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Abstract. We used three-dimensional (3-D) images of snow
microstructure to carry out numerical estimations of the full
tensor of the intrinsic permeability of snow (K ). This study
was performed on 35 snow samples, spanning a wide range
of seasonal snow types. For several snow samples, a signif-
icant anisotropy of permeability was detected and is consis-
tent with that observed for the effective thermal conductivity
obtained from the same samples. The anisotropy coefficient,
defined as the ratio of the vertical over the horizontal com-
ponents ofK , ranges from 0.74 for a sample of decomposing
precipitation particles collected in the field to 1.66 for a depth
hoar specimen. Because the permeability is related to a char-
acteristic length, we introduced a dimensionless tensorK∗ =
K/r2

es, where the equivalent sphere radius of ice grains (res)
is computed from the specific surface area of snow (SSA)
and the ice density (ρi) as follows:res= 3/(SSA× ρi). We
defineK andK∗ as the average of the diagonal components
of K andK∗, respectively. The 35 values ofK∗ were fitted
to snow density (ρs) and provide the following regression:
K = (3.0 ± 0.3)r2

es exp((−0.0130± 0.0003)ρs). We noted
that the anisotropy of permeability does not affect signifi-
cantly the proposed equation. This regression curve was ap-
plied to several independent datasets from the literature and
compared to other existing regression curves or analytical
models. The results show that it is probably the best currently
available simple relationship linking the average value of per-
meability,K, to snow density and specific surface area.

1 Introduction

The intrinsic permeability (K ) is an important physical prop-
erty of snow. Defined in a tensorial way,K (m2) links the
pressure gradient∇p (Pa m−1) and the discharge per unit
areaq (m s−1) through the Darcy’s lawq = −(1/µ)K∇p,
whereµ is the dynamic viscosity of the fluid (kg m−1 s−1).
The intrinsic permeability is of particular interest to quantify
transport properties of snow and firn, such as wind pump-
ing processes (Colbeck, 1989, 1997), air convection (Aki-
taya, 1974; Powers et al., 1985; Brun and Touvier, 1987;
Sturm and Johnson, 1991; Albert et al., 2004) and liquid wa-
ter flow (Colbeck, 1975, 1976; Waldner et al., 2004; Kat-
sushima et al., 2009; Yamaguchi et al., 2010). It is a key
variable for a wide number of applications such as atmo-
spheric and firn chemistry (Freitag et al., 2002; Neumann,
2003; Grannas et al., 2007; Domine et al., 2008) or snow-firn
metamorphism (Albert, 2002; Ḧorhold et al., 2009). Perme-
ability has also been proposed as a means of characteriza-
tion for quantitative snow classification (Bader, 1939; Jor-
dan et al., 1999; Arakawa et al., 2009). Indeed, most physi-
cal properties of snow, including its permeability, are linked
to the geometrical arrangement of ice, air, water vapor and
sometimes liquid water, referred to as its microstructure.

The first quantitative investigations of snow permeability
are attributed toBader (1939). Shimizu (1970), Sommerfeld
and Rocchio (1993), Jordan et al. (1999) and Arakawa et al.
(2010) realized extensive experiments on seasonal snow and
proposed parameterizations depending on grain size and den-
sity. However, these studies are characterized by a significant
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scatter in the results, which seems mainly due to experimen-
tal issues (Sommerfeld and Rocchio, 1993) and to sometimes
ambiguous definitions of grain size (Jordan et al., 1999). In
addition existing field permeameters require snow samples
to be several cm large (cylinder diameter on the order of
10 to 20 cm typically, and cylinder height from several to
tens of cm) (Shimizu, 1970; Albert et al., 2000; Arakawa
et al., 2009) which generally exceeds the size within which
snow properties can reasonably be considered homogeneous
(Schneebeli et al., 1999; Pielmeier and Schneebeli, 2003;
Matzl and Schneebeli, 2006, 2010; Marshall and Johnson,
2009).

More recently, the availability of 3-D images of snow and
firn from X-ray tomography (Brzoska et al., 1999; Coléou
et al., 2001; Freitag et al., 2004; Schneebeli and Sokratov,
2004; Kaempfer et al., 2005; Chen and Baker, 2010) opened
the way to numerical simulations, applying to snow the meth-
ods developed for porous media in general (Spanne et al.,
1994; Ferreol and Rothman, 1995; Martys and Chen, 1996;
Arns et al., 2001, 2004). In particular, such techniques allow
to estimate the permeability for snow samples much smaller
than those used for experimental measurements, thereby re-
ducing if not eliminating issues associated with the intrinsic
heterogeneity of the samples probed. Recently, Freitag et al.
(2002) and Courville et al. (2010) computed one component
of the permeability of firn samples using Lattice-Boltzman
modeling and Zermatten et al. (2011) performed direct pore-
level simulations on five snow samples. While these numeri-
cal computations methods are particularly promising, the ob-
tained results show only a qualitative agreement with previ-
ous experimental studies and theoretical models, and do not
take into account the anisotropy of the permeability.

