
flow-line models participated in the project. This level of par-
ticipation is comparable to the ISMIP-HOM intercompari-
son project for higher-order ice sheet models (Pattyn et al.,
2008). Moreover, there is a sufficient spread in numerical ap-
proaches that allow for a broadly-based intercomparison. The
first section describes the basis of marine ice sheet models
and their boundary conditions, followed by the description
of the experiments. In the next section, results are presented
and analysed for both steady state conditions and transient
states, and the final section is the discussion of these results.

2 Model description

2.1 The underlying Stokes flow model

The basic problem is solving gravity-driven flow of an
isothermal, incompressible and nonlinear viscous ice mass.
Glen’s law is used as a constitutive equation relating stresses
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to strain rates, i.e.,

τij = 2ηDij , (1)

whereτ is the deviatoric stress tensor andDij are the com-
ponents of the strain rate tensor, defined by

Dij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

, (2)

and whereu is the velocity vector. The effective viscosityη
is expressed as

η = 2−1A−1/nD
(1−n)/n
e , (3)

where the strain-rate invariant,De is defined as 2D2
e =

DijDij (using the usual summation convention). We use
a spatially uniform coefficientA, whose value is varied be-
tween experiments, and setn = 3. The flow of an ice body is
computed by solving the Stokes problem (Stokes, 1845),

divu = 0, (4)

divτ − gradp = ρig , (5)

wherep is the isotropic pressure andg the gravitational ac-
celeration.

2.2 Boundary conditions for the underlying Stokes flow
model

The boundary conditions we use are essentially the same as
in Durand et al. (2009b). We consider an ice sheet along
a flow-line (x-direction) in plane flow, without lateral vari-
ations. The ice is, therefore, delimited in the vertical by two
free surfaces, i.e., the top interfacez = zs(x, t) between ice
and air, and the bottom interfacez = zb(x, t) between ice
and bedrock or sea. We denote bedrock above sea-levelb(x),
which is assumed to be fixed.

At x = 0, the ice divide is a symmetry axis, so that the
horizontal velocity component isux(0,z) = 0. The other end
of the domain is a calving front kept at a fixed positionx =

xc. We assume that the ice ends in a vertical cliff there. The
front boundary is subject to a normal stress due to the sea
pressurepw(z, t) that depends on elevation as:

pw(z, t) =

{

ρwg(zw − z), z < zw
0, z ≥ zw

(6)

whereρw is the sea water density andzw is sea level. Letn
be the outward-pointing unit normal to the ice surface andt

a unit tangent vector. Denoting total normal and shear stress
by

σnn = τijninj − p, σnt = τijni tj (7)

we can write boundary conditions at the shelf front asσnn =

pw andσnt = 0. The upper surfacez = zs(x, t) is stress-free,
implying that

σnn|s = 0 σnt = 0 (8)

The lower interfacez = zb(x, t) is either in contact with the
ocean or the bedrock, resulting in two different boundary
conditions. When in contact with the sea,zb(x, t) > b(x), the
same conditions as at the calving front are applied:
{

σnn|b = pw(z, t) ,

σnt |b = 0.
(9)

Where the ice is in contact with the bedrock,zb(x, t) = b(x),
different conditions are applied depending on whether the
ice is about to lift off from the bed or not: either the com-
pressive normal stress−σnn is larger than the water pres-
sure that would otherwise exist at that location and the ice
has zero normal velocity, or alternatively the normal ve-
locity is only constrained not to point into the bed. This
leads to a pair of complementary equation/inequality pairs
as in Schoof (2005); Gagliardini et al. (2007); Durand et al.
(2009a)

uini = 0 if − σnn > pw, (10)

uini ≤ 0 if − σnn = pw, (11)

and the free boundary between regions that are about to lift
off the beds and ones that are not must be determined as part
of the solution. In either of the cases in Eq. (10), we specify
a nonlinear friction law as

σnt |b = C|u|m−1ui ti . (12)

whereC andm are parameters of the friction law (Table 1).
Lastly, a kinematic boundary condition determines the

evolution of upper and lower surfaces:

∂zj

∂t
+ ux

∂zj

∂x
= uz + aj , (13)

whereaj is the accumulation/ablation (melting) term, with
ab = 0 andj = (b,s).

2.3 Approximations to the Stokes flow model

The model above is valid in the absence of any further
approximations and, therefore, represents the most accu-
rate mathematical description of marine ice sheet dynamics
within the intercomparison exercise. Numerical models la-
belled as full Stokes (FS) below solve this full system of
equations (Durand et al., 2009a,b). Owing to the consid-
erable computational effort, approximations to these equa-
tions are often used, such as higher-order, shallow-shelf and
shallow-ice approximations. They involve dropping terms
from the momentum balance equations as well as simplifying
the strain rate definitions and boundary conditions. Higher-
order Blatter-Pattyn type models (HOM) consider the hydro-
static approximation in the vertical direction by neglecting
vertical resistive stresses (Blatter, 1995; Pattyn, 2003; Pattyn
et al., 2006; Schoof and Hindmarsh, 2010). A further approx-
imation, known as the shallow-shelf approximation (SSA), is
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Table 1.List of parameters prescribed for the experiments, as well
as other symbols.

