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Abstract 20 

 Serpentine minerals in natural samples are dominated by lizardite and antigorite. In 21 

spite of numerous petrological experiments, the stability fields of these species remain poorly 22 

constrained. This paper presents the petrological observations and the Raman spectroscopy 23 

and XRD analyses of natural serpentinites from the Alpine paleo-accretionary wedge. 24 

Serpentine varieties are identified from a range of metamorphic pressure and temperature 25 

conditions from sub-greenschist (P < 4 kbar, T ~ 200-300°C) to eclogite facies conditions (P 26 

> 20 kbar, T > 460°C) along a subduction geothermal gradient. We used the observed mineral 27 

assemblage in natural serpentinite along with the Tmax estimated by Raman spectroscopy of 28 

the carbonaceous matter of the associated metasediments to constrain the temperature of the 29 

lizardite to antigorite transition at high pressures. We show that below 300°C, lizardite and 30 

locally chrysotile are the dominant species in the mesh texture. Between 320 and 390°C, 31 

lizardite is progressively replaced by antigorite at the grain boundaries through dissolution-32 

precipitation processes in the presence of SiO2 enriched fluids and through a solid-state 33 

transition in the cores of the lizardite mesh. Above 390°C, under high-grade blueschist to 34 

eclogite facies conditions, antigorite is the sole stable serpentine mineral until the onset of 35 

secondary olivine crystallization at 460°C. 36 

Keywords: Serpentinite; Raman spectroscopy; lizardite/antigorite transition; western Alps 37 



1. Introduction 38 

 Serpentine minerals are phyllosilicates that contain up to 13 wt% water and that form 39 

during the hydration of basic to ultrabasic rocks. Hydration commonly takes place in ocean 40 

spreading context, thus documenting the chemical exchanges between the oceans and solid 41 

Earth (Alt and Shanks, 2003). Serpentinites are also common in blueschist to eclogite facies 42 

terranes of oceanic or mantle wedge origin (Hattori and Guillot, 2007). Due to serpentinites’ 43 

low-variance metamorphic assemblage, it is generally difficult to evaluate the P-T conditions 44 

to which they were subjected (e.g., Evans, 2004), but the associated metamorphic rocks 45 

permit approximations of the conditions. It is therefore important to accurately and rapidly 46 

characterize these common serpentine minerals. Serpentine minerals, which have simplified 47 

structure formulae (Mg, Fe2+)3 Si2O5(OH)4, are made of superposed 1:1 alternating tetrahedral 48 

and octahedral sheets. The different spatial arrangements of these layers result in three main 49 

serpentine minerals, i.e., lizardite, chrysotile and antigorite. The sheets form flat layers in 50 

lizardite, rolls in chrysotile and curved modulated structures in antigorite (e.g., Wicks and 51 

O’Hanley, 1988). Serpentinites in high-grade metamorphic terranes indicate that antigorite is 52 

the predominant species (Scambelluri et al., 1995; Trommsdorff et al., 1998; Auzende et al., 53 

2002; 2006; Li et al., 2004; Groppo and Compagnoni, 2007; Padron-Navarta et al., 2008; 54 

Guillot et al., 2009). Moreover, experimental studies confirm that antigorite is the stable 55 

serpentine mineral under high-pressure conditions (Ulmer and Trommsdorff, 1995; Wunder 56 

and Schreyer, 1997; Bromiley and Pawley, 2003; Perrillat et al., 2005; Komabayashi et al., 57 

2005; Reynard and Wunder, 2006; Padron-Navarta et al., 2010). Lizardite and chrysotile are 58 

the main varieties that are present in low-grade serpentinites from the oceanic lithosphere and 59 

from low-grade metamorphic ophiolites (Evans, 2004; Andréani et al., 2007). However, the 60 

transition from low-grade to high-grade serpentine minerals is poorly constrained. 61 