We carried out numerical estimations of the full 3-D tensor
of intrinsic permeability (K ) on 35 3-D images of seasonal
snow obtained from microtomography. Computations were
performed with the software Geodict (Thoemen et al., 2008;
Koivu et al., 2009; Calonne et al., 2011) and were based on
the periodic homogenization method (Auriault et al., 2009).
The main objective of this paper was to elaborate a parame-
terization of the snow permeability from other variables mea-
surable in the field. For this purpose, we studied the relation-
ship between the computed permeability, snow density and
grain size, defined here as the equivalent sphere radius, at the
scale of the representative elementary volume (REV). This
relationship obtained using our data was compared to exist-
ing literature datasets as well as other equations from theo-
retical models and regressions. In addition, we focused on
the anisotropy of permeability, available from the computed
3-D tensor of permeability.

2 Methods

2.1 Snow samples

Numerical computations were performed on 35 tomographic
images obtained from previous experiments or field sam-
pling (e.g. Calonne et al., 2011), spanning most types of
seasonal snow, i.e. precipitation particles (PP), decomposing
and fragmented precipitation particles (DF), rounded grains
(RG), faceted crystals (FC), depth hoar (DH) and melt forms
(MF), according to the International Classification for Sea-
sonal Snow on the Ground (ICSSG) (Fierz et al., 2009).

Two-thirds of the snow samples come from controlled
cold-room experiments: a first series (PP, DF and RG) was
obtained by subjecting deposited natural snow to isothermal
conditions at 271 K (Flin et al., 2004). Another RG sample
was obtained under similar conditions, but after sieving. A
second series (RG, FC and DH) was obtained under a tem-
perature gradient of 43 K m−1 at 269 K and corresponds to
various stages of metamorphism of the initial sieved snow
(RG) into FC then DH. Two other similar experiments, with
a gradient of 16 and 100 K m−1 at 268 and 270 K, provided
two samples (FC and DH) (Coléou et al., 2001; Flin and Br-
zoska, 2008). A series of MF samples was obtained by grain
coarsening in water-saturated snow using the method of Ray-
mond and Tusima (1979) followed by draining their liquid
water content (Coléou et al., 2001; Flin et al., 2011).

The remaining snow samples were directly collected in the
field: 10 snow specimens (PP, DF and RG) were sampled
at increasing depths in the snowpack of the Girose glacier
(Écrins, French Alps) (Flin et al., 2011). Another PP sample
was collected at Col de Porte (Chartreuse, French Alps).

All 3-D images considered in this study are cubic, have
an edge size ranging from 2.51 to 9.66 mm, and a resolution
between 4.91 micrometer (µm) and 10 µm, depending on the
snow type. Additional information are indicated in Table 1 of
the Supplement.

2.2 Computations of snow permeability

Auriault (1991, 2011) has shown that physical phenomena in
random and in periodic medium can be modeled by a simi-
lar equivalent continuous macroscopic description, provided
that the condition of separation of scales is satisfied. This
fundamental condition may be expressed asε ≪ 1, whereε

represents the separation of scale and is defined asε = l/L,
in which l andL are the characteristic lengths of the hetero-
geneities at the pore scale and of the macroscopic sample or
excitation, respectively. This condition implies the existence
of a representative elementary volume (REV) of sizel of the
material and the physical phenomena. The REV constitutes
the smallest fraction of the sample volume from which a vari-
able representative of the whole can be determined. In prac-
tice, periodic boundary conditions are thus widely used to
compute effective properties of random media (Kanit et al.,
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2003; Bernard et al., 2005; Koivu et al., 2009; Calonne et al.,
2011). Assuming for snow thatε ≪ 1, we applied the ho-
mogenization method for periodic structures to derive the
Darcy’s law from the physics at the pore scale (Ene and
Sanchez-Palencia, 1975), as described in the following. Let
us consider a rigid porous matrix, which is periodic with pe-
riod �, i.e. the size of the REV, and is fully saturated by an
incompressible Newtonian fluid of densityρ and viscosity
µ. �s and�f are the domains occupied by the solid and the
fluid, respectively. The common boundary of�s and�f is
denotedŴ. The porosity is defined asφ = |�f |/|�|. At the
pore scale, the steady state flow is described by

µ△v − ∇p = ρ(v · ∇)v within �f (1a)

