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Abstract

Although climate is known to be one of the key factors determining animal species distributions amongst others,
projections of global change impacts on their distributions often rely on bioclimatic envelope models. Vegetation structure
and landscape configuration are also key determinants of distributions, but they are rarely considered in such assessments.
We explore the consequences of using simulated vegetation structure and composition as well as its associated landscape
configuration in models projecting global change effects on Iberian bird species distributions. Both present-day and future
distributions were modelled for 168 bird species using two ensemble forecasting methods: Random Forests (RF) and
Boosted Regression Trees (BRT). For each species, several models were created, differing in the predictor variables used
(climate, vegetation, and landscape configuration). Discrimination ability of each model in the present-day was then tested
with four commonly used evaluation methods (AUC, TSS, specificity and sensitivity). The different sets of predictor variables
yielded similar spatial patterns for well-modelled species, but the future projections diverged for poorly-modelled species.
Models using all predictor variables were not significantly better than models fitted with climate variables alone for ca. 50%
of the cases. Moreover, models fitted with climate data were always better than models fitted with landscape configuration
variables, and vegetation variables were found to correlate with bird species distributions in 26–40% of the cases with BRT,
and in 1–18% of the cases with RF. We conclude that improvements from including vegetation and its landscape
configuration variables in comparison with climate only variables might not always be as great as expected for future
projections of Iberian bird species.
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Introduction

Global environmental changes pose great challenges to

biodiversity, with ongoing impacts on species distributions and

abundances already being recorded (e.g. [1–3]). Attempts to

estimate the future effects of global change on biodiversity have

often relied on environmental envelope models [4]. These models

relate known species distributions to environmental variables to

project future altered potential distributions under global change

scenarios (e.g. [5–7]). Most of the studies have used climatic factors

alone to project species distributions into the future. Nevertheless,

there are many factors other than climate that can affect the

geographical distributions of species (e.g. [8,9]). This is particularly

true for animal species for which climate is often used as a

surrogate for resource availability or nesting suitability.

A large number of studies have included non-climatic factors for

modelling contemporary species distributions. Such factors

included, among others, land cover and land use [10–12],

vegetation cover [13], topography [14], or a combination of all

of them [15]. However, only a small number of assessments

exploring the potential impacts of future global environmental

changes have included predicted land use or vegetation changes to

complement climatic information (but see [16–19]) because of the

scarcity of relevant non-climatic data projected into the future. To

our knowledge, none of these previous studies has incorporated

vegetation dynamics modelled in a mechanistic way as we have
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done in this study. The question remains: how would changes in

non-climatic environmental factors affect projections of future

altered species distributions? We address this question using

Iberian birds as a case study.

European bird species have already shown phenological (e.g.

[20,21]) and distributional changes (e.g. [22,23]) and they are

projected to shift their ranges substantially as a result of global

change [24]. However, improvements of projections of future

range shifts could be expected if information on vegetation

dynamics was included because bird species distributions are

known to be, at least partially, determined by vegetation and its

spatial configuration (e.g. [25–27]). Variables characterizing

aspects of vegetation have been used to model potential current

distributions of birds (e.g. [13,28]), but they have rarely been

incorporated in models projecting future range shifts under

scenarios of global environmental change [29]. Furthermore,

most attempts to incorporate vegetation dynamics into forecasts of

species distributional changes have not considered vegetation

dynamics, such as those simulated by Dynamic Vegetation Models

(DVMs), but rather used statistical interpolation of vegetation

patterns [18,30]. For example, Lawler et al [29] simulated changes

in the vegetation distribution with the Mapped Atmospheric-

Plant-Soil System (MAPSS), an equilibrium model that provides

future static snapshots, but no year-to-year variability. The spatial

configuration of vegetation cover is also thought to be important

for explaining bird distributions (e.g. [31,32]), because it accounts

for the amount of available habitat in the surrounding area, but

again little attempts have been made to incorporate landscape

dynamics in forecasts of biodiversity change.