Parameter physical meaning

ρi ice density
ρw water density
g gravitational acceleration (g = |g|)
n exponent in Glen’s law
A Glen’s law coefficient
C bed friction parameter
m bed friction exponent
a accumulation rate
x horizontal coordinate
xg grounding line position
z vertical coordinate
zw sea level
h ice thickness
b bed elevation (m a.s.l.)
q ice flux
qg grounding line ice flux
u = (ux ,uz) ice velocity

obtained by neglecting vertical shear (MacAyeal, 1989). This
is valid for ice shelves and ice streams characterised by a low
basal drag and is the one used in the prototype experiments
for this intercomparison (Schoof, 2007a). The most common
approximation in large scale ice dynamics simulations is the
shallow-ice approximation (SIA). This approximation incor-
porates only vertical shear stress gradients opposing the grav-
itation drive, which is valid for an ice mass with a small
aspect ratio (i.e., thickness scale much smaller than length
scale). Its main advantage is that all stress and velocity com-
ponents are locally determined. However, the approximation
is not valid for key areas such as ice divides and grounding
lines (Hutter, 1983; Baral et al., 2001); models that remedy
this through the use of grounding line flux or grounding line
migration parameterizations based on matched asymptotics
(Schoof, 2007b, 2011) are classified as asymptotic models
(ASY) here. An overview of different Stokes approximations
and their validity is given in Hindmarsh (2004). SSA, SIA
and asymptotic models based on FS/SSA are described in
more detail in Appendix A, and our terminology is further
clarified in Table 2. Note that the only forces applied to the
shelf downstream of the grounding line are due to hydro-
static pressure from the seawater. For vertically integrated
models such as those based on the shallow-shelf approxima-
tion, this allows direct application of the sea-water pressure
at the grounding line, and in consequence it is not necessary
from a mechanical point of view to model the shelf. In con-
sequence, many of the simplified models in the intercompar-
ison do not have a shelf included.

2.4 Discretization

The most important numerical issue in marine ice sheet mod-
els is that the grounding line is a free boundary whose evo-
lution must somehow be tracked. There are several numer-
ical approaches in ice sheet models to simulate grounding
line migration: fixed grid (FG), stretched or “moving” grid
(MG) and adaptive techniques (Docquier et al., 2011). They
essentially differ in the way grounding lines are represented.
In FG models, the grounding line position is not defined
explicitly, but must fall between grid points where ice is
grounded and floating. Large-scale ice-sheet models (Huy-
brechts, 1990; Ritz et al., 2001) used this strategy to simulate
grounding line migration. Moving grid (MG) models allow
the grounding line position to be tracked explicitly and con-
tinuously by transforming to a stretched coordinate system in
which the grounding line coincides exactly with a grid point
(Hindmarsh, 1993; Hindmarsh and Le Meur, 2001). Adap-
tive grids apply a mesh refinement around the grounding line
without necessarily transforming to a coordinate system in
which grounded ice occupies a fixed domain as in an MG
model (Durand et al., 2009a). Adaptive refinement, for in-
stance, allows grid elements to be refined or coarsened de-
pending on the level of resolution required to keep numerical
error locally below an imposed tolerance (Goldberg et al.,
2009). Some FG models, while not using a refined mesh
around the grounding line, can be adapted in such a way
that sub-grid grounding line position and migration can be
achieved through local interpolations. For instance, the FG
model of Pattyn et al. (2006) determines grounding line po-
sition at sub-grid resolution using a flotation criterion, while
the adapted grid (AG) models in Gladstone et al. (2010a) use
several interpolation schemes in combination with locally in-
creased resolution for the same purpose.

Previous studies have indicated that it is necessary to re-
solve the transition zone/boundary layer at sufficiently fine
resolution in order to capture grounding line migration ac-
curately. In large scale models, this can lead to unaccept-
ably small time steps and costly integrations. Pollard and
DeConto (2009) incorporated the boundary layer solution
in Schoof (2007a) directly in a numerical ice sheet model
at coarse grid resolution by applying a heuristic rule: if the
analytically computed boundary layer flux across the actual
grounding lineqg from (Eq. A12, see Appendix) is greater
than the modelled flux through the last grounded grid point
qi , then qg is imposed at that grid point (Docquier et al.,
2011). Otherwise,qg is imposed one grid point further down-
stream (i.e., the first floating grid point). The former is usu-
ally associated with grounding line retreat and the latter usu-
ally with grounding line advance:

qg > qi : qi = qg or ui =
qg

hi

,

qg < qi : qi+1 = qg or ui+1 =
qg

hi+1
. (14)

The Cryosphere, 6, 573–588, 2012 www.the-cryosphere.net/6/573/2012/
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Table 2. List of participating models. FG= Fixed grid model, FGH= FG model with use of Pollard and DeConto heuristic (which is
equivalent to the asymptotic model B∗ of Appendix A3 when used with a shallow ice model for flux, as in model DPO1), MG= moving grid
model, AG= adaptive grid model, HPOMG= MG using high polynomial-order finite difference stencils, SIA= Shallow Ice Approximation
without explicit model of grounding line migration (i.e., no flux condition at the grounding line), SSA= Shallow-Shelf Approximation,
SSA-H= Shallow-Shelf Approximation with heuristic Eq. (14) at the grounding line, HOM= Higher-Order Model, FS= full-Stokes model.
The asymptotic models ASY are described in Appendix A3. These are SIA models that include a systematic parameterization of grounding
line migration based on near-grounding line boundary layer in which the shallow ice approximation fails. An SIA/SSA model in which the
SSA is used to compute basal sliding rates, and a SIA correction is applied to compute flux due to vertical shearing (Bueler and Brown,
2009).

Contributor Model Discret. Approx. min(1x) Reference

A. Vieli AVI1 MG SSA 1.2 Vieli and Payne (2005)
AVI2 MG ASY 1.2 Vieli and Payne (2005)

B. de Fleurian BDF1 FG SIA 1.2 Ritz et al. (2001)
C. Schoof CSC1 MG SSA 0.118 Schoof (2007b)

CSC2 MG ASY 1.2 Schoof (2007b), Model B
CSC3 MG ASY 0.118 Schoof (2007b), Model A

D. Goldberg DNG1 AG SSA Goldberg et al. (2009)
D. Pollard DPO1 FGH ASY 1.2 Pollard and DeConto (2009)

DPO2 FG/AG SIA 0.1 Pollard and DeConto (2009)
DPO3 FGH SSA-H 1.2 Pollard and DeConto (2009)
DPO4 FG/AG SSA 0.1 Pollard and DeConto (2009)

E. Bueler EBU1 FG SSA 6.0 Bueler and Brown (2009)
EBU2 FG SIA/SSA 6.0 Bueler and Brown (2009)

F. M. Nick FNI1 MG SSA 1.2 Nick et al. (2009)
F. Pattyn FPA1a FG SIA 6.0 Pattyn et al. (2006)

FPA2a FG HOM 6.0 Pattyn et al. (2006)
FPA3a FGH SSA-H 1.2 Docquier et al. (2011)
FPA4b FGH SSA-H 1.2 Docquier et al. (2011)
FPA5b FG SSA 0.3 Docquier et al. (2011)