∇ · v = 0 within �f (1b)

v = 0 onŴ (1c)

where v and p are the velocity and the pressure of the
fluid, respectively. Using the homogenization method, it
can be shown that the corresponding macroscopic de-
scription strongly depends on the order of magnitude
of the pore Reynolds number,Rel = |ρ(v · ∇)v|/|µ△v| =
O(ρvcl/µ) wherevc is a characteristic value of fluid veloc-
ity. WhenRel <O(1), the macroscopic flow is described by
Darcy’s law, otherwise non-linearities appear at the macro-
scopic scale (Mei and Auriault, 1991). In what follows, it is
assumed thatRel <O(1), which is typically the case if we
consider airflow through snow and firn induced by moderate
winds (< 6 m s−1) over the snowpack surface (Albert, 2002).
Under such conditions, the macroscopic description is writ-
ten:

〈v〉 = −
K
µ

∇p, ∇ · 〈v〉 = 0, with 〈v〉 = 1
�

∫
�f v d� (2)

where〈v〉 = q represents the Darcy’s velocity andK is the in-
trinsic permeability tensor of the porous media. This tensor,
which is symmetric and positive, is defined asKij = 〈kij 〉.
The second order tensork is the solution of the following
boundary value problem over the REV,

µ△v − ∇p̃ − ∇p = 0 within �f (3a)

∇ · v = 0 within �f (3b)

v = 0 onŴ (3c)

where v = −(1/µ)k∇p, the pressure fluctuatioñp (with
〈p̃〉 = 0) are the periodic unknowns and∇p is a given macro-
scopic gradient of pressure. The components of the per-
meability tensorK were estimated by solving the above
boundary value problem (Eqs. 3a–3c) on a REV extracted
from tomographic images (see Sect. 3.6), using the soft-
ware Geodict (http://www.geodict.de). The boundary value
problem is solved by using the finite difference method.
Within this method a staggered grid (voxel) is used. The val-
ues of velocity and pressure are defined at center points of
the faces and volume of the cubic unit cells, respectively.

The partial differential equations for incompressible Stokes
flow (Eqs. 3a–3c) are solved by using the FFF-Stokes solver
based on fast Fourier transform. Periodic boundary condi-
tions are applied on the external boundaries of each volume
(see Wiegmann, 2007 for more details).

Before carrying out the computations, voxels that are part
of the network of interconnected pores were detected by im-
age analysis, allowing to determine the ratio between closed
and open porosity and to check that it was very small (less
than 0.004 for all the samples). This means that it is correct
to consider that air can flow through the whole porosity of
the REVs for all of our samples.

In the following, the non-diagonal terms of the tensorK ,
about 50 times lower than diagonal terms, are not presented
(the x-, y- and z-axes of 3-D images correspond to the prin-
cipal directions of the microstructure, z being along the di-
rection of the gravity). We noteKx , Ky and Kz the diag-
onal term of the permeability tensor computed in the x-, y-
and z-direction, respectively,K the average value of the three
terms, andKxy the average value ofKx andKy . In the fol-
lowing, we mostly useKz, Kxy andK, i.e. the vertical com-
ponent, the average of the two horizontal components, and
the average value of the three components of the permeabil-
ity tensor, respectively.

2.3 Dimensionless permeability

The intrinsic permeability is strongly linked to a character-
istic length of the microstructure of the medium considered
(Boutin and Geindreau, 2010). Because the dimension of the
permeability is a square length,K is often normalized by a
characteristic length to the square, leading to a dimensionless
tensor that we noteK∗.

Among various existing length metrics for snow (Fierz
et al., 2009), we focus on the equivalent sphere radius of
snow (res, in m) (Sommerfeld and Rocchio, 1993; Luciano
and Albert, 2002), also called the optical radius, optical-
equivalent grain size or OGS (e.g. Grenfell and Warren,
1999; Painter et al., 2006; Fierz et al., 2009; Brucker et al.,
2011). It is a characteristic length of the ice grains at the
microscopic scale, which corresponds to the radius of a
monodisperse collection of spheres having the same specific
surface area (SSA) value than the sample considered. The
snow SSA is defined as the total surface area of the air–ice
interface per unit mass and can be quantitatively estimated
by various means experimentally (e.g. Matzl and Schneebeli,
2006; Domine et al., 2008; Gallet et al., 2009; Arnaud et al.,
2011) and numerically using 3-D images (e.g. Flin et al.,
2011). The equivalent sphere radius and snow SSA are re-
lated by the following equation:

res=
3

SSA× ρi
(4)

whereρi = 917 kg m−3 is the ice density. In the following,
K∗ thus corresponds toK/r2

es and we keep the notationK∗,
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K∗
z andK∗

xy for the average, vertical and horizontal compo-
nents ofK∗, respectively.