In this study, we used distribution data for 168 breeding bird

species in the Iberian Peninsula to fit models using combinations of

climatic variables, vegetation characteristics, and their derived

landscape configuration. Models were used to assess the

importance of alternative aspects of the environment for projecting

future potential bird ranges. Specifically, we address the following

questions: (i) what sets of variables have greater predictive power:

climate, vegetation or landscape configuration? (ii) Are projections

using different environmental predictor variables coincident?

Materials and Methods

Species data
We used distributional records in the Iberian Peninsula for 168

native breeding bird species. Distribution data were extracted from

the Spanish Atlas of Breeding Birds [33] and from the Portuguese

Atlas of Nesting Birds [34] reporting the presence and absence of

bird species in 5923 10610 km resolution UTM cells. This is the

highest-resolution animal distribution data available for the

Iberian Peninsula. Our analyses of bird distributions excluded

marine and aquatic species because modelling of their habitats

would require information about variables that is not available to

us. Species with less than 20 records were also excluded to avoid

problems of modelling species with small sample sizes [35].

Environmental data for the baseline period
Variables were selected from a larger pool based on expert

knowledge and data mining; the latter was done with the specific

goal of reducing the number of variables and remove collinearity

among them. Overall, four groups of continuous predictor

variables were used to fit the models (Table 1): (i) climatic (3

variables), (ii) vegetation (17 variables), (iii) landscape configuration (3

variables) and (iv) global (including all previous variables).

For the (i) climatic group, a set of aggregated climate

parameters were derived from the Climate Research Unit at 109

resolution. The CRU CL 2 and CRU CL 2.1 dataset at resolution

of 109 (,16 km at the latitude of the study) was chosen to

represent current climate (average from 1971 to 1990). Average

monthly temperature and precipitation in grid cells covering the

mapped area of the Iberian Peninsula were used to calculate mean

values of three different climate parameters: mean winter

temperature, annual precipitation and accumulated degree days.

These variables are considered ecologically important for

explaining bird distribution patterns (e.g. [36–38]) and limit

species distribution as a result of widely shared physiological

constraints (e.g. [39,40]). Finally, variables were interpolated using

kriging implemented within Geographical Information System

(GIS) software ArcGIS 9.2 [41] to a resolution of 10 km to match

the bird distribution datasets.

The (ii) vegetation group comprised potential natural

vegetation composition and structure, simulated with the DVM

LPJ-GUESS [42,43]. The model simulates the competition

between main tree species and PFTs. Forest dynamics resemble

successional patterns, adopting a forest ‘‘gap model’’ approach.

The model has been parameterized to represent the main

European tree species and a number of plant functional types

Table 1. Environmental variables used to build alternative
models.

Variable name Variable description

Climate data set

1 mwintertmp Mean winter temperature (uC)

2 annpre Annual precipitation (mm)

3 acmgddaug Accumulated degree days (January to August)

Vegetation data set

Forest type

1 Bet.pen Betula pendula

2 Bet.pub Betula pubescens

3 Car.bet Carpinus betulus

4 Cor.ave Corylus avellana

5 Fag.syl Fagus sylvatica

6 Fra.exc Fraxinus excelsior

7 Pic.abi Picea abies

8 Pin.hal Pinus halepensis

9 Que.ile Quercus ilex

10 Que.pub Quercus pubescens

11 Que.rob Quercus robur

12 Til.cor Tilia cordata

13 Total.Forest Sum of all the forest types

Shrubland type

14 MRS Mediterranean Raingreen Shrub4

15 Jun.oxy Juniperus oxycedrus

16 Que.coc Quercus coccifera

Grassland type

17 c3 Herbaceous

Landscape data set

1 Forest.R30 Accumulated forest in a radius of 30 km

2 Shrub.R30 Accumulated shrubland in a radius of 30 km

3 Grass.R30 Accumulated grassland in a radius of 30 km

doi:10.1371/journal.pone.0029373.t001
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(PFTs) [44,45]. LPJ-GUESS reproduced the main general patterns

