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Abstract

Background: Understanding the relationship between species traits and species abundance is an important goal in ecology
and biodiversity science. Although theoretical studies predict that traits related to performance (e.g. reproductive
allocation) are most directly linked to species abundance within a community, empirical investigations have rarely been
done. It also remains unclear how environmental factors such as grazing or fertilizer application affect the predicted
relationship.

Methodology: We conducted a 3-year field experiment in a Tibetan alpine meadow to assess the relationship between
plant reproductive allocation (RA) and species relative abundance (SRA) on control, grazed and fertilized plots. Overall, the
studied plant community contained 32 common species.

Principal Findings: At the treatment level, (i) RA was negatively correlated with SRA on control plots and during the first
year on fertilized plots. (ii) No negative RA–SRA correlations were observed on grazed plots and during the second and third
year on fertilized plots. (iii) Seed size was positively correlated with SRA on control plots. At the plot level, the correlation
between SRA and RA were not affected by treatment, year or species composition.

Conclusions/Significance: Our study shows that the performance-related trait RA can negatively affect SRA within
communities, which is possibly due to the tradeoffs between clonal growth (for space occupancy) and sexual reproduction.
We propose that if different species occupy different positions along these tradeoffs it will contribute to biodiversity
maintenance in local communities or even at lager scale.
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Introduction

Understanding why some species are common and others are

rare at a particular site is one of the most difficult challenges in

biology [1]. Mechanisms potentially explaining species relative

abundance (SRA) distributions in communities include niche-

based deterministic and neutral stochastic ones. From a classical

niche perspective, SRA distributions within communities are

driven by tradeoffs among performance-related traits of co-

occurring species [2,3] such as traits related to competitive vs.

colonization ability [4–6]. However, ecologists have often failed to

find strong correlations between species traits and SRA [7,8]. This

supported a new neutral perspective asserting that community

assembly may largely be driven by random drift of dispersal-

limited species in and out of the community, regardless of their

traits and ecological differences among them [9–11]. The neutral

perspective offered a convenient null model against which other

perspectives could be compared and thus triggered renewed

interest into the potential role of traits and tradeoffs in community

assembly [12–15].

Previous studies on trait–abundance relationship mainly focused

on the link between plant functional traits and species presence/

absence [7,16–18]. The complexity of trait interactions (e.g.

tradeoffs), trait syndromes and the environmental context make it

difficult to find functional traits with consistently strong relations to

performance. This may be one of the reasons why a linkage

between plant functional traits and species abundance often could

not be demonstrated in field experiments [7,8,19]. However, the

link should be particularly strong if plant traits are closely related

to plant performance also called performance traits [13]. Such

traits not only should explain presence vs. absence [20], but also

the level of abundance of particular species (SRA) in a local

community [12,21]. Alternatively, if community structuring is

driven by random drift of ecologically equivalent species,
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significant trait–abundance relationships would not be expected

[10,22].

A trait with a particularly high potential to affect plant

performance is biomass allocation (e.g. allocation to vegetative

growth or to reproduction). Allocation to vegetative growth should

increase the competitive ability and the potential of a species to

become more abundant in an occupied site, whereas reproductive

allocation (RA) should increase a species’ potential to colonize new

sites. Assuming a tradeoff between allocation to growth and

reproduction [23–25], it is therefore expected that, locally and

over short time scale, RA should be negatively correlated with

SRA [23,26–28] whereas at a larger spatial scales and over longer

time scales RA should be positively correlated with SRA [13,29].

Similarly, the tradeoff between asexual ( = clonal growth) and

sexual reproduction is also related to species performance and

hence to SRA. High allocation to sexual reproduction should

enhance species dispersal and colonization ability, while a high

allocation to vegetative production should increase species

abundance in local communities. Thus, negative RA-SRA

relationships are expected if dominant species are able to

reproduce both sexually and vegetatively. Moreover, variation in

species performance and SRA can result from phylogenetic effects

[30–32] or related Janzen–Connell effects [33–35], which in turn

can be associated with related to reproductive strategy [36,37].

The relationship between RA and SRA at the local scale may

further depend on the availability of light and soil resources. If

resources are scarce, preferential allocation of biomass to

vegetative growth (shoots and roots) may be particularly important

to maintain site occupancy and therefore reduced RA. In that

case, RA and SRA should be negatively correlated. If light

availability increases because of grazing or increased soil nutrient

availability following fertilizer application, then a higher RA

should be possible without negative effects on SRA. Furthermore,

grazing may also increase the possibility for colonizing new

microsites by dispersing seeds, thus providing an advantage to

species with high RA [38–40]. Therefore, in the present study we

assessed the relationship between RA and SRA at the local, i.e.

plant community scale in alpine meadows of the Tibetan Plateau.