F. Saito FSA1c FG SSA 12.0 Saito et al. (2003)
FSA2d FG SSA 12.0 Saito et al. (2003)

G. Durand GDU1 AG FS 0.2 Durand et al. (2009a)
G. H. Gudmundsson HGU1 MG SSA 1.2 unpublished (2011)
O. Rybak ORY1 FGH ASY 2.0 unpublished (2009)
R. Gladstone RGL5e FG SSA 0.15 Gladstone et al. (2010a)

RGL6 AG SSA 1.2 Gladstone et al. (2010b)
R. Hindmarsh RHI1 HPOMG SSA 1.2 unpublished (2008)

a FPA1, FPA2, FPA3: non-staggered grid,b FPA4, FPA5: staggered grid,c FSA1: uses a 4th order difference scheme for computing
velocity gradients,d FSA2: uses a 2nd order difference scheme for computing velocity gradients,e RGL: while many more model
results were submitted, we limit the analysis to only two models.

The above-described Pollard and DeConto heuristic is imple-
mented in a number of models that we describe as “fixed grid
with heuristic” models (FGH). When applied to SSA mod-
els, we identify those as being “SSA-H” as introducing the
heuristic (Eq. 14) changes the mathematical structure of the
model. When applied to an SIA model, the heuristic Eq. (14)
in fact results in a discretization of the asymptotic (ASY)
model B∗ described in Appendix A3, and we consequently
classify these as being of type ASY.

A complete list of participating models and their charac-
teristics is given in Table 2. Note, however, that most models
are SSA and SSA-H, which makes it difficult to compare dif-
ferent approximations to the Stokes equations (as opposed to
different discretizations of the same approximation). How-

ever, as is shown below, discrepancies between models ap-
pear to be dominated by the discretization method chosen,
indicating that some of these may not perform well at solv-
ing the differential equations on which they are based.

3 Experimental setup

All information and documentation concerning the MISMIP
experiments can be found on the MISMIP website (http:
//homepages.ulb.ac.be/∼fpattyn/mismip). The experimental
specification document is also included as supporting online
material.

www.the-cryosphere.net/6/573/2012/ The Cryosphere, 6, 573–588, 2012
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Fig. 1. Results of EXP 1 and 2 performed with a participating FGH model (Docquier et al., 2011) with1x = 12.5 km. The different panels
show the steady state ice sheet profiles (EXP 1= advance, EXP 2= retreat – note that the profiles of both advance and retreat overlap)
with the red profile the final profile at the end of EXP 2, the position of the grounding line in time, steady state grounding line positions as
a function of the forcing viscosity (A−1), and the forcing ofA−1 over time.

3.1 Relaxation to steady state on a downward-sloping
bed (EXP 1)

The theory in Weertman (1974) suggests that, for a fixed ac-
cumulation rate, there should be a single stable equilibrium
profile for a marine ice sheet along a flowline on a down-
ward sloping bed (Fig. 1). To compare model output against
this result, we used a simple bed shape with a constant down-
ward slope given by Schoof (2007b)

b(x) = 720− 778.5×
x

750 km
(15)

whereb is the bed elevation (m a.s.l.). In order to attain dif-
ferent equilibria, Glen’s flow law rate factorA is varied as
shown in Table 3: largerA corresponds to smaller ice sheets.
Table 1 lists the symbols used for various parameters that are
prescribed, and the numerical values to be used for these pa-
rameters are given in Tables 3 and 4.

We use fixed parameter values for accumulation ratea, ice
and water densitiesρi andρw, acceleration due to gravityg
and Glen’s law exponentn in Table 4. The sliding law expo-
nent (m = 1/3) and the coefficientC in Table 4 is chosen to
give sliding velocities around 35 m a−1 for a driving stress of
80 kPa.

Table 3.Values ofA used in EXP 1.

Step no. A (s−1 Pa−3)

1 4.6416× 10−24

2 2.1544× 10−24

3 10−24

4 4.6416× 10−25

5 2.1544× 10−25

6 10−25

7 4.6416× 10−26

8 2.1544× 10−26

9 10−26

Each model run (with the values ofA and C, m as de-
scribed above) starts from a ten metre layer of ice on land,
extended up to the position where this ten metre layer be-
comes afloat (x = 694.5 km). Models are run to steady state
for each setting ofA (Fig. 1).

The Cryosphere, 6, 573–588, 2012 www.the-cryosphere.net/6/573/2012/



F. Pattyn et al.: Marine Ice Sheet Model Intercomparison Project 579

Table 4. List of parameter values. With the chosen value ofC,
a basal shear stress of 80 kPa corresponds to a sliding velocity of
about 35 m a−1.

Parameter value

ρi 900 kg m−3

ρw 1000 kg m−3

g 9.8 m s−2

n 3
a 0.3 m yr−1

m 1/3
C 7.624× 106 Pa m−1/3 s1/3

3.2 Reversal of parameter changes (EXP 2)

The discussion about neutral equilibria in marine ice sheets
motivates EXP 2, which is a follow-up to EXP 1. We wish
to establish whether the ice sheet relaxes back to the same
equilibrium profile during a retreat that follows the advance.
EXP 2 starts from the final ice sheet profile obtained from
EXP 1. With this initial condition,A is set to the value in run
no. 8 in Table 3, and the ice sheet is allowed to relax to a new
equilibrium. Subsequently,A is reduced to the value in run
no. 7 in Table 3, and again the ice sheet is allowed to relax to
equilibrium. This proceeds until the value ofA in run no. 1
in Table 3 is attained. Sample results for both EXP 1 and 2
from one of the participating models are displayed in Fig. 1.