One could also choose to normalizeK by a characteris-
tic length corresponding to the pore space and use the hy-
draulic radius (rh), commonly applied to flow through pipes
and open channels. This normalization is equivalent to using
res, because these two radii are linked by the simple relation-
ship:rh = res(1− φ)/(3φ) (Bear, 1972), whereφ represents
snow porosity. The granulometric analysis is another possi-
ble way to estimate a characteristic length (Zermatten et al.,
2011). However, this approach is less convenient since it can-
not be performed in the field, but only using 3-D images.

2.4 Microstructural properties

Snow porosity (φ), and thus snow density (ρs = ρi (1− φ), in
kg m−3), were estimated from 3-D images using a standard
voxel counting algorithm.

The specific surface area (SSA, in m2 kg−1) was computed
from 3-D images using a stereological method as described
by Flin et al. (2011) where this quantity is obtained by aver-
aging SSA estimations computed along 3 orthogonal direc-
tions (x, y, z). The equivalent sphere radius was then com-
puted from SSA using Eq. (4).

The anisotropy coefficient of permeability,A(K ), was
computed from numerical estimations of the permeability
tensor such asA(K) = Kz/Kxy .

The full tensor of the effective thermal conductivity (keff,
in W m−1 K−1) of the 35 snow samples considered was com-
puted using the periodic homogenization. The effective ther-
mal conductivity of most snow samples presented here were
already described and included in a previous study (Calonne
et al., 2011). Computations were extended to a few samples
additionally considered in the present study. The coefficient
of anisotropy of the effective thermal conductivityA(keff)
was defined similarly to that of intrinsic permeability, by ra-
tioing the vertical and horizontal components of the tensor.

2.5 Representative elementary volume

The representative elementary volume (REV) of our sam-
ples was estimated by calculating values of a given vari-
able from several sub-volumes of increasing sizes within
the same sample. The size of the REV was assumed to be
reached once values did not vary significantly when the size
of the sub-volumes of computation increased. Note that the
REV size depends on the variable and on the sample stud-
ied: REVs with respect to permeability are generally equal
to or larger than those for other variables, such as density,
SSA or the effective thermal conductivity (Kanit et al., 2003;
Rolland du Roscoat et al., 2007). Thus, a special attention
must be paid to ensure that computations are carried out on a
sufficiently large volume.

3 Results and discussion

3.1 Overview of the numerical calculations

The average value of the three components of the intrinsic
permeability of snow, notedK, ranges from 4× 10−10 to
6× 10−9 m2 for the 35 samples considered in this study. This
range of values is consistent with previous experimental and
numerical estimates of snow permeability (e.g. Sommerfeld
and Rocchio, 1993; Albert et al., 2000; Luciano and Albert,
2002; Domine et al., 2008; Arakawa et al., 2009; Courville
et al., 2010; Zermatten et al., 2011). Density and SSA span
from 103 to 544 kg m−3 and from 4 to 56 m2 kg−1, respec-
tively. For each sample, detailed values are provided in Ta-
ble 2 of the Supplement.

Figure 1 provides an overview of the above results for the
35 samples of this study, showing the vertical (K∗

z ) and hor-
izontal (K∗

xy) components of the dimensionless permeability
vs. snow density. PP samples exhibit the largest values ofK∗

(1.05 forρs = 103 kg m−3), while the lowermost values are
obtained for MF samples (2.16× 10−3 for ρs = 544 kg m−3).
The figure clearly shows thatK∗

z , K∗
xy and thusK∗ decrease

with increasingρs.

3.2 Anisotropy

As shown by Fig. 1, values of the vertical (K∗
z ) and horizontal

(K∗
xy) components of the dimensionless permeability are not

identical, and some samples exhibit significant differences.
Indeed, the anisotropy coefficients of permeability (A(K))
range from 0.74 for a DF sample collected in the field, to
1.66 for a particularly evolved DH sample obtained in cold
room. We note that this range ofA(K) values is consistent
with the values between 0.75 and 1.9 measured by Luciano
and Albert (2002) on firn collected from 1 to 13 m depth at
Summit, Greenland.

For our snow specimen exhibiting aA(K) value of 1.66,
Fig. 2 shows the air flow through the sample induced by a
pressure drop along the vertical (left) and horizontal (right)
direction. The flow, constrained by the snow microstructure,
is clearly higher in the vertical than in the horizontal direc-
tion, leading to a highKz value. Note that the value of 1.66 is
of the same order of magnitude as the analytical coefficient of
anisotropy for a network of vertical cylinders (Boutin, 2000).