Thermodynamic data predict that above 300°C, the antigorite + brucite assemblage is more 62 

stable than lizardite, and chrysotile is absent (Evans, 2004). Moreover, the antigorite + brucite 63 

assemblage is often observed in natural samples, while the chrysotile + brucite assemblage is 64 

particularly abundant in retrogressed serpentinites (Baronnet and Belluso, 2002). Thus, further 65 

petrological investigations of natural serpentinite samples, where the P-T conditions are well-66 

constrained, are required to refine the relative stability of each variety of serpentine over a 67 

wide range of metamorphic conditions. To definitively identify serpentine varieties, 68 

transmission electron microscopy (TEM) is usually required (Mellini et al., 1995; Auzende et 69 

al., 2002; Boudier et al., 2010). Indeed, serpentine grains are only a few microns in size and 70 



can display various habitus, which makes optical identification inaccurate. Vibrational Raman 71 

spectroscopy is also a powerful method for processing large numbers of complex samples, 72 

and numerous studies have been devoted to its use in serpentine characterization (Lewis et al., 73 

1996; Bard et al., 1997; Kloprogge et al., 1999; Rinaudo et al., 2003; Auzende et al., 2004; 74 

Groppo et al., 2006). In particular, the region of the OH stretching vibrational modes can be 75 

conveniently used to discriminate among the different varieties of serpentine (Auzende et al., 76 

2004). The OH stretching modes in the high wavenumber range (approximately 3500 cm-1) of 77 

the different serpentines are tentatively described in terms of the curvature of the layers, with 78 

potential applications for structural characterization by Raman spectroscopy. Raman 79 

spectroscopy permits the characterization of the phases at a micrometer scale of bulk samples 80 

or thin sections. To assess the reliability of Raman spectroscopy for identification purposes, 81 

we apply it to serpentines in a series of low to high pressure metamorphic serpentinite 82 

samples from the western Alps for which TEM characterization have been independently 83 

performed (Auzende et al., 2006). The serpentinites are also characterized by XRD in order to 84 

decipher the bulk serpentinite mineralogy. 85 

2. Geological setting 86 

 Alpine evolution along the Eurasia-Africa boundary was initially dominated by plate 87 

divergence, which induced Mesozoic rifting and oceanic opening. Since Cretaceous time, the 88 

plate convergence has resulted in subduction and collision (Rosenbaum and Lister, 2005; 89 

Dumont et al., 2012). This study focuses on the Piedmont zone of the southwestern Alps (Figs 90 

1a and 1b), which is composed of the association of units that originated in the distal 91 

European margin and from the nearby oceanic domain (Lemoine et al., 1986) and that were 92 

juxtaposed during the subduction and collision in Late Cretaceous to Tertiary times (Tricart, 93 

1984). The Piedmont zone includes different levels of the paleo-subduction zone, preserving 94 

the low thermal gradient (5-8 °C/km) associated with the subduction dynamics; moreover, it 95 

is partially overprinted by Alpine metamorphism conditions (Schwartz et al., 2001, 2007, 96 

Agard et al., 2002). At the top of the nappe pile, the Chenaillet massif corresponds to an 97 

obducted portion of the Tethyan oceanic lithosphere. This unit rests upon the Queyras 98 

Schistes lustrés (Fig. 1c), which represents a fossiliferous sedimentary accretionary wedge 99 

developed under blueschist facies conditions during the late Cretaceous–early Eocene 100 

subduction of the Tethyan Ocean (Schwartz, 2000; Tricart and Schwartz, 2006; Schwartz et 101 

al., 2009), as previously indicated by structural observations further to the north in the same 102 

Piedmont zone (Agard et al., 2001; Ganne et al., 2005). This domain derived from Mesozoic 103 



oceanic sediments that were primarily composed of metamorphic marls, clays, and limestones 104 

(calcschists). These sediments were strongly deformed and metamorphosed during alpine 105 

subduction, and they outcrop today as foliated and polydeformed calcschists enclosing 106 

boudinaged meter- to kilometer-sized Jurassic ophiolites (Tricart and Lemoine, 1986; 107 

Lagabrielle and Polino, 1988). The P-T conditions increase towards the east, from low 108 

temperature-blueschist facies conditions (LT-blueschist) in western Queyras to the transitional 109 

conditions between high-temperature blueschist (HT-blueschist) and eclogite facies in eastern 110 