3.3 Hysteresis (EXP 3)

The results in Schoof (2007a) indicate that ice sheets can un-
dergo hysteresis under parameter variations when the shape
of the bed has an overdeepening. This experiment aims at as-
sessing whether other ice sheet models exhibit the same be-
haviour, and to assess further how transients differ between
different models and discretizations. We deliberately use step
changes in parameters to isolate the threshold behaviour ex-
pected (and to allow comparison with semi-analytical steady
states by allowing relaxation to steady state following each
step change). We use the same overdeepened polynomial bed
shape as in Schoof (2007a) (Fig. 2):

b(x) = 729− 2184.8×

( x

750 km

)2
+ 1031.72

×

( x

750 km

)4
− 151.72×

( x

750 km

)6
m. (16)

The values forA to be used in EXP 3 are given in Table 5.
The experiment is conducted as follows: as in EXP 1, the
model domain is set up with a 10 m thick grounded ice layer
up to the location where this becomes afloat (x = 479.1 km).
The model is then run with the valueA given for “step 1” in
Table 5, as appropriate, for the time interval given for “step
1”. Subsequently, the value ofA is changed to that given for
“step 2” thereby leaving the ice sheet geometry unchanged.

Table 5.Values ofA and time intervals used in EXP 3a.

Step no. A (s−1 Pa−3) time interval (years)

1 3× 10−25 3× 104

2 2.5× 10−25 1.5× 104

3 2× 10−25 1.5× 104

4 1.5× 10−25 1.5× 104

5 1× 10−25 1.5× 104

6 5× 10−26 3× 104

7 2.5× 10−26 3× 104

8 5× 10−26 1.5× 104

9 1× 10−25 1.5× 104

10 1.5× 10−25 3× 104

11 2× 10−25 3× 104

12 2.5× 10−25 3× 104

13 3× 10−25 1.5× 104

The model is run for the time interval given for “step 2”.
This is continued until the end of the table is reached. The
different time intervals have been chosen to account for the
fact that some changes inA result in irreversible transitions
across the overdeepening, and these transitions can be antic-
ipated to take longer to complete than the smaller ice sheet
adjustments that occur for other steps inA (see also the sam-
ple results in Fig. 2).

3.4 Grid spacing and time steps (Mode M1, M2 and M3)

Each of the experiments EXP 1–3 are conducted at three grid
resolutions. Mode M1 consists of a computational domain
of 100 equally spaced horizontal grid points (1x = 12 km).
Nested grids or local grid refinements are not allowed in this
mode. However, a stretched coordinate system of the form
σ = x/xg is permitted for MG models, in which case a uni-
form grid in σ with 100 grid points is applied. Mode M2 is
similar to Mode M1, but with 1000 equally spaced horizontal
grid points in the domain (1x = 1.2 km). Finally, Mode M3
has a grid definition at will. This mode allows for local grid
refinements near the grounding line, which may be crucial to
obtain accurate results. The aim of this mode is to produce
the most accurate results for every user.

Time steps are specified by the user as needed to satisfy
stability criteria. They are chosen such that results are insen-
sitive to changes in the time step.

4 Results

4.1 Downward-sloping bed (EXP 1 and 2)

4.1.1 Steady state analysis for SSA and SSA-H models

Figure 3 displays the steady state SSA- and SSA-H-model
grounding-line positions as a function of ice viscosity (A−1)
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Fig. 2. Results of EXP 3 performed with a participating FGH model (Docquier et al., 2011) with1x = 12.5 km. The different panels show
the steady state ice sheet profiles with the red profile, the final profile at the end of EXP 3, the position of the grounding line in time, steady
state grounding line positions as a function of the forcing viscosity (A−1) and the forcing ofA−1 over time. The green line is the path
according to the boundary layer theory (Schoof, 2007a).

for EXP 1 and 2. We deliberately left out the few other mod-
els that have other approximations to the Stokes flow prob-
lem (SIA, SIA/SSA, HOM, FS, Asymptotic) in order to fa-
cilitate the comparison. An analysis of the other physical ap-
proximations is reported in the sections on the overdeepened
bed experiment (EXP 3) and the discussion.

A reassuring observation is that most models are capable
of producing the advance of the grounding line when a step-
change perturbation in flow parameterA is invoked. The only
models that fail to advance the grounding line (or to cause it
to retreat in EXP 2) are fixed grid models at too low res-
olution (red circles in Fig.3, Mode M1). At higher spatial
resolutions, FG models simulate an advance/retreat of the
grounding line in closer accordance with the boundary layer
theory (Fig. 3, Mode M2 and M3), albeit that retreat simula-
tions show less agreement. Models that incorporate adaptive
grid refinement (AG models) generally agree better with the
theoretical steady state solutions than FG models, which may
be attributed to the higher spatial resolution in the boundary
layer.

More robust results are obtained with MG models. This
is not surprising as they follow the grounding line precisely
and do not rely on any interpolation of the grounding line be-

tween grid points. However, differences between SSA MG
models and the theoretical curve are of the order of tens
of kilometres. This difference tends to get smaller when
a higher resolution is applied.

Results that are the most in agreement with theory are pro-
duced with SSA-H FGH models and the HPOMG model.
SSA-H FGH models are fixed grid (FG) models that ex-
plicitly incorporate the boundary layer theory by setting the
grounding line fluxes to the theoretical flux according to
Eq. (A12). They are, therefore, not strictly speaking self-
consistent discretizations of the SSA equations, as the latter
do not explicitly include the flux relation Eq. (A12). How-
ever, as expected, the steady state grounding line position is
within metres to tens of metres from the theoretical value
required by the boundary layer theory, and this result is inde-
pendent of the grid resolution applied.

The HPOMG model is a consistent numerical discretiza-
tion of the SSA equations (without the heuristic “fix” of the
SSA-H FGH models) that has very high accuracy within
the boundary layer. The agreement between this model and
the boundary layer theory is interesting because the latter is
based on an asymptotic limit that is not attained by any finite
parameter values, and the boundary layer results, therefore,
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Fig. 3. Steady state grounding-line positions for advance (left) and retreat (right) as a function of ice viscosity (A−1) for Mode M1 (top),
Mode M2 (centre) and Mode M3 (bottom). Colour coding according to model type: MG= moving grid, AG= Adapted grid, FG= fixed
grid, FGH= SSA-H fixed grid with heuristic rule, HPOMG= MG using high polynomial-order finite difference stencils at the grounding
line. The solution according to the boundary layer theory (Schoof, 2007a) is given as a black line (inside the FGH and HPOMG cluster).

remain approximate, albeit with an error that goes to zero in
the asymptotic limit. Consequently, the numerical and the-
oretical curves need not overlap precisely, but the HPOMG
model with its high accuracy in the boundary layer produces
results in close agreement with the boundary layer theory,
giving added confidence in the latter.