in European potential vegetation at a coarse scale, but the model

did not reproduce the fine-scale mosaic of different vegetation

types existing in many areas. Discrepancies were, for example,

caused by the fact that some real-world drivers, such as different

soil nutrient levels, are not accounted for by the model. However,

the model results we used present the first assessment of dynamic

future vegetation changes at the level of important tree species and

PFTs over continental Spain and Portugal. General vegetation

features in the Iberian Peninsula, such as the distinction between

forests, shrublands and grasslands, corresponded better with the

potential natural vegetation in the Iberian Peninsula than in earlier

studies with dynamic global vegetation models. [45]. The model

also reproduced the main features of the coarse-scale distribution

of major tree species covered by the Third Spanish Forest

Inventory [46] (Figure S1). The PFTs were also grouped into three

broad habitat types, reflecting the vegetation structure rather than

individual tree species or PFTs: forest, shrubland, and grassland.

The sum of the LAI of all species and PFTs belonging to each of

the three broad habitat type group was then used in the analyses.

Many bird species are rather dependent on such structural

vegetation features than on individual tree species [25,26,47].

Furthermore, the model output for these structural ecosystem

features is more robust than the simulated patterns for individual

species or PFTs, and they are less likely to be fundamentally

changed by forest management. A PCA was performed in order to

investigate for collinearity among variables and potentially select a

reduced set of variables. However, variables were not highly

correlated so all were kept. The vegetation was represented by the

continuous variable Leaf Area Index (LAI), which is the ratio of

total upper projected leaf surface of vegetation divided by the

surface area of the land on which the vegetation grows. LAI is a

dimensionless value, typically ranging from 0 to 8 for a dense

forest. The variables were originally at 109 (,16 km at the latitude

of the study) resolution and were interpolated at 10 km resolution

to match the bird distribution datasets.

Because potential vegetation cover variables modelled with

LPJ-GUESS do not account for current and future land use, we

combined them with land use information derived from

CORINE Land Cover (CLC) as follows [48]. Categories from

CLC were aggregated and represented by 6 land cover classes:

Urban, Cropland, Permanent Crops, Grasslands, Forest and Others (for a

complete description of the methodology see [49], despite in this

reference they use the PELCOM dataset, the analyses were re-

done using CORINE dataset and are the ones used for this

study). The percentage of each land use type within the UTM

grid cells was calculated using the Zonal Statistics tool

implemented in ArcGIS 9.2. Grid cells were classified as forested

when 10% or more of their surface were covered by Forest. If, for

example, the vegetation model predicted forest but less than 10%

of the grid cell was forested according to the land cover data,

non-forest vegetation cover was assumed in the analysis. From

the grid cells classified as shrublands we excluded the ones in

which the sum of non-compatible land use types (Permanent

Croplands, Croplands and Urban) represented 90% or more of the

grid area. Finally, cells were classified as grasslands when their

area was covered by at least 10% of Grasslands. Thus, we assume

that a certain fraction of available habitat within a grid cell is

sufficient for populations to persist. Different classes were not

exclusive between each other and grid cells could hold more than

one vegetation type at the same time. If, for example, a grid cell

was covered by 17% of forest and 16% of grassland according to

land cover data and was occupied by Quercus ilex (PFT of forest

type) and c3 (PFT of grassland type) according to the vegetation

model, that grid cell was considered both as ‘‘forest’’ and as

‘‘grassland’’.

The (iii) landscape configuration group was calculated

based on the accumulated sum of the different PFTs values

included in each habitat type: forest, shrubland, and grassland.

Using ArcGIS 9.2., three concentric bands, each 10 km wide,

were delimited around each grid cell for the three habitat types.