Queyras (Agard et al., 2001; Tricart and Schwartz, 2006; Schwartz et al., 2009). This 111 

blueschist domain is structurally above the Monviso eclogitic ophiolite. In this massif, the 112 

metasedimentary component is very small (< 20 vol.%) relative to the voluminous oceanic 113 

lithosphere (Schwartz et al., 2001). The serpentinite bodies are located along detachments and 114 

constitute a large volume of the eastern boundary of the massif (Schwartz et al., 2001, 115 

Angiboust et al., 2012). The Monviso ophiolite corresponds to the subduction channel 116 

(Guillot et al., 2009).  117 

3. Sampling strategy 118 

 The Chenaillet-Queyras-Monviso transect is a unique natural laboratory for observing 119 

mineral changes in serpentinite along an increasing metamorphism gradient. However, there 120 

are no directly applicable thermal calibrations in serpentinites; therefore, we propose to 121 

estimate the thermal conditions by applying the method of Raman spectroscopy of 122 

carbonaceous material (RSCM) to the metasediments associated with the serpentinites to 123 

obtain the Tmax experienced by the serpentinites. A thermal transect is realized, according to 124 

25 metasediment samples from the Chenaillet to the Monviso (Fig. 1a, Table 1). These 125 

sediments are Cretaceous calcschists derived from foraminefera oozes (Deville et al., 1992). 126 

The lithology of each sample is not homogeneous due to the variation in carbonate-clay 127 

proportions. Moreover, the carbonate contents result both from biogenic production (pelagic 128 

foraminifera) and from detrital input (calciturbidites). The samples are strongly deformed, and 129 

the main schistosity is dominated by phengite, quartz, calcite and oxides. Glaucophane and 130 

pseudomorphs of lawsonite and zoisite are also present. Along this thermal transect, 7 131 

serpentinites have been studied (Fig. 1a). The serpentinite samples were taken from the cores 132 

of hecto-metric serpentinite bodies; these bodies were embedded in the metasediments from 133 

which the metasediment samples were acquired. These serpentinites escaped alpine 134 

deformations and preserved the oceanic mesh textures. Sample ICH2 comes from the 135 

ophiolitic Chenaillet massif. This sample records a low degree of metamorphic conditions, 136 



with sea-floor metamorphism (Mével et al., 1978) overprinted by sub-greenshist facies 137 

conditions (P < 4 kbar; T ~ 200-300°C; Goffé et al., 2004) related to alpine metamorphism. 138 

Sample CR02 comes from the Cristillan massif at the western boundary of the Schistes lutrés 139 

complex in the LT-blueschist domain (Fig. 1). Two samples come from the medium-140 

temperature blueschist domain (MT-blueschist) of the Schistes lutrés complex: RQ23 from 141 

the Rocca Nera massif and RQ16 from the Eychassier massif. Samples BB01 (Bric Bouchet 142 

massif) and RQ01 (Traversette massif) come from the HT-blueschist domain of the Schistes 143 

lutrés complex. The final sample, Vi01, comes from the Monviso eclogitic ophiolite. 144 

4. Temperature estimates from Raman spectroscopy of carbonaceous 145 

material (RSCM) 146 

4.1. Analytical conditions 147 

 Raman spectroscopy on carbonaceous material (RSCM) is based on the quantitative 148 

degree of graphitization of the organic material during regional metamorphic processes. The 149 

graphitization phenomenon corresponds to the solid-state transformation of organic matter 150 

into carbonaceous material. The structure of carbonaceous matter is not sensitive to the 151 

retrograde history related to the exhumation of metamorphic rocks. The progressive 152 

graphitization process can be used to estimate the peak temperature (Tmax) reached by a given 153 

sample (Beyssac et al., 2002, 2003). The degree of graphitization appears to be independent 154 

of the metamorphic pressure, although a minimum pressure is required for the graphitization 155 

process to take place (Quirico et al., 2009). This thermometer is based on the quantification of 156 

the degree of ordering of the carbonaceous material, using the R2 area ratio between the G, 157 