These meadows exhibit a high diversity with about 30 to 50 plant

species per 0.560.5 m quadrat. Previous studies have shown the

strong sensitivity of these ecosystems to changes in soil fertility and

grazing pressure [41–43]. A 3-year long experiment has been

conducted in plots where we controlled for grazing activity and

fertilizer application to test the above predictions. We asked the

following questions: i) is RA negatively correlated with SRA in

control plots and ii) is this negative correlation not observed in

grazed and fertilized plots?

Methods

Ethics Statement
No permits were required to carry out this study.

Study site
The experiment was conducted in the MaQu branch of the

Research Station of Alpine Meadow and Wetland Ecosystems of

Lanzhou University (N33u599, E102u009, altitude 3500 m a.s.l).

The site is located in the MaQu County which belongs to the

eastern part of the Tibetan Plateau, Gansu province, China. The

mean annual temperature is 1.2uC, ranging from 210uC in

January to 11.7uC in July. The mean annual precipitation for the

period 1975–2010 was 620 mm, occurring mainly during the

short, cool summer. The annual duration of cloud-free solar

radiation is about 2580 h. For further details about the field site

see [19,41].

Experimental design
A 13 ha flat, alpine grassland was enclosed within 58 ha of

fenced grassland in October 1999. Grazing was allowed within the

enclosure only during the non-productive winter months. Outside

of the enclosure (45 ha), vegetation was moderately grazed by 110

yaks and 2,200 sheep during all months except for 40 days

between July and mid-August when the animals were moved to

high-altitude pastures [19].

In late May 2004, thirty 568 m plots, separated by 2 m, were

established within the fenced site. We randomly allocated control,

low and high fertilizer-addition treatments (30 and 60 g fertilizer,

respectively, per square meter) to plots and replicated each of these

treatments ten times. A slow-release, pelletized fertilizer (30 g/m2

of (NH4)2HPO4, 18% N and 46% P) was hand-broadcast once

annually at the end of May during drizzly days to avoid the need

for watering [41–43]. Outside the enclosure, at a distance of

300 m from the fertilized plots, ten 568 m plots, separated by 2

to16 m, were randomly established for the grazing treatments.

Each plot was divided into two parts: a 565 m subplot for

measurements of plant traits and a 563 m subplot for community

monitoring. Aboveground biomass production of the total plant

community and the availability of light and soil resources for the

40 plots have been reported previously [41].

Species abundance measurements
In the middle of September 2004, 2005 and 2006, a 0.560.5 m

quadrat was harvested from the 563 m subplot of each plot.

Harvested quadrats were located at different places each year. The

number of individuals was counted for each species before

clipping. For clonal plants, the term individual refers to ramets

[42–44]. These are equivalent to tillers in grasses and rosettes or

rooting branches in forbs. Aboveground green parts (stem and

leaves) were sorted by species and brought to the laboratory.

Biomass allocation measurements
Based on previous studies, we chose 32 common species (Figure

S1) for measuring biomass allocation as well as collecting seeds.

These species accounted for 85–95% of the aboveground biomass

and 80–90% of the vegetation cover of the total plant community.

The species were split into two functional groups: forbs (including

legumes) and graminoids. Individuals were sampled in September

2004, 2005 and 2006. The harvesting schedule took account of the

different phenologies of the species, i.e., species were sampled at

their fruiting time. Only aboveground parts were collected because

the sampling of individual root systems was deemed impossible in

this dense meadow. We randomly sampled 2–3 adult individuals

of each species in the 565 m subplot of each plot, so as to obtain

nearly 30 individuals for each treatment. In grazed plots, we

selected individuals that were not injured by grazing. In the

laboratory, individuals were split into stems, leaves and reproduc-

tive parts (flowers and fruits). Samples were dried at 80uC and

weighed to the nearest 1024 g. The individuals sampled in 2004

from grazed plots were discarded because too many of them were

damaged.

Measurements of seed size
We also collected approximately 500 mature seeds from 20–30

individuals of each of the 32 species on the fenced control plots

over the three years. We deposited the seeds in envelopes and

spread them on tables in the laboratory (approximately 15uC) until

Reproduction-Abundance Trade-Offs Locally
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they were dry. Three replicates of 100 dried seeds were weighed

for each species to measure seed mass per 100 seeds.

Data analysis
Species relative abundance (SRA) was defined as the number of

individuals of a given species divided by the total number of

individuals in each 0.560.5 m quadrat. There were thus up to 10

SRA values per species per treatment. We calculated the

individual reproductive allocation (RA = biomass of reproductive

parts/aboveground biomass (IB)), stem allocation (SA = biomass of

stems/IB) and leaf allocation (LA = biomass of leaves/IB). Species

biomass allocation was calculated as the mean of the 25–30

individual biomass allocation values per species and treatment

[42].