Within each band and for each habitat type, the accumulated

vegetation abundance was calculated. These data provided

information of the spatial arrangement and composition of the

landscape around each grid cell. From the nine variables created

only the three variables of radius equal to 30 km were retained due

to the high correlation between the three different radiuses

(Spearman’s correlations, r = 0.8–0.9) and also because they

capture a broader range of landscape and were the variables least

correlated with the original habitat types.

Finally, the (iv) global group included the three previous data

sets.

Environmental data for the future
We used a European climate scenario from the EU framework

program Assessing Large-scale environmental Risks for biodiver-

sity with tested Methods (ALARM) at a resolution of 109 for the

period 2051–2080 [50]. The climate scenario was derived from a

simulation with the global climate model HadCM3, using the

BAMBU (Business As Might Be Usual) scenario (which corre-

sponds to A2 SRES) of the ALARM project. Scenarios for future

potential natural vegetation were developed by a previous study

[45] as well as the scenarios for future land use change [51]. Land

use projections used to constrain potential vegetation cover from

LPJ-GUESS were based on the BAMBU scenario [52] (for details

see [51,53]).

Data analysis
The models were built using the BIOMOD library [54] in R

[55] (version 1.15), using the default settings and parameters. Two

ensemble modelling techniques were selected: Random Forests

(RF) [56,57] and Boosted Regression Trees (BRT) [58,59]. Both

techniques are effective in dealing with non-linearities and

interactions among variables. Random forest uses a bootstrap

aggregation algorithm by fitting multiple un-pruned classification

trees on sub-samples of the original data. The prediction is then

the average of the predictions of all trees weighted by their internal

predictive accuracy (out-of-bag estimator). We fitted random forest

using a maximum of 700 trees and using a random half of the

predictor variables for each tree. BRT is a boosting algorithm in

which very short classification trees (seven nodes) are repeatedly

built on the residuals from the previous tree to improve the fit

using cross-validation to stop the process. In BRT models the

maximum number of trees was set to 3000, the learning-rate was

0.001 and the interaction-depth was 4 as suggested by Elith et al.

[58]. The full dataset for the 168 breeding bird species was

randomly partitioned into two subsets (calibration and evaluation),

with 70% and 30% respectively, and this overall procedure was

repeated five times to make sure that the evaluation procedure was

independent of the random splitting procedure. Future projections

were made assuming unlimited dispersal, which is a more likely

scenario among birds at the geographical extent of the study area

than the alternative no dispersal scenario.

Models were assessed using four evaluation methods: the area

under curve (AUC) of the receiver operating characteristic (ROC)

[60], the true skill statistics (TSS) [61], sensitivity that measures the

percentage of presences correctly predicted and specificity that

measure the percentage of absences correctly predicted. The

Predicting Environmental Change Impacts on Birds
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specificity and sensitivity were determined separately after using an

AUC and TSS protocol to convert probabilities of occurrence into

presences and absences (Figure 1).

There is a large number of statistical techniques available to fit

environmental envelope models and they are known to produce

markedly different future projections of species range shifts when

projections are made into the future [62–64]. Commonly used

evaluation metrics measuring agreement between predicted poten-

tial and observed distributions are useful to verify the models’

discrimination ability [63]. However, discrimination between

predicted potential and observed distributions is known to be a

relatively poor surrogate of the models’ ability to predict future

distributions well [65]. Therefore, there are little guidelines for

selection of the models to use under future scenarios [66]. A possible

approach to handle inter-model variability and reduce uncertainty

is to use ensemble forecasting by generating multiple copies of the

models and combining them using consensus techniques (see for

review [66]). In this study, a consensus approach based on the mean

of the probabilities from the sets of projections made by RF and

BRT was selected (see also [67–69]) and TSS method was chosen to

convert probabilities values into presence-absence data.

