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Abstract  

 

Statistical variation of soil properties and their stochastic combinations may affect the 

extent of soil contamination by metals. This paper describes a method for the stochastic 

analysis of the effects of the variation in some selected soil factors (pH, DOC and EC) on the 

concentration of Copper in dwarf bean leaves (Phytodisponibility) grown in the laboratory on 

contaminated soils treated with different amendments. The method is based on a hybrid 

modeling technique: artificial neural network (ANN) and Monte Carlo Simulations (MCS). 

Because the repeated analyses required by MCS are time-consuming, the ANN is employed to 

predict the Copper concentration in dwarf bean leaves in response to stochastic (random) 

combinations of soil inputs. The input data for the ANN are a set of selected soil parameters 

generated randomly according to a Gaussian distribution to represent the parameter 

variabilities. The output is the Copper concentration in bean leaves. The results obtained by 

the stochastic (hybrid) ANN-MCS method show that the proposed approach may be applied 

(i) to perform a sensitivity analysis of soil factors in order to quantify the most important soil 
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parameters including soils properties and amendments on a given metal concentration, (ii) to 

contribute toward the development of decision-making processes at a large field scale such as 

the delineation of contaminated sites. 

 

Keywords: Artificial neural network, Monte Carlo simulation, Soil contamination, Copper, 

Bean leaves, Soil factors variability. 

 

 

1. Introduction 
 
 Statistical variation related to the variabilities of soil properties (soil inputs) combined 

with various soil amendments, may affect trace metal mobility (Goovaerts, 2001; Broos et al., 

1999, Schnabel et al., 2004). Many factors can influence the variability of soil parameter 

measurements, ranging from field sampling technique and soil location, to sample preparation 

and quality control in the laboratory. The ability to predict the concentration of a given metal 

in a given soil depends on the accuracy with which the soil inputs can be measured (Minasny 

and McBratney, 2002).  

 Laboratory soil tests to investigate the effect of the variability of soil properties are 

usually time-consuming and laborious. A large number of factors (inputs) involving random 

fluctuations in time and space are adequately described by stochastic processes. Furthermore, 

soils that are regularly ploughed tend to present a greater spatial dependency as depth 

increases, because management leads to surface homogeneity (Souza et al., 2006). Camacho-

Tamayo et al., (2008) investigated the spatial variability of some chemical properties in 

different agricultural fields in Columbia. Their results showed that spatial variability of the 

soil chemical properties depends upon the use of amendments with a greater influence in the 

upper 100 mm of soil. Hence, a rapid modeling tool is needed to perform stochastic analysis 
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(Goovaerts, 2001). Such stochastic modeling approach in soil problems are still lacking, for 

several reasons: (i) the complexity and length of time needed to perform the experiments and 

(ii) the very high number of experiments to be conducted to obtain statistically significant 

results.  Ramsey et al. (2002) developed an analytical approach called the duplicate method 

based on balanced experimental design, where a small proportion of sampling targets are 

sampled in duplicate. The data produced from the implementation of the duplicate method 

was then analyzed using robust analysis of variance (ANOVA) to separate and quantify the 

individual contributions to uncertainty as standard deviations. The values for the total 

measurement uncertainty, and the separate contributions from the sampling was estimated 

from the resultant measurements using robust analysis of variance (ANOVA) to separate and 

quantify the individual contributions to uncertainty as standard deviations (Ramsey et al., 

1992, Ramsey and Argyraki, 1997). 

  The application of stochastic simulation algorithms in the field of soil analysis is a 

common tool for decision-making processes such as the delineation of contaminated sites 

(Goovaerts, 2001; McKenna, 1998; Broos et al., 1999, Betrie et al., 2013). Several 

methodologies have been used to account for uncertainty such as Kalman filtering (Peter, 

1979; Ahsam and O’Connor, 1994), first-order analysis (FOA) (Chaubey et al., 1999; Haan 

and Skaggs, 2003a, 2003b), Monte Carlo Simulations (MCS) (Haan and Skaggs, 2003a, 

2003b; Ogle et al., 2003; Wang et al., 2005), Latin hypercube sampling (LHS) (Pebesma and 

Heuvelink, 1999) and generalized likelihood uncertainty estimation (GLUE) (Beven and 

Binley, 1992; Beven, 1993). Recently, Oporto et al. (2012) applied MCS to identify the cause 

of soil cadmium contamination. The parameter uncertainty was taken into account with the 

MC analysis. Different algorithms have been applied by several authors to perform stochastic 

modeling (Deutsch, 1994; Gotway and Rutherford, 1994; Srivastava, 1996). These studies 

indicated that (i) no simulation algorithm is valid for all cases, and (ii) most of them require 
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the mathematical description of the relationships between soil inputs (properties) and soil 

outputs which have to be stated a priori in the regression models (Goovaerts, 2001). 