In general, models converge better to the steady state
Schoof (2007a) solution with increasing grid resolution (e.g.,
Mode M2 and M3), but the difference between each model
steady state grounding line position and the Schoof (2007a)

solution largely depends on the numerical approach (order
of hundreds of meters for SSA-H FGH and HPOMG mod-
els; order of 50–100 km for MG and AG models; more than
200 km for FG models).

According to the theory in Schoof (2007a,b), steady
grounding-line positions during the retreat experiments
should be exactly the same as during advance, as steady
state grounding line positions are unique on a downward-
sloping bed. Any difference should then be a numerical ar-
tifact, most likely due to under-resolution. It appears that
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FG and AG models are most susceptible to this; for coarse
grid sizes, grounding line advance and retreat is not always
guaranteed. Agreement between advance and retreat in these
models improves when smaller grid sizes are applied. SSA-H
FGH models, with their explicit incorporation of the flux for-
mula Eq. (A12) very accurately reproduce the same advance
and retreat steady state grounding line positions whenever
a staggered grid is used. For each model we can calculate
the difference between the starting steady state of EXP 1 for
the first value ofA in Table 3 and the final steady state of
EXP 2 for the same value ofA. Both grounding line positions
should be the same. The difference is of the order of 10 m
for SSA-H FGH and SSA HPOMG models; 100–1000 m for
MG models; tens of kilometres for AG models and hundreds
of kilometres for FG models. It is noteworthy that SSA-H
FGH models are accurate irrespective of the grid size used,
which is not the case for SSA FG or AG models.

While most fixed grid (FG) models perform well in ad-
vancing the grounding line, retreat only occurs when the res-
olution is sufficiently high (EXP 1 vs. EXP 2). This was al-
ready observed in earlier intercomparisons of grounding line
motion with FG models (Huybrechts et al., 1998). Therefore,
large-scale FG models of the Greenland and Antarctic ice
sheet can be questioned to accurately reproduce grounding
line retreat, unless refinements at the grounding line are ap-
plied (such as AG refinements).

4.1.2 Transient behaviour for SSA and SSA-H models

The Model B boundary layer theory developed by Schoof
(2007a,b, 2011) is valid over long time periods. However, the
theory omits brief transients in which the ice surface inside
the boundary layer adjusts after changes in parameters such

asA and we expect models that do not use the Schoof for-
mula (i.e., all models apart from SSA-H FGH) to differ from
the theoretical curve in that respect. To compare the differ-
ent models, we plotted the transient change in ice flux and
grounding line thickness for each SSA and SSA-H model as
well as the same curve for the boundary layer theory in a log-
arithmic plot (Fig. 4). According to the boundary layer theory
Eq. (A12), the relation between grounding line ice thickness
and flux takes the form

q(xg) ∝ A
1

m+1 [h(xg)]
m+n+3
m+1 (17)

Since the experiments all predict a continuing advance into
deeper water, we replace the time coordinate by the thick-
ness and plot flux against thickness as a representation of
the evolution. Using the values form andn according to Ta-
ble 4, the exponent on the right-hand side equals(m + n +

3)/(m+1) = 4.75. In a logarithmic plot, this relationship re-
sults in a straight line with a slope corresponding to this ex-
ponent of 4.75 (black line in Fig. 4). The different model
results are plotted every 50 yr. Therefore, dots that lie close
together represent a solution that converges toward a steady
state. By contrast, dots lying far apart along the line repre-
sent an abrupt change, generally corresponding to the initial
sudden change inA at the start of each step in the experi-
ment. Since the experiment describes a grounding line ad-
vance, the time evolution in Fig. 4 can be established by fol-
lowing the dots from left to right along each curve. To make
a sensible evaluation possible, only SSA models capable of
producing an advance of the grounding line following the
forcing of EXP 1 are considered. Furthermore, we only se-
lected the model resolution that produces the “best” results
(either Mode M2 or M3)1.

Again, reassuringly, all models produce a similar rela-
tionship between grounding line flux and ice thickness with
an overall power-law dependence of flux upon thickness
(Fig. 4). However, upon closer inspection, the slope of the
curves – equivalent to the exponent in Eq. (17) – differs
slightly between the different numerical approaches. As ex-
pected, SSA-H FGH models follow the theoretical line with
slope 4.75, since they are prescribed to do so by Eq. (17).
Apart from an initial transient after a step change inA, the
SSA HPOMG model closely follows the predictions of the
boundary layer theory. This initial transient is expected and
we can be relatively confident that the SSA HPOMG model
produces correct transient behaviour. Other MG models ex-
hibit similar behaviour, but differ more noticeable from the
predictions of boundary layer theory. Presumably, these ini-
tial transients are associated with the readjustment of ice ge-
ometry in the boundary layer described above, during which
the grounding line and, hence, ice thicknesshg have not

1The “best” model result is the result according to Mode M3; if
that is not available, the 1.2 km resolution Mode M2 was retained.
Mode M1 results are discarded, since the resolution is too low (see
Sect. 4.1).
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Fig. 5. Steady state grounding line positions as a function of ice viscosity (A−1) for EXP 3 (all models, only the “best” Mode for each of
the models is retained). Colour coding and symbols according to the numerical implementation (see Fig. 3): MG (green triangles), AG (cyan
squares), HPOMG (yellow inverted triangles), FG (red circles) and FGH (blue stars). The Schoof (2007a) solution is a black line.

changed significantly yet. During that phase, ice flux dif-
fers considerably from the theoretical prediction. Similar be-
haviour was previously found in Schoof (2007a), Fig. 10.