Firstly, we examined the relationship between RA (or IB) and

log-transformed SRA by calculating Spearman rank correlations

at the treatment level, i.e. correlating species RA with SRA

(averaged over the 10 replicate quadrats within each treatment) for

each treatment and year separately. For the control treatment, we

also examined the relationship between seed size and SRA.

Secondly, to examine whether RA correlated with SRA on plot

level, we used a linear mixed-effects model with log-transformed

SRA as dependent variable and RA, year, treatment and plant

functional group as fixed explanatory terms and plot and species as

random explanatory terms. Interactions between fixed terms were

not significant and we thus excluded them in our final analysis.

Finally, to test the effects of the number of replicates per species

and of phylogenic relationships between species on the correla-

tions, we used bootstrapping analyses with 10,000 simulations and

phylogenetically independent contrasts (PICs) [45,46]. For the

mixed models, we used the nlme [47] and lme4 functions of lme4

package [48] developed for the statistical software R [49]. Based

on the published phylogenetic supertree of angiosperm families

and APG III [50,51], we built a phylogenetic tree of present

species in this study with Phylomatic [52] and Phylocom [53], and

tested phylogenetically independent contrasts (PICs) with the ape

and ade4 R packages [54,55].

Results

At the treatment level, we found that the mean RA of species

was significantly negatively correlated with mean SRA in all three

years in control plots. In fertilized plots, the correlation was still

significantly negative during the first year but had disappeared in

the second and third year. There was no significant relationship in

grazed plots (Figure 1). The negative correlations strengthened

when we used bootstrapping simulation and PICs (not shown).

Mean SRA was positively correlated with the mean seed size of

species in control plots for two years (Figure 2).

On plot level, results of the mixed-model analyses showed that

SRA was negatively affected by RA (F = 7.48, p,0.01) and that

the effect varied significantly between years (F = 5.16, p,0.01).

Treatments did not significantly differ in the mixed-model analyses

(F = 0.71, p.0.5) but graminoids had larger SRA than forbs

(F = 5.08, p,0.05). The variance component for species was large

(0.31460.085), indicating strong differences in SRA between

species within functional groups.

There were no significant correlations between mean SRA and

mean species aboveground biomass in all plots (Figure S2). Mean

SRA significantly positively correlated with mean species leaf

allocation in control and grazed plots (Figure S3). Finally, mean

SRA tended to be negatively correlated with mean species stem

allocation, but this was only significant in 2006 (Figure S4).

Discussion

Reproductive allocation and the balance between
competition and colonization ability

A potential key driver maintaining biodiversity within and

between communities are tradeoffs arising from the need of

organisms to balance their allocation of limited energy (biomass)

among growth, reproduction and defense [56–58]. The tradeoff in

biomass allocation results from physical and chemical constraints

during the life history of organisms [57,59]. Typically, plants

allocate more biomass to roots, leaves and stems than to

reproduction when competition for water, nutrient and light is

strong [23,26]. In contrast, the possibility of colonizing new

microsites increases with allocation to sexual reproduction [60].

Furthermore, plants have to balance their production of seeds

along a tradeoff between many small vs. few large seeds [58]; and

typically plant species or genotypes with high RA produce many

small seeds to increase their colonization ability [58,61,62].

In the Tibetan alpine meadows studied here, we previously

observed that plant species allocated more biomass to leaves at the

expense of RA under increased light competition in fertilized plots

[42,63], whereas, they often increased RA at the expense of stem

or even leaf growth in grazed plots [64]. Correspondingly, biomass

allocation to clonal growth increased under fertilization whereas it

decreased under grazing [65]. Based on these findings, species

with smaller RA were expected to have higher competitive ability

due to either larger root, stem, and leaf allocation or increased

clonal growth, whereas species with higher RA were expected to

have lower competitive ability; additionally they were expected to

produce more (smaller) seeds to increase their colonization ability.

However, we could not directly test the colonization ability in the

present study.

Reproductive allocation and species relative abundance
Consistent with these predictions, we found that increased RA

had a negative influence on the individual abundance of given

species, suggesting that species which invested more into sexual

reproduction and colonizing ability had lower competition ability

and thus could not maintain high abundance within a local site

and community. In contrast to RA, functional traits such as

specific leaf area or mature height of species were not correlated

with SRA (data not shown). This may be because performance-

related traits can be related to several functional traits in different

ways such that no single one of them can predict performance in a

particular environment. It has been suggested that, compared to

functional traits, performance-related traits should be more tightly

linked to species abundance [13,29]. As our results suggest,

biomass allocation as a key performance-related trait and

specifically RA as indicator of an among-species tradeoff between

growth and sexual reproduction could determine the pattern of

SRA within local sites, and influence community structuring in

response to environmental factors such as fertilization and grazing.