D1 and D2 bands (R2 = D1/[G+D1+D2])) extracted from the Raman spectra (Beyssac et al., 158 

2002). The R2 ratio is linearly correlated with the Tmax of the metamorphic cycle (Tmax(°C) = 159 

–445×R2+641). This correlation may be used as a thermometer with an intrinsic error 160 

calibration of 50°C due to the petrological data used for calibration and a relative accuracy of 161 

approximately 15°C (Beyssac et al., 2007).  162 

Raman spectroscopy was performed at the ENS-Lyon using a Horiba Jobin-Yvon 163 

LabRam HR800 apparatus. The excitation was realized by an argon laser with a wavelength 164 

of 514 nm. An OlympusTM BX30 open microscope equipped with a ×100 objective lens was 165 

coupled to the spectrometer to focus the laser beam onto an area that was 1 µm in diameter. 166 

The backscatter of the Raman signal was collected. The acquisition duration was 167 



approximately 120 s distributed over two accumulating cycles, with a laser power of 168 

approximately 700 µW at the sample surface. The signal was dispersed using a 1800 169 

lines/mm grating. The Raman spectrometer was calibrated with a silicon standard. For each 170 

sample, 11 to 13 spectra were recorded (noted ‘n’ in Table 1). The baseline correction, peak 171 

position, and band width were determined using the Peakfit© software. 172 

4.2. Tmax results 173 

 From west to east, the Raman spectra show a decrease of the D1 peak area associated 174 

with a decrease in the width of the G band, resulting in a decrease of the R2 ratio (Fig. 1b). 175 

This trend in the R2 ratio is compatible with a Tmax increase in the metamorphic samples 176 

(Beyssac et al., 2007; Lanari et al., 2012). The Tmax estimates by RSCM thermometry range 177 

from 330 ± 20°C to 520 ± 20°C (Table 1). The projection of the estimated Tmax along a WSW 178 

to ENE profile (XX’ in Fig. 1c) shows a progressive increase of Tmax. This increase in 179 

temperature is compatible with the metamorphic gradient already proposed by Tricart and 180 

Schwartz (2004) in the studied area. The temperature increase from west to east is also 181 

consistent with the increase in pressure along a low-temperature subduction-related 182 

geothermal gradient (Goffé et al., 2004; Lardeaux et al., 2006, Angiboust et al., 2012). This 183 

relationship allows us to associate a pressure maximum with the Tmax estimated by RSCM. 184 

The sub-greenshist facies domain of the Chenaillet massif corresponds to a P-T range of P < 4 185 

kbar and T ~ 200-300°C. The LT-blueschist domain corresponds to P-T conditions of P = 9-186 

11 kbar and 320 < T < 360 °C; the MT-blueschist domain indicates P-T conditions of 10-12 187 

kbar and 340-390°C; the HT-blueschist domain corresponds to P-T conditions of 12 < P < 15 188 

kbar and 380 < T < 470°C; and the eclogitic domain indicates conditions of 20 < P < 26 kbar 189 

and 480 < T < 520°C. 190 

5. XRD serpentinites characterization 191 

5.1. Experimental conditions 192 

 The < 2 mm fraction of the serpentinite samples was powdered using a McCrone 193 

micronizing mill and washed with H2O. The resulting slurry was centrifuged and freeze-dried 194 

before being prepared as a randomly oriented mount. The XRD patterns were recorded with a 195 

Bruker D5000 powder diffractometer equipped with a SolX Si(Li) solid state detector from 196 

Baltic Scientific Instruments using CuKα 1+2 radiation. The intensities were recorded at 197 



0.04° 2-theta step intervals from 5 to 90° (5 s counting time per step) for bulk serpentinite 198 

mineralogy determination. The XRD detection level was approximately one percent (< 1%).  199 

5.2. Results  200 

 The XRD results and the mineralogical assemblages are presented in Figure 2 and 201 

Table 2. All of the XRD lines of the samples are dominated by serpentine minerals 202 