Other SSA models also deviate from a straight line in
Fig. 4 by displaying spikes and these seem to depend on the
numerical method employed. SSA-H FGH models fit much
closer to the theoretical line than other SSA models as ex-
pected. Deviations from the straight line for SSA-H FGH
models are not necessarily associated with sudden changes
in A (only the larger spikes are), but related to grid jumps
as the grounding line advances of the finite difference grid.
Similarly, SSA FG models are largely biased by grid jumps,
a bias that is reduced with increasing resolution (Fig. 4) and,
therefore, indicative of numerical error. The same goes for
AG models, which are also largely biased by the grid resolu-
tion (a higher resolution gives better results).

4.2 Hysteresis (EXP 3)

The main purpose of EXP 3 is to find out whether nu-
merical marine ice sheet models fail to reproduce steady
state grounding line positions on an upward-sloping bedrock,
as shown by theoretical considerations (Weertman, 1974;
Schoof, 2007b). Forcing the model by decreasingA (in-

creasing viscosity) leads to an advance of the grounding line
across a downward sloping bedrock until the upward-sloping
bed portion is reached. When the ice flux at the grounding
line becomes sufficiently high, the grounding line will tra-
verse this “unstable” sector until a new steady state position
is found on the next portion of downward sloping bedrock.
The retreat part of the experiment should then inevitably lead
to hysteresis, as a sufficient reduction in grounding line ice
flux (increase inA) is needed to make the jump over the “un-
stable” part again. This is illustrated in Fig. 2. In view of
this hysteresis, the advance and return path of grounding line
positions is no longer along a single line, but follows an S-
shaped curve (Fig. 5), characterised by two stable branches
(the upper and lower branch of the S-curve) and an unstable
one (the central portion of the S-curve). Steady state ground-
ing line positions are expected to be found only on the upper
and lower branch of that curve.

Contrary to the previous section (EXP 1 and 2), we do
not limit our analysis to SSA models only, but consider the
entire range of both physical and numerical approximations.
Furthermore, only the “best” (Mode M2 or M3) result of each
of the models was retained. However, not all participating
models carried out this experiment. Results of those that did
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so are displayed in Fig. 5. Obviously, the same conclusions
apply as to the previous section, but here we will focus on the
ability of the different models to produce the jump across the
“unstable” part, leading to hysteresis. We also anticipate that
different models will have different thresholds. This would
be an important observation as it indicates that observations
of thresholding behaviour in numerical simulations of real
ice sheets may be subject to significant uncertainty.

Most models are capable of producing the advance and
retreat of the grounding line and in doing so generate a hys-
teresis loop (Fig. 5). Only FG models (SIA and SSA) at too
low horizontal resolution (> 1 km) are not capable of even
advancing the grounding line across the unstable part. None
of the participating SIA models is capable of reproducing
the hysteresis. For those models that do advance across the
overdeepening, the exact position at which the “jump” across
the unstable branch happens is again model dependent. This
dependency can be largely attributed to the discretization,
as the bedrock slope changes in space (and was constant in
EXP 1 and 2). This is one of the reasons why low resolution
results are discarded in this analysis (for M1 the spread is
simply too large). For the high-resolution models, the jump
is generally at the position where theory predicts it.

It remains very difficult at this point to distinguish between
the performances of the different physical approximations.
The participating AG full-Stokes model produces the hys-
teresis loop as predicted, but the exact location of the steady
state grounding line position as well as the location of the
“jump” is different from the position predicted by boundary
layer theory. This could be either due to the difference in
physical model, but also due to numerical under-sampling in
the vicinity of the grounding line.

5 Discussion and conclusions

For the first time, a large-scale intercomparison exercise has
been conducted to test numerical marine ice-sheet models.
Verification of the results was done with a semi-analytical
solution based on boundary layer theory (Schoof, 2007a,b).
The intercomparison comprised a large variety of models,
both on the level of physical approximations to the Stokes
flow, as on the level of numerical approaches (fixed grid,
moving grid, adaptive grid). However, despite the large num-
ber of submissions, the majority of models were of the
SSA type (Shallow-Shelf or “shelfy stream” Approxima-
tion), which hampers a detailed comparison of different lev-
els of approximation to the Stokes equation (only one full-
Stokes models based on the AG method participated). This
shifted the scope of the present paper toward discussing the
impact of different numerical approximations on grounding
line migration and marine ice sheet instability.

Moving grid (MG) models are probably the most reliable
from a numerical point of view, since the grounding line is
part of the solution and no interpolations are involved; all

other models introduce interpolations of the grounding line
between grid points, and results will be biased by the im-
posed grid resolution. However, MG models are not so easily
translated into two-dimensional planform models of ground-
ing line migration, hampering their use for large scale simu-
lations of Antarctic and Greenland ice sheets.

While MG models give the most accurate steady state re-
sults on a downward-sloping bedrock, FG models give com-
parable results as long as the grid size is sufficiently small.
Adapted grid models perform in a similar way, but are less
time consuming since they use smaller grid sizes for only
a part of the domain, around the grounding line. For both
model types the horizontal grid resolution should be of the
order of hundreds to several hundreds of metres. Models that
produce steady state grounding line positions in close agree-
ment with the boundary layer theory are not surprisingly the
FGH models, in which the boundary layer theory is used to
control fluxes at the grounding line.

As for time-dependent responses, the boundary layer the-
ory developed by Schoof (2007b) is expected to be valid ex-
cept for a short transient. In the MISMIP experiments, sud-
den jumps inA drive the migration of the grounding line.
This leads to transient discrepancies between predicted and
computed fluxes for approximately 50 to 100 yr, and these
are expected to result from the adjustment of ice geometry
in the boundary layer to the new forcing. For slower and,
therefore, possibly more realistic, perturbations, these tran-
sients discrepancies may well be smaller. While the bound-
ary layer theory predicts a simple power-law relationship be-
tween grounding line flux and ice thickness, transient effects
produce a deviation from this function. The MG models pro-
duce the most robust results, and all participating SSA mod-
els produce similar transient results. SSA-H (FGH) models
fail to reproduce the short transients following step changes
in forcing parameters, as they use boundary layer theory re-
sults to control fluxes across the grounding lines. Instead,
deviations from the boundary layer theory are then numer-
ical artifacts due to jumps in the grounding line from one
grid point to another. Similar effects due to jumps between
grid points are observable in FG and AG models that (un-
like SSA-H FGH models) do not explicitly use the boundary
layer theory. The effect of these grid jumps is considerably
reduced in amplitude when a sufficiently small grid size is
employed near the grounding line, typically with spacings
< 200 m.