The relative importance of environmental variables was also

calculated for RF and BRT. In Random Forests, variable importance

is determined by comparing the misclassification error rate of a tree

with the error rate that occurs if the values of a predictor variable are

randomly permuted [57]. In Boosted Regression Trees variable

importance is based on the number of times a variable is selected for

binary splitting, weighted by the squared improvement to the model as

a result of each split, and averaged over all the individual trees [70].

Because measures of variable importance are calculated differently in

RF (Mean Decrease Accuracy and Mean Decrease Gini) and BRT, a

ranking system was created to compare environmental selection

among the different model types. Environmental variables were

ranked from 1 (most important) to 23, although only the three first

ones were analysed to compare across all groups of variables (only

three variables for the climatic group).

Bird species were classified into eight categories based on their

main habitat use: Forest, Shrubland, Grassland, Grassland/Forest,

Shrubland/Forest, Grassland/Shrubland, Grassland/Shrubland/

Forest and Others (including bird’s species which do not depend

on any vegetation type such as those specialized on urban areas or

cliffs). In order to define the degree of habitat specialization of

species we counted the number of habitat types used for breeding

or feeding and considered that the more habitats used the less

specialized are the species. The information was gathered from the

Spanish Atlas of Breeding Birds [33] and complemented by

consultation with experts (Table S1).

Results

Average discrimination ability of models based on cross

validated AUC and TSS values differed statistically among the

Figure 1. Four evaluation methods to compare model performance using different predictor variables. Boxplot summarizing results of
measures of performance (AUC and TSS) of each dataset used (Climate, Vegetation, Landscape and Global) for the cross validation results for BRT and
RF models. Percentage of presence and absence correctly predicted (sensitivity and specificity) were also provided. Median values (line across box),
range excluding outliers (error bars), interquartile range containing 50% of values (box) and outliers (circles) from results. Untransformed values have
been used.
doi:10.1371/journal.pone.0029373.g001
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different groups of predictor variables (Friedman test, p,0.001),

being lower for landscape models and higher for models including

all predictor variables together (Figure 1). Models including

climatic variables alone were generally better than models fitted

solely with vegetation or landscape variables, although not always

significantly better than models including vegetation (Wilcoxon

test, p,0.05) (Table 2). The comparison between the models

including all variables and the models including climate,

vegetation or landscape showed that the all-variables models were

significantly better than any other model, except for the models

Table 4. Number of species from the 168 species classified in different accuracy classes of AUC and TSS based on two modelling
techniques.

Predictor variables Climate Vegetation Landscape

Evaluation method AUC TSS AUC TSS AUC TSS

Model technique BRT RF BRT RF BRT RF BRT RF BRT RF BRT RF

High-performance 28 35 17 19 23 27 15 21 17 28 5 10

Good-performance 61 78 28 32 53 60 21 25 35 71 19 30

Fair-performance 70 53 79 90 78 46 80 74 75 59 66 85

Poor-performance 9 2 44 27 14 28 51 48 41 5 78 43

Fail 0 0 0 0 0 7 1 0 0 5 0 0

AUC: High = AUC.0.9, Good = 0.9,AUC,0.8; Fair = 0.7,AUC,0.8; Poor = 0.6,AUC,0.7. Fail AUC,0.6.
TSS: High = TSS.0.8, Good = 0.8,TSS,0.6; Fair = 0.6,TSS,0.4 and Poor = 0.2,TSS,0.4. Fail TSS,0.4.
doi:10.1371/journal.pone.0029373.t004

Figure 2. Spatial pattern comparison of bird distributions. The maps represent the total number of species per each 10 km cell for the four
model types (Climate, Vegetation, Landscape and Global) and for two time periods (current and future projections). The correlation graphs indicate
the level of agreement between the four model types for each column. The calculations for the first two columns (current and future) were done
using the total number of bird species (N = 168) whereas the last three columns illustrate subsets of the future projection based on model
performance categories (AUC method): high (N = 32), good (N = 63) and poor (N = 37).
doi:10.1371/journal.pone.0029373.g002

Predicting Environmental Change Impacts on Birds

PLoS ONE | www.plosone.org 6 December 2011 | Volume 6 | Issue 12 | e29373



fitted with climatic variables alone for which the all-variables-

model was significantly better only in 50% of the cases (Table 3).