(serpentine species > 90%) associated with magnetite (Fig. 2). Brucite is not observed; 203 

however, mineral species are not detected below a concentration of 1 wt%. The serpentinite 204 

sampled in the Chenaillet massif (ICH2) is composed of serpentine, magnetite, chlorite and 205 

rare magmatic clinopyroxene. The serpentinites sampled in the LT-blueschist (CR02) and 206 

MT-blueschist (RQ23 and RQ16) domains present mineralogical assemblages dominated by 207 

serpentine and minor magnetite. In Sample RQ16, chlorite is detected. The serpentinites from 208 

the HT-blueschist (BB01 and RQ01) and eclogitic (Vi01) domains are composed of 209 

serpentine, metamorphic olivine and magnetite. The mineral antigorite is detectable in the 210 

XRD spectrum of Sample BB01 (Fig. 2 and Table 2). The presence of olivine is related to the 211 

onset of antigorite destabilization during the dehydration reaction (Evans, 2004). This 212 

secondary olivine appears in Samples RQ01 and Vi01. In Sample Vi01, clinopyroxene and 213 

chlorite are detected, in accordance with the microscopic observations (Auzende et al., 2006). 214 

To precisely identify the varieties of serpentines, we used Raman spectroscopy coupled with 215 

microscopic observations.  216 

6. Serpentine characterizations 217 

6.1. Raman spectrometry 218 

 The different serpentine species have been characterized by Raman spectroscopy 219 

coupled with petrographic observations of polished thin-sections of serpentinites. The Raman 220 

signal was acquired over approximately 90 s in three accumulating cycles, with a laser output 221 

power on the sample surface adjusted between 10 and 20 mW. The spectral resolution was 1 222 

cm-1 using 1800 lines/mm grating. A reproducibility of 1 cm-1 was attained on successive 223 

spectra of a given mineral sample. The spectral regions from 150 to 1150 cm-1 and from 3600 224 

to 3720 cm-1 were investigated because they include the lattice vibrational modes and the OH 225 

stretching mode region that is characteristic of serpentine species, respectively (Rinaudo et al., 226 

2003; Auzende et al., 2004; Groppo et al., 2006). 227 



The bands detected in these spectral regions are indicative of the crystalline structure of the 228 

sample. For each spectra, the assignment of the band position and the full width at half 229 

maximum were determined using the Peakfit© software.  230 

In the low wavenumber region, four main peaks (near 230, 390, 690 and 1100 cm-1) 231 

characterize the spectra of lizardite and chrysotile (Fig. 3a). Intense peaks specific to the 232 

antigorite spectrum occur at lower wavenumbers (226, 373, 680 and 1043 cm-1) and are much 233 

broader than those corresponding to other serpentines (Fig. 3b). The differences between 234 

chrysotile and lizardite spectra, although small, can be clearly identified by the sharpness of 235 

the Raman lines. In particular, a single band at 1100 cm-1 is observed in chrysotile, whereas 236 

several convoluted bands are observed between 1060 and 1100 cm-1 in lizardite (Fig. 3a). In 237 

the high wavenumber region, the convoluted vibrational modes attributed to the OH stretching 238 

of serpentine are located between 3600 and 3720 cm-1. In chrysotile, the most intense band 239 

occurs at 3697 cm-1, with a distinct shoulder at 3690 cm-1 and a weak band at 3648 cm-1. 240 

Lizardite has a markedly different spectrum (Fig. 3a): the most intense band occurs at a lower 241 

frequency (minimum at 3680 cm-1) with a well-defined high frequency band at 3703 cm-1. In 242 

antigorite, the spectra are characterized by a broad band at 3670 cm-1 and a sharp band at 243 