 Rapid and accurate analysis of the variabilities involved in the assessment of soil 

factors by stochastic methods is still lacking compared to deterministic procedures. 

In the current work, a hybrid stochastic analysis approach Neural network (ANN) and 

Monte Carlo simulation (MCS) was developed allowing for the prediction of soil output 

variability based on soil input parameters variabilities and to examine the predictive 

variability as a function of model inputs across the full range of parameter space. In the 

present study we consider the specific case of the prediction of variability of Copper (Cu) 

toxicity in contaminated soils that have undergone phytoremediation versus the variabilities of 

some selected soil parameters such as: pH, the electrical conductivity (EC) and the dissolved 

organic carbon (DOC). Cu toxicity was evaluated by the Cu concentration in bean leaves (BL) 

grown in the laboratory on contaminated soils treated with four different amendments. 

 The ANN-MCS procedure generates random statistical combinations of soil inputs and 

performs the corresponding stochastic predictions compatible with prescribed statistical 

distributions, which are found to be Gaussian, related to the soil factors.  The use of the 

normal distribution is often defended by invoking the central limit theorem, which states that 

any distribution will tend to behave like a normal distribution as the values are averaged 

together mainly for independent variables. 

  

2. Material and methods 

 
 
 The following flowchart describes the different steps and their interdependencies to 

perform combined ANN-MCS (Fig.1).  
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Fig. 1.  : Flowchart of the hybrid stochastic computation approach: ANN-MC. 
 

 

For an individual case of Cu prediction, the procedure for obtaining the stochastic 

solution that incorporates soil parameter variabilities is as follows: 

 

(1) The values of each input variable (pH, DOC and EC) are generated randomly 

based on their statistical distribution (normal distribution in our case with a mean 

value and a standard deviation for each parameter); 

(2) Deterministic ANN prediction of Cu concentration in BL is performed in response 

to the random data set generated in step 1; 

(3) The above two steps are repeated ten thousand times as part of the MCS;  

(4) Finally, the predicted Cu concentrations in BL obtained in step 3 are used to 

determine the Cu concentration statistical distribution function related to the 

variability of each input factor (pH, DOC and EC).  

 

2.1. Experiment 
 
2.1.1. Soil sampling and preparation 
 
 

Sixsteen soil samples with 16 replicates of each one were collected in 2011 from 16 

plots (1x3m) to a depth of 0.25 m from the BIOGECO phytostabilization platform installed on 
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a former wood preservation site located in south-western France, Gironde County (44°43’N; 

0°30’O). This site has been contaminated with high concentrations of Cu. The history of the 

site and its characteristics are detailed in (Mench and Bes, 2009; Bes et al., 2010). Long-term 

aided phytostabilization experiments are established at the site. The plant communities 

cultivated in the zone of the field trial were Agrostis capillaris, Elytrigia repens, Rumex 

acetosella, Portulaca oleracea, Hypericum perforatum, Hypochaeris radicata, Euphorbia 

chamaescyce, Echium vulgare, Agrostis stolonifera, Lotus corniculatus, Cerastium 

glomeratum, and Populus nigra (Bes et al., 2010). Weber et al. (2007) reported that the use of 

organic amendments in the soil requires testing of the long-term changes in available Cu. 