Figure 3 shows the relationship between the anisotropy co-
efficient computed for the intrinsic permeability (A(K)) and
for the effective thermal conductivity (A(keff)) of snow. The
good relationship between these two variables indicates that
the microstructure influences both variables in a similar man-
ner. Nevertheless, some discrepancies can be observed de-
pending on density, snow type and microstructure. In addi-
tion, Fig. 3 shows that the anisotropy coefficients, and espe-
cially A(keff), enable the differentiation of the DH and FC
samples (highest values) from other snow types. This result
suggests that the anisotropy coefficients may be helpful for
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Fig. 1. Dimensionless permeability vs. snow density. “T” symbols indicate the values obtained by our numerical computations. Tips and
horizontal bars of the “T” shapes represent the vertical (K∗

z ) and horizontal (K∗
xy ) components ofK∗, respectively. Colors correspond to the

ICSSG (Fierz et al., 2009). Analytical models, numerical computations and fits are also plotted.

quantitative classification of snow. However, due to the thin
layered nature of the snowpack (e.g. Schneebeli et al., 1999;
Matzl and Schneebeli, 2006, 2010; Marshall and Johnson,
2009), macroscopic measurements seem particularly chal-
lenging to access such information except in special cases
where the investigated material is sufficiently homogeneous
(e.g. Luciano and Albert, 2002).

3.3 Regression analysis

The numerical data presented in Sect. 3.1 were used to build
a regression curve allowing to infer the intrinsic permeability
from snow density and equivalent sphere radius. Following
the pioneering work of Shimizu (1970), a regression of this
form was seeked:

K/r2
es= a exp(bρ). (5)

Other mathematical forms of equations were tested and none
of them proved better than Eq. (5). For the 35 samples stud-
ied, the parametersa andb in Eq. (5) were calculated using
the nonlinear least-squares Marquardt-Levenberg fitting al-
gorithm, from the numerical estimates of permeability,res

andρs. Note that these computations were performed sepa-
rately for each diagonal component ofK , as well as for the
average valueK. The fitting algorithm used provides esti-
mates of the uncertainty pertaining to the parametersa and
b, in the form of “asymptotic standard errors”. These consti-
tute an indication of the fit’s accuracy.

Table 1 shows an overview of the fit parametersa andb

computed using the values ofKx , Ky , Kz andK, with the
associated “asymptotic standard errors”. For the whole com-
putation, the “asymptotic standard errors” values are small
(on the order of 10 % and 2 % fora and b, respectively),
indicating a strong correlation between permeability, den-
sity and res. Moreover, the table indicates that the param-
eters obtained from the four different values ofK are in-
significantly different from each other. The regression is thus
not affected by the anisotropy ofK presented in the previ-
ous section. Based on our numerical estimates ofK , res and
ρs, which span a wide range of snow types, we propose the
following regression to infer an average permeability value
K from res andρs:

K = (3.0 ± 0.3)r2
esexp((−0.0130± 0.0003)ρs). (6)

www.the-cryosphere.net/6/939/2012/ The Cryosphere, 6, 939–951, 2012



944 N. Calonne et al.: 3-D image-based computations of snow permeability

Fig. 2. Vertical cross section (plane (y,z)) of an evolved DH sam-
ple. The color levels of the images correspond to the fluid velocity
(intensity) computed for a pressure drop of 2× 10−2 Pa along the
z (left) and y (right) direction, and for a dynamic viscosity of air
of 1.8×10−5 Pa s−1. The ice matrix of the microstructure is repre-
sented in gray. The length of the color bar corresponds to 3 mm.

Fig. 3.Anisotropy coefficient computed for the intrinsic permeabil-
ity A(K) vs. that for the effective thermal conductivityA(keff) for
the 35 samples considered in this study. Symbols and colors corre-
spond to the ICSSG (Fierz et al., 2009).

This regression corresponds to the black solid line in Fig. 1.
Providing a regression which reflects the anisotropy of per-
meability seems currently challenging and further investi-
gations are needed. Nevertheless, we believe that it would
require an additional variable representing the snow mi-
crostructure.

3.4 Test of the obtained regression curve against
literature data

This section compares our numerical data and the obtained
regression curve (Eq. 6) withK, res and ρs data from the
literature. Sommerfeld and Rocchio (1993), Arakawa et al.