Regarding the differences in discrimination ability between

modelling techniques, we found that Random Forests adjusted

projections to the data more closely than Boosted Regression

Trees in almost all of the cases and regardless of the four

evaluation techniques used (Figure 1).

Spatial correspondence among projections of species richness

for the four sets of models was very high for the baseline period,

but substantially variable for future scenarios. Inter-model

variability was constrained by model performance (Figure 2).

That is, species for which models performed notably well (high-

performance species) had lower inter-model variability than species for

which models performed well (good-performance species) and poorly

(poor-performance species) (Table 4). Overall, the pairwise correlation

among future projections for the 168 species varies considerably

(Spearman’s correlations, r = 0.26–0.8). However, pairwise com-

parisons for groups of species with models of similar accuracy

(grouped according to AUC values) showed that higher correlation

between model predictions was obtained for the models with

higher accuracy: high-performance species (Spearman’s correlations,

r = 0.5–0.94; maximum number of species = 32); good-performance

species (r = 0.37– 0.6; maximum number of species = 63); and poor-

performance species (r = 0.17–0.44; maximum number of spe-

cies = 37).

After ranking the relative importance of all the environmental

variables, we calculated the fraction of species for which the

models selected climatic, vegetation or landscape variables among

the three most important ones. Results were different depending

on the method used (Figure 3). Using the procedure for assessment

of variable importance in BRT, we found that vegetation was

selected as important for a larger fraction of bird species (26.2–

40.5%) than that estimated with RF models (Accuracy 1.2–7.7%,

and Gini index 12.5–18.4%). For the three measures of variable

importance used (BRT, Accuracy and Gini index), the fraction of

species for which the models selected non-climatic variables

increased from the first most important variable (1.2–26.2%) to the

second (4.8–37.5%) and third variable selected (7.7–40.5%).

The main type of habitat used by the bird species was not

associated with the choice of variables entering into the models

(Figure 4) neither did the degree of habitat specialization (Table 5).

As it can be seen in figure 4, vegetation variables were selected as

the first, second, or third most important variable for a constant

fraction of bird species. For example, vegetation was associated

with ,35% of forest bird specialists in all cases. Unlike the

expectation, no clear variable discrimination emerged in models

using vegetation variables among forest, shrubland or grassland

birds.

Discussion

In this study we asked whether adding vegetation and landscape

configuration variables in environmental envelope models would

significantly increase discrimination ability of models and whether

different sets of variables would affect the spatial representation of

climate change impacts on bird species. We showed that models

using climatic variables generally fit the data better than models

using vegetation or landscape configuration variables. However,

improvements of discrimination with the climate models, as

compared with the two alternative models, were significant in all

Figure 4. Importance of vegetation variables among bird species with different habitat preferences. Species composition based on the
main habitat used by the bird species selecting vegetation variables as the first, second or third most important for explaining their distribution. For
BRT model species number for V1 = 44, V2 = 63 and V3 = 69 whereas for RF model (Mean Decrease Gini measure) the species number for V1 = 21,
V2 = 33 and V3 = 31.
doi:10.1371/journal.pone.0029373.g004

Figure 3. Ranking of variable importance for BRT and RF models. Fraction of the 168 bird species for which the model selected climatic,
vegetation or landscape variables as the first, the second or the third most important variable.
doi:10.1371/journal.pone.0029373.g003
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cases only for the climatic-landscape model comparison. Disagree-

ment existed between future projections using different predictors,

but the discrepancy decreased when species with high levels of

discrimination ability in ensembles of forecasts were retained.

Finally, the importance of variables appeared to be species specific

and, despite the importance of climatic variables, vegetation and

landscape configuration were also important for explaining the

distribution patterns of a number of bird species.