Therefore, on these 16 plots four different amendments were applied in May 2006, one per 

plot (Latin square design) and carefully mixed in the top soil (0-0.30 m) with a stainless steel 

spade with sixteen replicates: untreated soil (UNT), 0.2% of dolomite limestone (DL), 5% of 

compost of poultry manure and pine bark (CPM) and a mixture of 0.2% DL along with 5% 

CPM (DLX CPM). One kilo of each soil collected in 2011 from each plot was placed in a pot 

after sieving (2 mm). Four seeds of dwarf beans (Phaseolus vulgaris) were sown in each pot 

and cultivated for 18 days in controlled conditions (16 h light/8 h darkness regime). The soil 

moisture was maintained at around 50% of the field water capacity with additions of distilled 

water after weighing. Then the soil moisture was raised to 80% (11-13% of air-dried soil 

mass) at the beginning of the germination stage of the seeds. At the end of the growing period 

the plants were harvested and the dry weight of BL was determined after drying at 70°C. 

The BL were weighed (35-150mg) directly into Savillex Polytetrafluoroethylene PTFE 

50mL vessels, 2mL H2O and 2mL supra-pure 14 M HNO3 were added and the vessels were 

heated open at 65°C for 2 hours. Then the caps were closed and the containers were left 

overnight at 65°C (12-14h). After that they were opened, 0.5mL of H2O2 (30%) was added to 

each sample and left open at 75°C for 3 hours. Then 1.5±0.5mL of hydrofluoric acid HF 
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(48%) was added to each sample, caps were closed and left at 100°C overnight. The 

containers were opened and kept at 120°C for 4-5 hours evaporating to dryness, then taken off 

the heat; 1mL HNO3 + 5mL H2O + 0.1mL H2O2 were added to each, gently warmed up and 

after cooling down made up to 50mL. Finally, trace element concentrations in digests were 

determined by ICP-MS (Varian 810-MS) using standard solution of measured trace elements, 

in our case, Reference Standard Solution of Copper (1000ppm ±1%/Certified) was used. The 

accuracy of the metals determination was checked by performing calibrations with standard 

reference solution. Strong correlation was found between the measured and the reference 

results (R2=0.9992) indicating that the measurement are accurate. After the calibration phase, 

16 repeated measurements were performed for each digest generating 256 testing results (4 

repeated 4 amendments   16 digests). The precision of the metal content measurement was 

assessed by the standard deviation (SD) (Table 1). 

 
2.1.2. Characterization of soil solution 
 

The soils were watered with distilled water after harvesting the dwarf beans and daily 

maintained at 80% of field capacity (11-13% of air-dried soil mass) for 2 weeks. Three 

Rhizon soil-moisture samplers (SMS) from Rhizosphere Research Products (Wageningen, 

Holland) were inserted after 2 weeks for 24h with a 45o angle into each potted soil (4x16 

soils) to collect soil pore water (30 mL) from each pot. Then DOC was analyzed in the soil 

solution by a Shimadzu© TOC 5000A analyzer. Soil pH and EC were determined in the same 

soil solution by pH meter and the EC readings. 

 
 

2.1.3. Selection of soil factors  
 
 

It has been reported that the relationships between the concentrations of metals in plants 

and a given soil are mainly influenced by the soil properties related to the ion charges (Sauvé 
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et al., 2000, Fisher and Binkley, 2000; Weng et al., 2002).  Therefore, in the current 

preliminary study, the soil inputs for the ANN model were limited to the three measurable 

factors (pH, DOC and EC) considered to be the most influential on the mobility and 

availability of metals in the soil. 

 

 

 

 
2.1.4. Estimation of the parameters’statistical distribution 

 

 Four soil samples were collected from 4 plots treated with 4 different amendments 

(UNT, CPM, DL and DLX CPM). 16 replications were performed for each measurement, 

generating 256 (4 soils x 4 amendments x 16 replicates) measured data used to estimate the 

statistical characteristics of the factors and to train the ANN. The total soil solution 

concentrations of Cu, pH, DOC and EC were statistically analyzed by (Statistica) to evaluate 

the Probability Density Function (PDF) of each measured variable and its corresponding 

characteristics. The Anderson-Darling normality test was performed. It was fond that the 

retained soil factors distributions are Gaussian. 

 

The calculated P-Value was greater than 0.05 and the data points follow an almost straight 

line. The estimation of the different parameters’ mean values, their standard deviations and 

coefficient of variation (COV) is reported in table 1. It can be seen in table 1 that the average 

concentration and standard deviation vary with the treatment applied. 
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Table 1.  

Statistical properties of the selected soil factors for different soil treatments. 