3700 cm-1 (Fig. 3b). Mixed lizardite/antigorite spectra are also observed (Fig. 3c). In the low 244 

wavenumber region, the peak at 1043 cm-1 is present (as in antigorite), but the peak at 373 cm-245 
1 is shifted to ~380 cm-1 (toward the classical ~390 cm-1 peak of lizardite). In the high 246 

wavenumber region, the second “antigorite” peak at 3700 cm-1 is still present, but the most 247 

intense peak is located between 3670 cm-1 and 3680 cm-1, in an intermediate position between 248 

the most intense “antigorite” and “lizardite” peaks (Fig. 3c). 249 

6.2. Petrology 250 

 The repartition of the serpentine species correlates with the Tmax along the XX’ profile 251 

(Fig. 1c). Lizardite dominates in the greenschist and LT-blueschist facies (from < 300°C to 252 

360°C), while antigorite progressively appears in the LT-blueschist facies. Antigorite 253 

becomes progressively dominant in the MT-blueschist facies (340-390°C), ultimately 254 

becoming the sole serpentine species in the HT-blueschist and eclogite facies (T > 380°C). 255 

Chrysotile is observed in all of the high pressure serpentinite samples, filling in the late cracks 256 

or micro-fractures related to the samples’ final exhumation at the ductile/brittle transition. In 257 

the following paragraphs, we detail the mineralogy and texture of the serpentinites according 258 



to the degree of metamorphism. The Tmax for each serpentinite sample refers to the Tmax 259 

estimated from the associated metasediments.  260 

Sample ICH2 (T < 300°C) is characterized by the development of a mesh texture underlined 261 

by magnetite, which suggests the classical reaction of olivine + water = serpentine (mesh) + 262 

magnetite ± brucite (Figs 4a and 4a’). The Raman spectrometry shows that lizardite is the 263 

dominant serpentine species. Locally, the mesh is crosscut by secondary chrysotile veins.  264 

Sample CR02 (Tmax = 340°C) shows a mesh texture consisting of lizardite surrounded by 265 

magnetite (Figs 4b and 4b’). Locally, secondary antigorite (representing less than 10% of the 266 

matrix) crystallized at the boundaries of relict brownish lizardite crystals. We assign the 267 

lizardite crystallization to the sea-floor metamorphism (oceanic serpentinization) and the 268 

antigorite crystallization to the LT-blueschist metamorphism.  269 

Sample RQ23 (Tmax = 356°C) is equally composed of antigorite and relics of lizardite (Figs 4c 270 

and 4c’). The antigorite crystallized at the grain boundaries of the lizardite relics and as 271 

millimeter-sized antigorite patches with an interlocking texture. The lizardite relics present 272 

the typical mixed lizardite-antigorite Raman spectra, suggesting the partial mineral 273 

replacement of oceanic lizardite by metamorphic micrometric antigorite. Magnetite locally 274 

underlines the original mesh texture.  275 

Sample RQ16 (Tmax = 373°C) shows the same mineral relationship as Sample RQ23, with 276 

some relics of lizardite that have a mixed character between antigorite and lizardite (Figs 4d 277 

and 4d’). The antigorite that developed at the grain boundaries enlarged and the blades of 278 

antigorite crystallized. In this sample, the proportion of magnetite decreased, but chlorite 279 

crystallized (Fig. 2), which suggests the development of chlorite at the expense of magnetite 280 

in the presence of aluminum.  281 

Sample BB01 (Tmax = 402°C), coming from the HT-blueschist unit, is composed only of 282 

antigorite and a string of magnetite that underlies the previous oceanic mesh texture (Figs 5a 283 

and 5a’). The patches are composed of sub-millimetric interlocking blades of antigorite. The 284 

presence of antigorite is readily detectable in the XRD spectra (Fig. 2).  285 

In Sample RQ01 (Tmax = 463°C), only antigorite serpentine is observed (Figs. 5b and 5b’). 286 

The mesh, still underlined by magnetite and bastite (free of magnetite), remains preserved, 287 

which suggests a static crystallization of antigorite at the expense of oceanic lizardite. The 288 

olivine peak appears in the XRD spectra.  289 



In Sample Vi01 (Tmax = 498°C), antigorite is again the sole serpentine species (Figs. 5c and 290 

5c’). Similar to Sample RQ01, the pseudomorphic texture (mesh and bastite) is preserved and 291 

underlined by magnetite, but antigorite blades of a few hundred microns have started to 292 

obliterate the mesh texture. In this sample, we observed olivine and chlorite signals in the 293 