Climatic variables perform better than non-climatic
variables when predicting potential distributions of birds

Authors have repeatedly suggested that greater care should be

given to the choice of environmental predictors when modelling

the potential distributions of species (e.g. [71]). Previous studies

have suggested that non-climatic variables should be incorporated

in bioclimatic models for projecting future range shifts (e.g.

[13,72]), but the impossibility of validating future projections

[65,73] makes it complicated to measure the relative importance

of non-climatic variables. It is well-established that the configu-

ration and composition of vegetation are good predictors of bird

species distributions because they are associated with many of their

breeding, feeding or nesting requirements (e.g. [74] and references

therein). For example, Seoane et al. [13] found that vegetation

models were significantly more accurate than topo-climatic

models. However, our results showed that vegetation or landscape

models did not outperform climatic models. Indeed, for half of the

modelled species consideration of all variables did not result in

better discrimination than that obtained with models only

accounting for climate variation. Possible explanations for this

result are that: (i) the relative importance of climatic versus non-

climatic predictors is scale dependent (e.g. [75]). For example, in a

previous study, land cover data did not improve model accuracy at

coarse resolution (50 km) in Europe [11]. In another study, using a

finer resolution (10 and 1 km), the inclusion of land use improved

model discrimination ability [12]. In effect, the resolution and

extent of our study might be too coarse to capture the dependence

of birds on vegetation; (ii) vegetation in Mediterranean countries

has been modified by humans for millennia. The human impact is

not represented by the simulated potential vegetation. We sought

to address this issue by tailing vegetation to land use, but the land

cover data used herein is still a rather coarse approximation of real

land cover and its associated habitat characteristics. However, the

correspondence between species potential distributions and

simulated potential vegetation might be higher in regions where

the actual vegetation has been little influenced by human activities;

(iii) the vegetation model used here was parameterized to represent

the main dominant tree species and vegetation types across

Europe, but it did not include all important trees in the Iberian

Peninsula. Furthermore, as with any process-based vegetation

model, simulated vegetation patterns do not always correspond

well with real patterns; (iv) the coarse vegetation and land use

variables used in this study do not account for all important habitat

characteristics, such as forest age and size structure in plantations

and the amount of deadwood.

Discrepancies between future projections could be partly

explained by the expected decrease in the correlation between

climate and simulated vegetation across time. This is because,

firstly, the vegetation model accounts for potential effects of

increasing atmospheric CO2 on productivity and water cycling

[44,76]. ‘‘CO2 fertilization’’ and reductions in stomatal conduc-

tance and water losses might alleviate some of the negative effects

of increasing drought on vegetation [44,77]. Secondly, the

vegetation model simulates transient vegetation shifts, not the

equilibrium response to the climatic forcing. Over a few decades,

only a small fraction of the long-term equilibrium response of the

vegetation can be expected [45]. This non-equilibrium is much

more important for the discrepancies in the projections than the

CO2 effects [44,45].

Species characteristics influence model accuracy
Species characteristics have been shown to influence model

accuracy and many biological traits such as body size or dispersion

rate and also population trends have been measured for evaluating

their influence on modelling results [78]. Species with narrower or

spatially more aggregated ranges (e.g. [79,80]) and higher habitat

specialization (e.g. [81,82]) can generally be predicted with higher

accuracy. Our results support the conclusions from these studies,

as the species with the highest accuracy values across all model

types (climate, vegetation, landscape configuration and global)

included high-mountain species with very narrow ranges and low

prevalence, such as Tengmalm’s owl Aegolius funereus, bearded

vulture Gypaetus barbatus, rock ptarmigan Lagopus mutus, capercaillie

Tetrao urogallus and ring ouzel Turdus torquatus. In our study, the

ranking of species by accuracy values was similar across models as

it was shown when future projections for the subgroup of species

with good model performance were compared (Figure 2).