Treatment Factor Mean Standard deviation COV (%) PDF 

UNT 

pH 6.87 0.09 1.34 Normal 

EC (mS cm−1) 159.5 15.40 9.65 Normal 

DOC (mg L−1) 347.4 25.35 7.30 Normal 

CPM 

pH 6.98 0.055 0.79 Normal 

EC (mS cm−1) 161 14.30 8.88 Normal 

DOC (mg L−1) 352.4 23.77 6.75 Normal 

DL 

pH 7.05 0.055 0.78 Normal 

EC (mS cm−1) 162.4 13.35 8.22 Normal 

DOC (mg L−1) 362.5 22.07 6.09 Normal 

DLX CPM 

pH 7.15 0.04 0.57 Normal 

EC (mS cm−1) 163.1 12.55 7.70 Normal 

DOC (mg L−1) 356.7 21.03 5.90 Normal 

(UNT: untreated; CPM: compost of poultry manure and pine bark; DL: dolomite 
limestone; DLX CPM: mixture of 0.2% DL along with 5% CPM; PDF: Probability 
Density Function; COV, coefficient of variation). 

 
 
 
 
 

2.2. Artificial Neural networks 
 
 

The ANN architecture is composed of an input layer, a certain number of hidden 

layers and an output layer in forward connections. Each neuron in the input layer represents 

a single input parameter. These values are directly transmitted to the subsequent neurons of 

the hidden layers. The neurons of the last layer represent the ANN outputs (Fig. 2). 
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Fig. 2. : Artificial neural network architecture composed of 4 inputs, two hidden layers 
and one output layer. 

 
 

The output m
iy  of neuron i in a layer m is calculated by (Johansson et al., 1992; Hagan et 

al., 1996; Haykin, 1999; Hambli et al., 2006; Hambli, 2010, 2011; Hambli et al., 2011). 
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Where 0

iy  are the model inputs,  
m
iv  are the outputs of the layer m, f is the activation function, L 

is the number of connections to the previous layer, 1m
jiw  corresponds to the weights of each 

connection and m
ib  is the bias, which represents the constant part in the activation function.  

 Among the activation functions, the sigmoid (logistic) function is the one most usually 

employed in ANN applications. It is given by (Haykin, 1999; Hambli, 2011): 

   m
i

m
i v

vf 
exp1

1
                       (3) 

 
where   is a parameter defining the slope of the function ( 9.0 ). 
 
 
2.2.1. Neural network training 
 
 
 Sixty four measurements were performed; 40 were used for training, 16 samples for 

testing and 8 samples covering a wide range of the experiments for validation. The testing 

data were not used for training. The testing data provided cross validation during the ANN 
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training for verification of the network prediction accuracy. The validation data were used to 

measure the performance of the predictive capability of the ANN after complete training.  

 In the present work, an in-house ANN program called Neuromod written in 

FORTRAN (Hambli, 2010, 2011; Hambli et al., 2011) was applied. The basic ANN 

configuration employed in this study has a double hidden layer with six neurons in each layer 

with a learning rate factor 1.0  and momentum coefficient 1.0 .  

The learning rate coefficient   and the momentum term   are two user-defined ANN 

algorithm training parameters that affect the learning procedure of the ANN. The training is 

sensitive to the choice of these net parameters. The learning rate coefficient, employed during 

the adjustment of weights ( 1m
jiw ), was used to speed up or slow down the learning process. A 

larger learning coefficient increases the weight changes, hence large steps are taken towards the 

global minimum of error level, while smaller learning coefficients increase the number of steps 

taken to reach the desired error level. Tests performed for more than two hidden layers and 

different  and  parameters showed no significant improvement in the obtained results. 

 

2.3. Monte Carlo simulation 
 
 

For stochastic analysis using MCS, N samples of the vector of random soil inputs were 

generated randomly according to a statistical distribution function. The implementation of the 

method consisted in the numerical simulation of these samples with an ANN. As shown in 

Figure 3, the stochastic modeling concept based on MC sampling can be considered as the 

direct mapping of the input space onto the output space. The input space represents the random 

combinations of input factors, each of which follows a probability density function (PDF) 

representing the statistical variability. 
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Fig. 3. : Stochastic modeling concept based on MC sampling considering factor variability 
consisting of mapping input space (due to variability following probability density functions) 
onto output space 
 
 
 Statistical applications for the study of contaminated sites commonly make use of 

theoretical distributions such as the normal, log-normal and exponential distributions. The 

most commonly used distribution model in soil statistics is the normal distribution (Al -Omran 

et al., 2004). 