Table 1. Regression parameters (a andb) of Eq. (5) for the three
components ofK , as well as for their mean valueK. “Asymptotic
standard errors” (±) resulting from the fitting algorithm are given
both in absolute units and as percentage values.

a ± ± b ± ±
– – % m3 kg−1 m3 kg−1 %

Kx 3.1 0.3 9.0 −0.0130 0.0003 2.1
Ky 2.9 0.2 8.5 −0.0129 0.0003 2.0
Kz 2.9 0.3 11.6 −0.0129 0.0003 2.7
K 3.0 0.3 9.1 −0.0130 0.0003 2.1

(2009) and Courville et al. (2010) performed measurements
of permeability using an air permeameter on fresh or equi-
temperature snow, in south-eastern Wyoming (USA), on nat-
urally deposited dry snow in Hokkaido prefecture (Japan),
and on polar firn (Antarctica), respectively. The SSA was
estimated from photographs of snow section planes using a
stereological method in the first two papers, while Courville
et al. (2010) used tomographic images. Numerical computa-
tions of permeability involving 3-D images were carried out
in two recent studies: Courville et al. (2010) used Lattice-
Boltzman modeling to compute the permeability in one di-
rection on polar firn, and Zermatten et al. (2011) determined
the vertical component of the permeability for five snow sam-
ples using the direct pore-level simulations method. In both
cases, SSA was estimated from the 3-D images.

Figure 4 provides a general view of the values of dimen-
sionless permeability vs. density from the four datasets de-
scribed above (colored symbols), as well as from our 35 com-
puted values and the associated regression curve (in black).
Data from the four studies are overall consistent with our
computations, showing a similar relationship of dimension-
less permeability withρs, even if some discrepancies can be
observed.

The predicted values ofK provided by the regression
curve (Eq.6) were compared to observed permeability data.
Figure 5 displays the mean and standard deviation of the
relative residuals of the regression curve against our own
permeability data as well as the above-mentioned datasets.
It indicates that our regression curve manages to estimate
the intrinsic permeability of snow with a small relative bias
on the order of 20 % maximum within a standard devi-
ation on the order of 40 % maximum. This result shows
that the numerical computations of Courville et al. (2010),
Zermatten et al. (2011) and this study are in good agreement,
although all three studies use different numerical methods
and boundary conditions on the external faces of the sample.
The only major deviation from a good performance of Eq. (6)
against experimental and numerical data is encountered with
the dataset of Arakawa et al. (2009), which exhibits an over-
all positive relative bias of 71 % with a standard deviation of
85 %, also seen in Fig. 4. At present, the exact reason(s) for
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Fig. 4.Dimensionless permeability vs. snow density. OurK∗ values (in black) are compared to results from other studies (in color). Symbols
correspond to the ICSSG (Fierz et al., 2009), excepting stars which are used when firn is considered or when the snow type is not specified
in the paper. Analytical models and fits are also plotted.

this discrepancy is (are) not understood. This could be due to
the difficulty of making reliable and reproducible measure-
ments of permeability. A first source of error may be the
physical damage of the sample caused during its sampling
or its handling (Sommerfeld and Rocchio, 1993). Shimizu
(1970) and Sommerfeld and Rocchio (1993) also pointed
out a bias linked to possible condensation/sublimation of the
snow microstructure induced by the airflow imposed through
the snow sample during the measurement. Sample hetero-
geneity could also be invoked.

Based on the mathematical equation of our proposed re-
gression curve (Eq. 6), accounting for a 10 % uncertainty on
the parametera of the equation (here we neglect the uncer-
tainty on the parameterb of the equation – see Table 1), and
assuming thatres andρs both carry a measurement uncer-
tainty on the order of 10 % (Matzl and Schneebeli, 2006;
Painter et al., 2006; Gallet et al., 2009; Conger and McClung,
2009; Arnaud et al., 2011), the propagation of these relative
errors in terms ofK adds up to about 50 %. This experimen-
tal error is of the same order of magnitude as the minimum

and maximum deviation found when applying the regression
curve to independent data (black points in Fig. 5).

3.5 Comparisons of the obtained regression curve to
models and fits

This section compares the permeability estimates provided
by our regression (Eq. 6) and by various classical equations
proposed in the literature. We used the following regres-
sions, analytical formulas or numerical computations (note
that Figs. 1 and 4 show the corresponding curves in terms of
dimensionless permeability:K∗ = K/r2

es ):

i. We recall the regression fit (Eq. 6) proposed in this study
(referred to as “Calonne” in the relevant figures):

KCal = (3.0 ± 0.3)r2
esexp((−0.0130± 0.0003)ρs).

ii. The well-known Shimizu’s fit (Shimizu, 1970) is ex-
pressed as

KShi = 0.077D2 × exp(−0.0078ρs), with D = 2res.
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Fig. 5.Overview of the relative differences between experimental or numerically computed values of the intrinsic permeability of snow from
six datasets (colors) and their estimates based on the corresponding snow density and equivalent sphere radius using various regression or
analytical curves (x-axis). Black dots refer to individual measurements of relative residual. The mean and standard deviation of the relative
differences are indicated as symbols and error bars, respectively.

iii. The self-consistent (SC) estimate was obtained assum-
ing that the porous medium consists of a bicomposite
spherical pattern made of an internal spherical grain
and an external fluid shell that ensures fluid connectiv-
ity. The porous medium is defined using the most basic
information, i.e. the porosity and the grain size. Using
the SC method, Boutin (2000) showed that the above
porous medium leads to the following estimate:

KSC = [r2
es/(3β2)] × [−1+ (2+ 3β5)/(β(3+ 2β5))],

whereβ = (1− φ)(1/3).

iv. In the Carman-Kozeny (CK) model, the medium is
treated as a bundle of capillarity tubes of equal length.
By solving the Stokes equations simultaneously for
all the channels passing through a cross-section nor-
mal to the flow in the porous medium, the permeabil-
ity is written asK = (c ×φ3)/(SSA2

I × (1−φ)2) where
SSAI is the specific surface area per unit of ice volume
(SSAI = SSA×ρi , in m−1) and c a coefficient which
characterizes the geometry of the channels in the model.
Empirically,c is found to be equal to 0.2 for many types
of porous media (Bear, 1972). The CK equation can
thus be expressed as

KCK = (4r2
es× φ3)/(180(1− φ)2).

v. Numerical values of permeability (Ksphere) were com-
puted using the periodic homogenization method and a

finite element software, for a simple cubic packing of
spheres (Boutin and Geindreau, 2010). Note that at high
density, where spheres interpenetrate, the SSA is com-
puted from the effective surface formed by the sphere’s
assembly.

Figure 5 allows to investigate the performance of the above
equations by comparing their estimates (KCal, KShi, KSC,
KCK andKsphere) against the independently observed perme-
ability data presented in Sect. 3.4. For each expression, the
result is given in terms of average and standard deviation of
the relative residuals (in color on Fig. 5). The whole set of
the relative residual values is also shown by the black points.
Note that in the case of the simple cubic packing of spheres,
the correspondingK values, normalized byres and then ex-
pressed as a function of density, were interpolated to be able
to computeKsphereestimates for all values of density andres.

Figure 5 shows that the Carman-Kozeny (CK) model, self-
consistent (SC) model, and the numerical computations for a
simple cubic packing of spheres, predict the numerical values
obtained in this study with a relative bias of the order of 20 %
maximum within a factor 2 at most (maximum relative devi-
ation of 40 %). These expressions are thus consistent with
our proposed regression curve. In contrast, the regression fit
proposed byShimizu (1970) behaves poorly against our nu-
merical values, showing a negative relative bias of−36 %
within a relative deviation of 45 % (see Fig. 5). This situ-
ation is also true for other datasets, where the fit proposed
by Shimizu (1970) underestimatesK (relative bias between
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Fig. 6. Dimensionless permeability versus snow density for three snow samples. Symbols and colors correspond to the ICSSG (Fierz et al.,
2009). For a given sample, each symbol represents a particular volume from whichK , SSA andρs were computed. The largest volume
corresponds to the total volume of the sample. Analytical models and fits are also plotted.

21 % (± 23 %) and−57 % (± 31 %)). As pointed out by sev-
eral studies (Sommerfeld and Rocchio, 1993; Jordan et al.,
1999), we believe that this is largely due to the method
used by Shimizu (1970) to estimate grain size. From snow
cross-sections, he computed a grain diameterD = 2res=√

6ρs/πρin, wheren, the number of ice grains appearing in
the cross section per a unit area, is estimated by a counting
process described as “a complicated-shaped grain havingm

remarkable constrictions was counted asm+ 1 grains”. This
visual method is subjective and may lead to erroneous esti-
mates ofn and therefore ofK∗.

Over the whole ensemble of tested datasets, Fig. 5 indi-
cates that the best estimates are obtained using our regression
(Eq. 6), showing very small average values of relative resid-
uals, from +13 % for the numerical study of Courville et al.
(2010) to−19 % for Zermatten et al. (2011). Moreover, the
set of values of relative residuals generally does not exceed
± 50 %. Again, the predicted values for the dataset reported
by Arakawa et al. (2009) do not correspond to this situation,
as discussed in Sect. 3.4.

The predicted values using a simple packing of spheres are
also consistent with experimental and numerical estimates
from snow samples. In particular, this latter model behaves
better than the CK and SC approach for the MF samples,
where these two models fail to reflect the snow microstruc-
ture and overestimate the permeability, as shown in Fig. 1.
These results can be explained by the fact that at low density
the airflow around a snow particle is little affected by flow
around its neighbors. In contrast, at higher density, snow par-
ticles are close together and the flow around one of them dis-
turbs the flow around the others. This last phenomenon is not
captured by analytical models.