XRD spectra (Fig. 2). 294 

6.3. Electron microprobe 295 

 In addition, the major element concentrations of the serpentine species were acquired 296 

using a Cameca SX100 electron microprobe at the “Laboratoire Magma et Volcans” 297 

(Clermont Ferrand, France). The operating conditions were as follows: an accelerating voltage 298 

of 15 kV, a sample current of 15 nA and a counting time of 10 s/element, except for Ni (20 s). 299 

The standards used were albite (Na), forsterite (Mg), orthoclase (K), wollastonite (Ca and Si), 300 

MnTiO3 (Ti and Mn), Cr2O3 (Cr), fayalite (Fe), olivine (Ni), and synthetic Al2O3 (Al). 301 

Representative analyses are reported in Table 3. Serpentine phases can contain over 13 wt% 302 

of water in their crystal structure. The volatile content is not always correlated with the degree 303 

of serpentinization because other phases (e.g., talc, brucite, chlorite, clay minerals) associated 304 

with serpentine minerals can influence this measurement. In the studied samples, the volatile 305 

content (100% – wt% major elements) varies from 12.54 to 15.67 wt% (Table 3). We did not 306 

observe any correlation between the volatile content in the serpentine minerals and the degree 307 

of metamorphism. However, we did observe a relationship between the homogenization of the 308 

serpentine composition and the degree of metamorphism (Fig. 6). When plotted on the SiO2 309 

vs. Al2O3 field, the lower metamorphic samples are scattered, while the higher metamorphic 310 

samples are grouped closer to the end-member antigorite composition (Fig. 6), with 44 wt% 311 

SiO2 and 1.03 wt%  Al2O3 (Deer et al., 1992). The samples with an intermediate degree of 312 

metamorphism, dominated by mixed lizardite/antigorite, fall between the lizardite and 313 

antigorite fields. It is also noticeable that the Al2O3 content decreases and the SiO2 content 314 

increases with the degree of metamorphism (Fig. 6). This increase of SiO2 in serpentine is 315 

correlated with a slight increase of whole-rock SiO2 content, from ~39.4 wt% at grade 0 to 316 

~40.5 wt% (Lafay et al., in press). 317 

7. Discussion 318 

7.1. Lizardite to antigorite transitions 319 



 The aim of this study is to develop a combined mineral investigation of serpentinites 320 

and compare the results with Tmax estimates from associated metasediments. This approach 321 

allows us to indirectly constrain the P-T conditions of the phase changes in natural 322 

serpentinites and to compare our results with previous experimental works. Moreover, most of 323 

the published results concerning the changes from lizardite/chrysotile to antigorite are 324 

acquired through experiments performed at intermediate pressures of approximately 6-7 kbar 325 

(e.g., O’Hanley (1996); our samples allow us to characterize this transition at higher pressures 326 

(between 4 and 26 kbar) that are pertinent to the P-T conditions in subduction zones. Our 327 

study highlights the following important points: 328 

1-The early serpentinization stage is related to the hydrothermalism of the oceanic lithosphere 329 

and generates lizardite-bearing mesh textures (Figs. 7a and 7b).  330 

2-In the lowest-grade metamorphic units (sub-greenschist facies; P < 4 kbar; T ~ 200-300°C), 331 

antigorite is absent and lizardite is the dominant phase. Such observations are in agreement 332 

with previous experimental results (e.g., Evans, 2004). 333 

3-In polymetamorphic weakly deformed domains, the oceanic mesh textures are preserved in 334 

all peak P-T conditions (Fig. 7b). At the initial stages, antigorite appears along the lizardite 335 

grain boundaries (Fig. 7c) and at more evolved stages overprints lizardite (Fig. 7d), preserving 336 

the initial textures (mesh and bastite). This observation argues against the commonly 337 

proposed idea that antigorite preferentially crystallizes within deformed domains (Miyashiro 338 

et al., 1969). 339 

4-Antigorite crystallizes in two distinct crystallographic sites. Antigorite first appears in LT-340 

blueschist at 320°C at the lizardite grain boundary, forming a network of veins (Fig. 7c). 341 