 

2.3.1. Sampling method for Monte Carlo simulations 
 
   

 Latin hypercube sampling (LHS) was used for the MCS to select random points from 

the uniformly distributed parameter space. One of the advantages of the LHS method which 

makes it appropriate for this study is that LHS ensures full coverage over the range of each 

variable so that all areas of the sample space are represented by the selected input values 

(Pebesma and Heuvelink, 1999). The more points that are selected from the parameter space, 

the more densely the space will be covered and the more reliable the results will be. In the 

current work, 10,000 random combinations were used for the ANN-MCS analysis. 

 
3. Results 

 
 Figure 4 shows the accuracy of predicting Cu concentration with the trained ANN for 

the four different soil treatments. It can be seen that (i) the ANN prediction is in good 
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agreement with the experimental results, which means that the ANN has been sufficiently 

trained and (ii) the accuracy of the four soils with the four amendments is quite comparable. 

The R2 value of the regression is greater than 0.97 and the slope of the regression is close to 1. 

 

 
 
Fig. 4. : Predicted (ANN) versus Experimental results of Cu concentration in BL Diagrams 
showing the accuracy of the ANN predicting for different soil treatments. (UNT: untreated; 
CPM: compost of poultry manure and pine bark; DL: dolomite limestone; DLX CPM: 
mixture of 0.2% DL along with 5% CPM and BL: bean leaves). 
 

 

First, the ANN-MCS model was tested using different number of random 

combinations ranging from 1000 to 100,000). We found that the calculation converges 

(insensivity to the combination numbers) for a number of combinations greater than 5000. 

Therefore, to investigate the role of soil parameters’variability, 10,000 random combinations 

of the variability soil factors generated by MCS were applied. Each soil factors (inputs) was 

generated according to the normal distribution (Table 1). These results were then processed to 

determine the statistical characteristics of Cu response regarding input variability.  

Figure 5 shows the effects of the three soil factors variabilities on the Cu concentration 

in BL. For an explicit comparison between the different soil treatments and the corresponding 
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data scatter, the mean value and standard deviation were normalized (unit normal distribution: 

0  and 1 ). 

 In order to study the influence of each soil parameter, only one parameter was 

generated randomly for each calculation. For the other factors were fixed, the mean values were 

taken (Table 1). 

 
 

Fig. 5. : Copper concentration variation versus the statistical variation of soil factors for 
different amendments. (UNT: untreated; CPM: compost of poultry manure and pine bark; DL: 
dolomite limestone; DLX CPM: mixture of 0.2% DL along with 5% CPM). 
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 It can be observed that the scatter is significant due to the variability related to the soil 

parameters. The figure shows the stochastic nature of the predicted Cu concentration in BL 

generated by the statistical variation of the soil inputs. The measured variability is clearly 

statistically significant. The scatter plots in Figure 5 indicate that the predicted Cu 

concentration in BL for the different treatments follows the normal distribution with varying 

mean values, standard deviations and coefficients of variation (COV). In addition, the results 

indicated that the variability of the Cu concentration in BL was reduced by the application of 

soil amendments. 

The effect of the pH, DOC and EC variabilities on  the variability of Cu concentration 

in BL  under the influence of the different amendments are as follows, from the greatest 

impact to the least impact: effect of pH > effect of DOC > effect of EC (low value of standard 

deviation and COV) (Fig. 6). 
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Fig. 6.  : Predicted and measured standard deviations and coefficients of variation related to 
the uncertainties of pH, DOC and EC for four amendments (UNT, CPM, DL and DLX CPM). 
(UNT: untreated, CPM: compost of poultry manure and pine bark, DL: dolomite limestone 
and DLX CPM: mixture of 0.2% DL along with 5% CPM). 

 

 
 
 
4. Discussion 
 
 

The focus of the proposed ANN-MCS stochastic modeling approach was not on 

achieving an in-depth investigation of the variation of soil contamination by Cu and 

corresponding statistical analysis of the data but rather on (i) presenting the concept of 

combined rapid ANN-MCS modeling and (ii) presenting the potential of the method in 

performing and exploiting the stochastic analysis in a large field scale. 