Therefore, other relevant environmental or biological predictors

might be required for those species that were difficult to model.

The importance of predictors is species specific
It is difficult to determine what are the most important

environmental variables constraining species distributions, espe-

cially when a large number of species is considered. Nevertheless,

we note that most of the divergence in future projections was

caused by species that were difficult to model with our predictors,

i.e., that performed poorly with the measures of discrimination

ability used to verify model performance. Models discriminating

data well yielded less variable projections into the future. More

work is needed to identify whether animal species can be grouped

based on their response to global environmental changes as well as

identify which functional traits made them more resistant to these

changes.

We conclude that the discrimination ability of envelope models

is not always improved by inclusion of vegetation and landscape

configuration variables. In the particular case of bird species in the

Table 5. Fraction of bird species for which the model
included vegetation variables as the first (V1), second (V2) or
third (V3) most important variables.

Model
technique BRT RF (Gini index)

Specialization
level V1 V2 V3 V1 V2 V3

High
specialization

52.3% 54% 58% 52.4% 54.5% 61.3%

Mid
specialization

25% 34.9% 20.3% 33.3% 39.4% 29%

Low
specialization

6.8% 3.2% 4.3% 0% 0% 0%

Species are grouped by their degree of habitat specialization based on the
number of habitat types they use for breeding and feeding. High
specialization means the species use one habitat type (N = 90), mid
specialization means the species use two habitat types (N = 51) and low
specialization means the species use three habitat types (N = 9).
doi:10.1371/journal.pone.0029373.t005
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Iberian Peninsula, climate was sufficient to describe current

distributions for ca. 50% of the species and in some of the

remaining cases vegetation could help improving the fit of the

models but not landscape configuration. With our data and

analysis, no general patterns emerged with regards to the selection

of vegetation variables by models of different guilds of species. So,

the decision as to whether to include specific non-climatic factors

in the models requires case specific considerations based on the

auto-ecology of the species.

Supporting Information

Figure S1 (A) Comparison between the simulated LAI of
the first five main tree species (Betula pendula, Corylus
avellana, Fagus sylvatica, Fraxinus excelsior and Quer-
cus robur) and presence data from the Third Spanish
Forestry Inventory (IFN = Inventario Forestal Nacional).
Inventory data was not available for all simulated tree species. The

first column of maps represents the model outputs, the second

column the result from the combination of LPJ-GUESS results

with a land use dataset (see Materials and Methods for further

details), and the third column represents the presence data of the

IFN. The model reproduced the broad distinction between

northern and southern trees, but the simulated distribution of

more northerly distributed species generally expanded further to

the south than according to the inventory data. This was too some

extent expected as the model represented potential natural

vegetation. The Mediterranean region has a long history of

large-scale anthropogenic impacts. Most areas once occupied by

forest were transformed into croplands and pastures hundreds and

in many cases even thousands of years ago (e.g. [83]), while the rest

of the remaining forest has been intensively managed [84]. Also

the imposition of real land use patterns could only partly remove

this mismatch because the land use data only distinguished forest

and non-forest areas, without tree species-specific information. As

a result, the simulated distribution was maintained in the

simulated data as long as the land use data indicated that the

forest cover was, at least, 10% (see Materials and Methods).

Another explanation for the wider simulated ranges might be that

the inventory might not cover all small outlier populations. (B)

Comparison between the simulated LAI of the last five main tree

species (Picea abies, Pinus halepensis, Quercus ilex, Quercus pubescens and

Tilia cordata) and presence data from the Third Spanish Forestry

Inventory (IFN = Inventario Forestal Nacional).

(TIF)

Table S1 Main habitats (G = grassland, S = shrubland,
F = forest, O = others) for the 168 bird species included
in the study. The information was gathered from the Spanish

Atlas of Breeding Birds [33] and complemented by consultation

with the following experts: Carlos Ponce, Sergio Pérez Gil and

Alejandro Aparicio Valenciano.
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