The only full-Stokes model that participated in the inter-
comparison is the Elmer/Ice model (Durand et al., 2009a).
This is an AG model, which like other AG models has the
grounding line lying between grid points. As shown in (Du-
rand et al., 2009b,a), results from the model are grid size de-
pendent, with node spacings of less than 100 m necessary
to obtain self-consistent results. However, with the small-
est grid spacings used, the steady state grounding line posi-
tions in this model still lie several tens of kilometres from
the position predicted by boundary layer theory, which is
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considerably further than the discrepancy between highly
resolved SSA models and the boundary layer theory. This
was already observed in Durand et al. (2009a). The obvious
conclusion is that full-Stokes models include all the higher
order corrections neglected by SSA models, and that this
leads to a noticeable correction in the grounding line position
of tens of kilometres. Importantly, the boundary layer the-
ory can be derived either directly from the Stokes equations
(Schoof, 2011) or from the SSA equations (Schoof, 2007a),
and may be a better approximation to the latter for the param-
eter choices used in the MISMIP experiments. Schoof (2011)
discusses, in further detail, the additional restrictions on pa-
rameter choices required to make the boundary layer theory
a good approximation to a full-Stokes model, as opposed to
the looser restrictions required to obtain a good approxima-
tion to an SSA model.

These results may seem to indicate a need to solve the full-
Stokes equations near the grounding line to obtain fully ac-
curate results. Whether this is a worthwhile undertaking in
view of the additional cost is a question of available com-
puting resources, and of other uncertainties in the model: for
instance, no matter whether a full-Stokes model or a simpler
one such as the SSA or the boundary layer theory are em-
ployed, assumptions have to be made about material prop-
erties, and these may introduce bigger errors than the choice
of full Stokes versus simpler ice flow models. This is particu-
larly relevant with regard to sliding behaviour, whose physics
is likely to be poorly constrained by observations for many
ice flow simulations.

Nonetheless, an appropriate representation of grounding
line migration in numerical models is essential. Although
these large outlet glaciers and ice streams near marine mar-
gins often exhibit fast flow dominated by longitudinal stress
effects, this does not exclude a significant contribution of ver-
tical shearing. The boundary layer theory, on which we have
built the present intercomparison, is based on the assumption
of rapid sliding near the grounding line (though this need not
imply rapid sliding further upstream see Schoof, 2011), and
cannot accurately represent grounding lines in whose vicin-
ity sliding is slow compared with shearing, or even absent
altogether. These are also regions in which the SSA can be
expected to fail, and for them an alternative theory along
the lines of Nowicki and Wingham (2008) (with appropri-
ate scalings developed by Chugunov and Wilchinsky, 1996)
is more appropriate. Even in the presence of rapid sliding,
we note that the asymptotic Model A (Appendix A3) may be
a better representation of transient grounding line dynamics
than the flux prescription Eq. (A12) used in the FGH models
considered here (Schoof, 2007b).

Next-generation marine ice sheet models should be capa-
ble of producing adequate response of grounding line migra-
tion to external forcing, and the present-day series of large-
scale FG models is not ideally suited to this task (IPCC,
2010). Implementation of grounding line migration requires
resolving the transition zone at sufficient high resolution, ei-

ther by using a moving grid approach (following the ground-
ing line directly) or by sufficient fine sub-sampling around
the grounding line. Importantly, SIA models that do not in-
clude an explicit condition on grounding line flux or the mi-
gration of the grounding line as a moving boundary fail to
pass all tests based on the boundary layer theory of Schoof
(2007a,b, 2011).

These experiments are deliberately omitting lateral varia-
tions to enable comparison with boundary layer theory. How-
ever, a new intercomparison exercise for three-dimensional
marine ice sheet models is on its way.

Appendix A

Main model descriptions

A1 SSA model

The simplest possible model for a marine ice sheet that ac-
counts for the longitudinal stresses that couple ice shelf to
ice sheet is the Shallow-Shelf Approximation (SSA). It de-
scribes a rapidly sliding ice sheet in which there is no verti-
cal variation in horizontal ice velocity over the thickness of
the ice (Muszynski and Birchfield, 1987). Furthermore, nor-
mal stress at the base and upper surface of the ice is cryo-
static, which allows the normal stress conditions in Eqs. (8)
and (10) into a simple flotation condition, see also Schoof
(2007b, 2011). For a grounded ice sheet that occupies the re-
gion 0< x < xg, where the grounding line positionxg can
change over timet , the mass (Eq. 13) and momentum (Eq. 5)
conservation are described by

∂h

∂t
+

∂(hux)

∂x
= a , (A1)

∂

∂x

[

2A−1/nh

∣

∣

∣

∣

∂ux

∂x

∣

∣

∣

∣

1/n−1
∂ux

∂x

]

− C|ux |
m−1ux

−ρigh
∂(h + b)

∂x
= 0. (A2)

Upstream of the grounding linex < xg, ice thickness must
exceed or at least attain its flotation value (this results from
the constraints on normal stress in Eq. 10 coupled with the
approximation of cryostatic stress), while downstreamx >

xg, the ice is freely floating and, hence, its thickness is less
than the maximum flotation value. Hence,

h ≥ −
ρw

ρi
b x < xg,

h < −
ρw

ρi
b x > xg.