To assess the prediction accuracy, a comparison between the measured Cu 

concentration variability and the predicted ones shown in Figure 5 is summarized in table 2. 
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Table 2.  

Comparison between predicted and measured Cu concentration (mean value, standard 
deviation and coefficient of variation) related to the selected soil factors variability 
(pH, DOC and EC) for four different soil treatments (UNT, CPM, DL and DLX 
CPM). 

Treatment 
Factor 
effect 

Mean value (mg kg−1) 
 

Standard Deviation 
(mg kg−1) 

 

COV (%) 
 

ANN-
MC 

Measured 
Error 
(%) 

ANN-
MC 

Measured 
Error 
(%) 

ANN-
MC 

Measured 
Error 
(%) 

UNT 

pH 352.6 343.4 −2.7 18.3 17.0 −7.7 5.2 4.9 −4.9 

DOC 
(mg L−1) 

350.7 340.1 −3.1 16.1 17.1 6.1 4.6 5.0 8.9 

EC 
(mS cm−1) 

351.9 338.4 −3.9 11.1 10.1 −9.9 3.1 2.9 −5.7 

CPM 

pH 299.2 317.7 5.8 17.5 16.9 −3.0 5.8 5.3 −9.3 

DOC 
(mg L−1) 

298.1 311.5 4.3 19.0 18.2 −4.7 6.3 5.8 −9.5 

EC 
(mS cm−1) 

299.2 314.4 4.8 8.5 8.1 −4.5 2.8 2.6 −9.8 

DL 

pH 271.1 256.9 −5.5 14.7 15.2 3.9 5.4 5.9 8.9 

DOC 
(mg L−1) 

269.3 254.2 −5.9 15.7 16.3 3.6 5.8 6.4 9.0 

EC 
(mS cm−1) 

271.2 257.8 −5.2 6.3 6.5 4.1 2.3 2.5 8.8 

DLX CPM 

pH 252.8 243.1 −3.9 3.4 3.6 6.0 1.3 1.4 9.6 

DOC 
(mg L−1) 

250.9 267.5 6.2 5.4 5.8 7.5 2.1 2.1 1.3 

EC 
(mS cm−1) 

252.8 278.4 9.2 3.6 4.1 9.4 1.4 1.4 0.2 

(UNT: untreated; CPM: compost of poultry manure and pine bark; DL: dolomite 
limestone; DLX CPM: mixture of 0.2% DL along with 5% CPM; PDF: Probability 
Density Function; COV, coefficient of variation). 

 
 It can be seen that the predicted and measured results are in good agreement, with an 

error ranging from -9.9 % to 9.7 %. This indicates that the proposed ANN-MCS model is 

acceptable for predicting variabilities (statistical characteristics and distribution) as a 

consequence of the variabilities of the soil inputs.  

The ANN-MCS results indicated that pH variability generated the highest variability 

of Cu concentration suggesting that pH play a main role in stabilization of the 
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phytoremediation process. Considering the pH variability effect, the predicted Cu 

concentration varied between 304.3 mg.kg-1 and 400.6 mg.kg-1 in the case of UNT soil, 

between 265.7 mg.kg-1 and 334.4 mg.kg-1  in the case of CPM, between 258.1 mg.kg-1 and 

316.2  mg.kg-1  in the case of DL and between 255.3 mg.kg-1 and 271.4 mg.kg-1 in the case of 

DLX CPM. The computed mean values and standard deviation for every applied amendment 

are respectively (UNT: Cu=352.6 mg.kg-1, SD=18.3 mg.kg-1), (CPM: Cu=299.2 mg.kg-1, 

SD=17.5 mg.kg-1), (DL: Cu=271.1 mg.kg-1, SD=14.7 mg.kg-1) and (DLX CPM: Cu=252.8 

mg.kg-1, SD=3.4 mg.kg-1). 