The negative correlation between RA and SRA and the positive

correlation between leaf allocation and SRA are consistent with

the hypothesis of a tradeoff between growth and sexual

reproduction.

The positive correlation of leaf allocation with SRA in our study

suggests that light competition was an important driver for

community structuring [66–71]. In contrast, stem allocation in the

studied species was presumably less important for light competi-

tion, because most species only carried flowers and fruits on their

stems but not leaves (tillers and rosettes as typical growth forms)

[42]. This could explain the observed weak negative correlation

between stem allocation and SRA. Furthermore, we should

Reproduction-Abundance Trade-Offs Locally

PLoS ONE | www.plosone.org 3 April 2012 | Volume 7 | Issue 4 | e35448



mention that differences in SRA were not simply due to different

overall plant sizes between species, because SRA was not

correlated with mean species aboveground biomass (Figure S2).

Finally, the positive relationship between SRA and mean seed size

of species supports the idea of a tradeoff between competition and

colonizing ability that caused species with high RA to be locally

less abundant than species with low RA and consequently high leaf

allocation. Such a relationship between seed size and the

competition–colonization tradeoff has often been documented

[72]. Theoretically, root allocation should be positively correlated

with SRA under competition for limiting soil resources, but it was

not possible to assess this relationship in the dense meadows of our

study site because roots of different species intermingle too much.

In addition, as discussed above, the tradeoff between growth

and sexual reproduction can also result in a negative RA–SRA

pattern when dominant (and abundant) species reproduce

primarily by clonal growth and rare species recruit from seeds.

In our site, the dominant species (Kobresia capillifolia) reproduces

mainly by clonal growth, and many other abundant grass species

recruit by both sexual reproduction and clonal growth, of which

seed production often dominates. Then, if the tradeoff between

clonal growth and sexual reproduction would determine the

negative RA–SRA relationship, the latter should disappear when

sexual reproduction in these species becomes rare. However, the

correlation was still significant when we removed some species

with clonal growth or even all of graminoids. Moreover, the PIC

analysis showed that when we deducted the phylogenetic effect the

negative RA–SRA relationship became even stronger. This

suggested that the negative RA–SRA correlation was not due to

the fact that the observed species occupied different positions

along the phylogenetic tree. In short, these inferences suggest that

the negative RA–SRA relationship may not result from a simple

tradeoff between clonal growth and sexual reproduction or

phylogenetic effects. But we still need more comprehensive

research to distinguish the role of these processes in determining

patterns of RA–SRA relationships.

Influence of grazing and fertilization on the SRA–RA
relationship

We suggested in the Introduction that strong competition for

light and soil resources could be responsible for negative

correlations between SRA and RA, because under these

circumstances species should invest more into growth then into

reproduction to keep a site occupied at high abundance. Indeed,

Figure 1. The relationships between species relative abundance (SRA) and reproductive allocation (RA) in control, fertilized and
grazed plots. The dots indicate means of 25–30 individual RA for each species and its mean SRA over 10 quadrats. r and p values were estimated
from Spearman rank correlations.
doi:10.1371/journal.pone.0035448.g001
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we found the strongest evidence for a negative relationship

between SRA and RA in fenced, unfertilized plots. In grazed or

fertilized plots the correlation between SRA and RA was,

however, weak and often non-significant.

In grazed plots both RA and SRA of most species increased

(points moved toward the top right corner of graphs in Figure 1;

see also [64]). In fertilized plots, both RA and SRA of many

species deceased [42,63]. These results suggest that if tradeoffs in

(clonal) growth and reproduction drive SRA, the negative SRA–

RA correlations may weaken after grazing (reduced light

competition). In contrast, fertilization might have made compe-

tition for light so strong that species with large RA (generally forbs

which had overall lower SRA in the analysis on plot level) were lost

due to competitive exclusion, thus shortening the range of species

RAs that could be compared along the x-axis of the relationship

with SRA [42,43].

In conclusion, our results support the hypothesis that patterns of

SRA in Tibetan alpine meadows are not the result of neutral

processes but rather due to differences in species’ positions along

tradeoffs between (clonal) growth and sexual reproduction. The

balance between competition and colonizing ability may structure

these plant communities and explain the large biodiversity within

and among local communities.
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species.
(DOC)

Figure S2 Correlations between species relative abun-
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of 25–30 individual above-ground biomass for each species and its

mean SRA over 10 quadrats. r and p values were estimated from

Spearman rank correlations.
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Figure S3 Correlations between species relative abun-
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individual SA for each species and its mean SRA over 10
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