At the grounding line itself,x = xg, the ice, therefore, just
becomes afloat, while coupling with the ice shelf (assumed

www.the-cryosphere.net/6/573/2012/ The Cryosphere, 6, 573–588, 2012



586 F. Pattyn et al.: Marine Ice Sheet Model Intercomparison Project

unbuttressed) imposes a longitudinal stress:

h = −
ρw

ρi
b , (A3)

2A−1/nh

∣

∣

∣

∣

∂ux

∂x

∣

∣

∣

∣

1/n−1
∂ux

∂x
=

1

2
ρi

(

1−
ρi

ρw

)

gh2 , atx = xg . (A4)

Alternatively, the model can easily be adapted by adding an
ice shelf. In principle, the boundary conditions (Eqs. A3 and
A4) arise from integrating equations for an attached ice shelf.
An alternative formulation is to resolve the attached shelf.
Let the shelf occupy a domainxg < x < xc, wherexc is the
calving front (or the downstream edge of the domain). Mo-
mentum conservation for the shelf then becomes

∂

∂x

[

2A−1/nh

∣

∣

∣

∣

∂ux

∂x

∣

∣

∣

∣

1/n−1
∂ux

∂x

]

− ρi

(

1−
ρi

ρw

)

gh
∂h

∂x
= 0, (A5)

while Eq. (A2) is retained as descriptions for the grounded
ice sheet. At the calving front, there is an imbalance between
hydrostatic pressures in ice and water due to the buoyancy of
ice. This imbalance must be compensated by a longitudinal
stress, and Eq. (A4) is applied atx = xc.

A2 SIA model

Even simpler than the marine ice sheet model above Eq. (A1)
is the Shallow-Ice Approximation (SIA) that takes into ac-
count vertical shearing, but omits longitudinal stresses that
couple ice shelf to ice sheet. For a grounded ice sheet that
occupies the region 0< x < xg, where the grounding line
positionxg can change over timet , the mass (Eq. 13) and
momentum (Eq. 5) conservation are described by

∂h

∂t
+

∂(hūx)

∂x
= a , (A6)

whereūx is a vertically averaged horizontal velocity given
by

ūx = −

(

ρigh

C

)1/m ∣
∣

∣

∣

∂(h + b)

∂x

∣

∣

∣

∣

1/m−1
∂(h + b)
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−
2

n + 2
A (ρig)nhn+1

∣

∣

∣

∣

∂(h + b)

∂x

∣

∣

∣

∣

n−1
∂(h + b)

∂x
. (A7)

The simplicity of the model lies in the fact thatux is defined
locally and only depends on local geometric characteristics,
such as surface slope and ice thickness. However, as formu-
lated, this model lacks boundary conditions at the grounding
line (or the ice divide, where we requireux = 0). In models
classified as “SIA” here, only a flotation condition is applied
at the grounding linex = xg,

h = −
ρw

ρi
b. (A8)

but no other condition. As Eqs. (A6) and (A7) combine to
give a parabolic problem forh, a single boundary condition

is not sufficient to describe a moving grounding line and the
intercomparison results bear this out. Models of this type la-
belled “SIA” in the main text and show no migration of the
grounding line. It is possible to add an additional condition
that controls grounding line migration, and this is done in
the asymptotic models described next. Note that adding the
Pollard and DeConto heuristic rule (Eq. 14) to a shallow ice
model as described above (in order to take into account lon-
gitudinal stress coupling across the grounding line) leads to
model B∗ below.

A3 Asymptotic models (ASY)

In this section, we describe four shallow ice-type models
combine the simplicity of an SIA model (which does not
require an elliptic equation to be solved for velocity) with
the ability of SSA models to account for longitudinal stress
coupling across the grounding line. These shallow ice mod-
els are based on the boundary layer theory due to Schoof
(2007a). As described in Schoof (2007b), they are in good
agreement with numerical results for the SSA model, at least
for the particular discretizations employed in that paper. All
the shallow ice models consider only the grounded part of the
ice sheet 0< x < xg, and apply a moving boundary condition
atx = xg to evolve the grounding line position.

A3.1 Model A

This is model A of Schoof (2007b), and is intended to pro-
vide a good approximation to the SSA model. The ice sheet
interior is described by a shallow ice-type equation in which
ice fluxq = uxh arises purely through sliding:

q = −

(ρig

C

)1/m

h1/m+1
∣

∣

∣

∣

∂(h + b)

∂x

∣

∣

∣

∣

1/m−1
∂(h + b)

∂x
. (A9)

Grounding line migration in terms of local bed and ice ge-
ometry atx = xg then becomes
(

ρw

ρi

∂b

∂x
+

∂h

∂x

)

dxg

dt
=

A

4n
(ρig)n
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+a +
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∣

∣

∣

∣

1/m−1
∂(h + b)

∂x

∂h

∂x
. (A10)

This is combined with a flotation condition atx = xg:

h = −
ρw

ρi
b (A11)

A3.2 Model B

This is model B of Schoof (2007b), and is similar in its scope
and formulation to model A. The only difference from model
A is that the grounding line migration prescription (Eq. A10)
is replaced by a flux condition

qg =

(

A (ρig)n+1(1− ρi/ρw)n

4nC

)
1

m+1

[h(xg)]
m+n+3
m+1 . (A12)
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This flux condition forms the basis of a heuristic rule that
is implemented in some ice sheet models (Pollard and De-
Conto, 2009; Docquier et al., 2011).

A3.3 Models A∗ and B∗

As shown in Schoof (2011), the boundary layer theory in
Schoof (2007a) can be extended to deal with ice sheets that
also have some shearing across the ice. This version of the
boundary layer theory allows for representations of vertical
shear. The equivalent of models A and B in this case are the
same, except that the flux prescription in Eq. (A9) is altered
to

q = −
A (ρig)n

n + 2
hn+2

∣

∣

∣

∣

∂(h + b)

∂x

∣

∣

∣

∣

n−1
∂(h + b)

∂x

−

(ρig

C

)1/m

h1/m+1
∣

∣

∣

∣

∂(h + b)

∂x

∣

∣

∣

∣

1/m−1
∂(h + b)

∂x
(A13)

Note that this is the same as the fluxhūx computed by
the shallow ice model (Eq. A7), and model B∗ is what the
“heuristic rule” of Pollard and DeConto (2009) and Docquier
et al. (2011) implements.

Supplementary material related to this article is
available online at: http://www.the-cryosphere.net/6/573/
2012/tc-6-573-2012-supplement.pdf.
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