The second influencing factor was the DOC.  ANN-MCS prediction showed that Cu 

concentration varied between 309.6 mg.kg-1 and 395.7 mg.kg-1 in the case of UNT soil, 

between 257.2 mg.kg-1 and 349.5 mg.kg-1  in the case of CPM, between 255.8 mg.kg-1 and 

310.2  mg.kg-1  in the case of DL and between 252.3 mg.kg-1 and 273.1 mg.kg-1 in the case of 

DLX CPM. The computed mean values and standard deviation for every applied amendment 

are respectively (UNT: Cu=35.7 mg.kg-1, SD=16.1 mg.kg-1), (CPM: Cu=298.1mg.kg-1, 

SD=19.0 mg.kg-1), (DL: Cu=285.3 mg.kg-1, SD=15.7 mg.kg-1) and (DLX CPM/ Cu=250.9 

mg.kg-1, SD=5.4mg.kg-1). 

We found that EC was the less influencing factor compared to pH and DOC. ANN-

MCS prediction showed that Cu concentration varied between 319.9 mg.kg-1 and 385.3 

mg.kg-1 in the case of UNT soil, between 287.2 mg.kg-1 and 321.2 mg.kg-1 in the case of CPM, 

between 260.1 mg.kg-1 and 291.2 mg.kg-1 in the case of DL and between 248.4 mg.kg-1 and 

277.1 mg.kg-1 in the case of DLX CPM. The computed mean values and standard deviation 

for every applied amendment are respectively (UNT: Cu=351.9 mg.kg-1, SD=11.1 mg.kg-1), 

(CPM: Cu=299.2 mg.kg-1, SD=8.5 mg.kg-1), (DL: Cu=271.2mg.kg-1, SD=6.3 mg.kg-1) and 

(DLX CPM: Cu=252.8 mg.kg-1, SD=3.8 mg.kg-1). 
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Interestingly, the simulation indicated that the soil amendment plays an important role 

in mediating the Cu concentration variability. The influence of the different amendments in 

generating scattered Cu response, from the greatest to the least impact, is as follows: effect 

related to UNT > Effect related to CPM > Effect related to DL soil > Effect related to DLX 

CPM soil. 

The predicted results highlighted the role of the interactions between soil factors 

variability and applied amendments in controlling the level and the scatter of Cu 

concentration and suggested that the Cu variability is not driven by a particular soil parameter 

but by interactions among them. In all cases, DLX CPM amendment lead to the stabilization 

(reduced variability versus the variability of pH, DOC and EC) of Cu concentration (lower 

value of standard deviation) compared to UNT, CPM and DL amendments. 

In all cases, DLX CPM amendment lead to reduced variability of Cu (Stabilization) 

versus the variability of pH, DOC and EC compared to UNT, CPM and DL amendments. 

 In contrast, the average value of Cu in the soil amended with DLX CPM was 

decreased. This result has important implication related to the selection of appropriate 

amendment for Cu phytoremediation in large field scale.  

The study demonstrated the potential of ANN-MCS modeling procedure for prediction 

of Cu concentration variability (means and standard deviation) versus the variability of some 

selected soils properties (pH, DOC and EC) subjected to different amendments. Therefore, 

ANN-MCS approach may be applied to derive guidelines for specific phytoremediation at 

large field scale in regard to variability (spatial, temporal and environmental) of different soil 

properties as well as their interactions with the applied amendment. 

 

In large field scale, many factors can influence variability of soil parameter 

measurements, ranging from field sampling technique and soil location, to sample preparation 
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and quality control in the laboratory. Hence, modeling soil processes must take into account 

the lack of large data covering the whole field and uncertainty in model parameters. Model 

predictions should incorporate, when possible, analyses of their uncertainty and sensitivity. 

This issue was investigated previously by several authors to deal with different causes of 

uncertainty such as heterogeneity of contaminant distribution in space and time (Ramsey et 

al.,1992, 2002; Ramsey, 2009 and Boon and Ramsey, 2010), measurement error in both the 

sampling and the chemical analysis (Ramsey and Boon, 2010) and contaminant heterogeneity 

and plant growth/uptake (Millis et al., 2004). 

According to the current obtained results, one may suggest that the developed ANN-

MCS model may be applicable at a large field scale for decision-making processes of Cu 

phytoremediation by controlling the sensitivity of the amount of a given metal uptake by 

plants in response to the soils factor variability (Deutsch, 1994; Gotway and Rutherford, 

1994; Srivastava, 1996; Goovaerts, 1999). For example, Mench and Bes (2009) reported 1460 

mg.kg−1 of Cu in the topsoil of a large wood preservation site at different locations and 

between 65–2600 mg.kg−1 on other site plots. Scholz and Schnabel (2006) reported that 

selection of specific soil remediation technique can be a challenging task due to among others 

to the uncertainty in assessment of level of contamination. Goovaerts (2001) addressed the 

importance of assessing the uncertainty about the value of soil properties and of the need to 

incorporate this assessment in subsequent decision-making processes, such as delineation of 

contaminated areas or identification of zones that are suitable for crop growth.  