Finally, Zermatten et al. (2011) indicate significant differ-
ences between the CK model and their values, while Fig. 5
shows an excellent agreement between both (the CK model
predicts their observed data with a relative bias of 0.8 %
within a relative deviation of 27 %): they apparently plotted
an erroneous CK equation, using the specific surface area per
unit of snow volume (SSAV , in m−1) in the expression of
K = φ3/(5(1− φ)2SSA2

I ) instead of SSAI .
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3.6 Representative elementary volume

Permeability estimations of the REV were performed on one
sample of each snow type and their edge size range from
2.5 mm for the PP sample to 5.5 mm for the MF sample,
which corresponds to volumes smaller or equal to those of
our 3-D images (see Supplement for further details).

For three snow samples (RG, FC and MF snow types),
computations ofK , SSA andρs were performed on the total
available 3-D image and on sub-volumes of different sizes.
Figure 6 shows the obtained values ofK∗ as a function ofρs.
By increasing the volume size of calculation (from volume
1 to 4 or 5 in Fig. 6), theK∗ value is closer and closer to
the result based on the previous volume, which is consistent
with the definition of a REV. We can also see that ifK , SSA
and/orρs are computed on a volume smaller than their REV,
the relationship betweenK∗ andρs remains consistent with
the regression curve (Eq. 6) proposed in this study. This ob-
servation confirms the robustness of the relationship between
K , SSA andρs.

4 Conclusions

The intrinsic permeability tensorK was computed on 35
tomographic images of various snow types by solving nu-
merically a specific boundary value problem arising from
the homogenization process on a representative elementary
volume (REV). The equivalent sphere radius (res) was used
as a characteristic length of the microstructure to reduceK
to a dimensionless tensorK∗. A regression equation using
the 35 computed values of mean permeability (K), density
(ρs) and equivalent sphere radius was proposed, such as:
K = (3.0 ± 0.3)r2

esexp((−0.0130± 0.0003)ρs) and com-
pared to existing literature data. Our main conclusions are
summarized below:

1. The intrinsic permeability of snow can be anisotropic
depending on the snow microstructure. The anisotropy
coefficients of permeability range from 0.74 for a sam-
ple of decomposing precipitation particles collected in
the field, to 1.66 for a particularly evolved depth hoar
specimen, and are consistent with the anisotropy coef-
ficient of the effective thermal conductivity. It appears
that the use of these coefficients could be helpful for
the quantitative classification of snow, as it may enable
to distinguish the depth hoar and the facetted crystals
from other snow types.

2. Permeability, density and equivalent sphere radius, di-
rectly related to the specific surface area, are strongly
correlated. The equivalent sphere radius is thus a rele-
vant characteristic length for permeability, which in ad-
dition is rather easy to determine in the field or from
3-D images. However, this strong correlation between
snow permeability, density and SSA precludes consid-

ering them as independent variables for the sake of ob-
jective snow classification.

3. The anisotropy of permeability does not affect the re-
gression curve performed on the 35 snow samples. In-
deed, very similar regression curves have been com-
puted by using each diagonal component ofK as well
as the average of these three terms. Thus, the proposed
regression allows estimating an average permeability
value only.

4. Our numerical computations of permeability from 3-D
images are consistent with datasets from other experi-
mental and numerical studies. Moreover, our regression
succeeds in estimating the permeability data of previous
studies with a small relative bias on the order of 20 %
maximum, within a factor≈ 2 maximum relative devi-
ation (40 %), except for the dataset of Arakawa et al.
(2009) for which the agreement is lower (positive rela-
tive bias of 71 % with a standard deviation of 85 %). By
comparing with other equations from theoretical mod-
els, fits and numerical data available in literature, our
regression appears to be the best currently available sim-
ple relationship linking the average value of permeabil-
ity to snow density and specific surface area. In par-
ticular, the well known fit proposed by Shimizu (1970)
seems to significantly underestimate the permeability of
snow for most of the tested datasets, most probably due
to an inconsistency between the equivalent sphere ra-
dius derived from the specific surface area of snow and
the empirically-defined snow grain size used by this au-
thor.

Supplementary material related to this article is
available online at: http://www.the-cryosphere.net/6/939/
2012/tc-6-939-2012-supplement.pdf.
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Courville, Z., Ḧorhold, M., Hopkins, M., and Albert, M.: Lattice-
Boltzmann modeling of the air permeability of polar firn, J. Geo-
phys. Res., 115, F04032, doi:10.1029/2009JF001549, 2010.

Domine, F., Albert, M., Huthwelker, T., Jacobi, H.-W.,
Kokhanovsky, A. A., Lehning, M., Picard, G., and Simp-
son, W. R.: Snow physics as relevant to snow photochemistry,
Atmos. Chem. Phys., 8, 171–208, doi:10.5194/acp-8-171-2008,
2008.

Ene, H. and Sanchez-Palencia, E.: Equations et phénom̀enes de
surface pour l’́ecoulement dans un modèle de milieu poreux, J.
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