This needs solutions based on the representation of the soil factors inputs as 

probability density functions representing data variability rather than considering 

deterministic values (Scholz and Schnabel, 2006). Also, data from pot experiments are often 

not validated in field trials (Song et al. 2004; Hu et al. 2007). However, simple, reliable and 

rapid approaches to select remedial solutions are needed to optimize the solution and to 
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evaluate the potential of selected phytoremediation options (Ramsey and Boon, 2010, 

Moreno-Jimenez et al. 2011). Ramsey et al. (2002) developed a low cost analytical approach 

based a small proportion of sampling targets to optimized contaminated land related to the 

factors variability.  

Present approach is based on computational one. From a practical point of view, if the 

tests performed on large field comprise a limited measurements data record, ANN-MCS 

procedures may provide a suitable tool for (i) modeling the inputs-outputs relationship with 

ANN and (ii) performing stochastic analysis using MCS to control the soil response. For 

example, based on maps of pH, DOC and EC spatial distribution, with the ANN-MCS, (i) one 

can draw the map of Cu variability distribution which can be useful to start any management 

methods in any field area and investigate the role of a given amendment on the Cu uptake 

stabilization, (ii) the method may be used to perform statistical analysis to obtain output 

probability distribution functions and confidence limits (Beven and Binley, 1992; Beven, 

1993) and (iii) Optimization procedures based on sensitivity analysis may be developed to 

control the level and variability of the Cu concentration by the optimal combination of soil 

factors and applied amendments. 

Considering other large fields, it should be speculated that the stochastic solution that 

incorporates the same soil properties and same uncertainties may be employed to predict the 

Cu variability of other similar soils in similar conditions. 

In a more general case, ANN-MCS algorithm can contribute toward the development 

of software and/or implemented into in-situ measurements devices to control the Cu uptake 

process. For example, Ferreira   et al., (2008) developed an ANN as a calibration strategy for 

Cu determination in soil samples using a portable Laser Induced Breakdown Spectroscopy 

system. Also, ANN-MCS procedure is suitable in many other soil problems were mapping 

soil outputs variability to soil factors variability is needed. 
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Despite its good performance, the proposed hybrid ANN-MCS method suffers from a 

number of limitations. 

First, ANN-MCS is not based on a physical description of the problem, which limits 

the physical understanding of these uncertainties. Moreover there are various types of 

uncertainties related to other soil/plant factors, and the entire spectrum of uncertainties is not 

yet known. In this first work, only the uncertainty of three selected soil parameters was 

studied to demonstrate the potential of the method. Second, the available statistical 

information is mainly restricted to the mean value, the standard deviation, upper and lower 

fractal values or upper and lower bounds which characterize the normal distribution. Other 

probability density functions such as log-normal and exponential distributions may be applied 

instead of the normal distribution. However, with the ANN-MCS approach, whatever the 

statistical information available, it can be used in relation with a specific sampling procedure 

for MCS. Third, there are no general guidelines which can help in the design of ANN-MCS 

modeling by a non-specialist. There is a need to develop a user-friendly interface that can be 

used by a non-specialist. 

Finally, it is worthy to notice that the total time required to develop and run the ANN-

MCS is dependent upon: the time required to generate the training and test data used; the time 

taken to train a number of ANN models in order to select the appropriate complexity; and the 

time required to run the ANN for the required number of MC samples. The majority of time is 

spent on generating the training data.  In this study, the time required for the ANN prediction 

of 10,000 input combinations was approximately 25 sec. 

 

In conclusion, the proposed ANN-MCS approach can be applied: 

 To perform sensitivity analysis of soil factors to quantify the most important 

parameters in a soil design problem that could then serve to formulate a 
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mechanistic model and to determine where future research efforts should be 

targeted. 

 To quantify and classify the most important soil parameters including soils 

properties and amendments on a given metal concentration 

  For decision-making processes at a large field scale such as the delineation of 

contaminated sites. 
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