These veins grow with the degree of metamorphism, from ~20 µm up to 150 µm (Fig. 7d) in 342 

the MT-blueschist facies (up to 390°C). Such crystallization texture is typical of mineral 343 

replacement by dissolution-precipitation processes in the presence of a free fluid (Putnis, 344 

2009; Lafay et al., 2012). 345 

The second crystallographic site is where antigorite crystallizes in the cores of lizardite grains 346 

in MT-blueschist facies conditions (Fig. 7d). Raman spectrometry shows mixed 347 

lizardite/antigorite spectra, suggesting an intimate association of lizardite and antigorite at the 348 

micron-scale (Fig. 7a). This intimate mineral association suggests a solid-state transition (Eda 349 

et al., 2006). The solid-state crystallization of antigorite at the expense of lizardite is partial 350 



between 340 and 380°C and complete above in HT-blueschist and eclogitic facies conditions 351 

(Figs. 7a and 7e). 352 

7.2. Lizardite to antigorite reactions 353 

 In the literature, it is typically proposed that the thermal stability fields of antigorite 354 

and lizardite overlap between temperatures of 250 and 500°C, while chrysotile is metastable 355 

(e.g., Evans, 2004). We can refine the relative stability fields of lizardite and antigorite from 356 

our observations of high-pressure natural samples. It is well known that serpentinization is a 357 

complex process controlled by time- and site-dependent variables such as fluid/rock ratios, 358 

silica activity, oxygen fugacity and pH (Evans, 2004; Frost and Beards, 2007). Lizardite and 359 

antigorite are co-stable (or at least the lizardite is not completely destabilized) between 320 360 

and 390°C for pressures greater than 9 kbar (Fig. 7). It is noticeable that below 300°C and 4 361 

kbar, antigorite is not observed. This observation contradicts the phase diagram of O’Hanley 362 

(1996), in which antigorite appears at 250°C at low pressures, and suggests that antigorite 363 

crystallization is not only temperature dependent but also may be pressure dependent (Ulmer 364 

and Trommsdorff, 1995; Wunder and Schreyer, 1997).  365 

Thermodynamic work on the serpentinite multisystem predicts the crystallization of antigorite 366 

(Atg) at the expense of chrysotile (Chr) or lizardite (Lz), according to the following reactions 367 

(Evans, 2004) with forsterite (Fo) and brucite (Brc): 368 

(1) 17 Lz/Chr = Atg + 3 Brc 369 

(2) 20 Chr/Lz = Atg + 6 Fo + 9 H2O 370 

(3) 16 Lz/Chr + 2 SiO2,aq = Atg + H2O 371 

Reactions (1) and (2) are thermodynamically favorable for temperatures between 300 and 372 

400°C (Fig. 8), while at lower temperatures, the conversion of lizardite to antigorite is 373 

thermodynamically more efficient with a modest introduction in the serpentinite multisystem 374 

of SiO2 (e.g., Evans, 2004). Brucite is not detected as a byproduct of antigorite; however, we 375 

can conclude that brucite is not present in the studied samples below the XRD concentrations 376 

(< 1 wt%), although brucite is detected in the Monviso serpentinites (Debret, pers. com.). The 377 

absence of brucite could be interpreted either as the result of a lower olivine hydration with 378 

respect to enstatite hydration (precluding the release of Mg necessary to the brucite 379 

crystallization) or as the consumption of brucite during prograde reactions. Metamorphic 380 



olivine is rare and observed in the studied samples at temperatures higher than 460°C. Thus, 381 

Reactions (1) and (2) cannot explain the crystallization of antigorite at low temperatures (< 382 

330°C according to Evans (2004)). In contrast, we clearly observe the direct crystallization of 383 

veins of antigorite at the expense of lizardite starting at 320°C in the presence of 384 

metasediments. Moreover, we observe a general enrichment in SiO2 throughout the antigorite 385 

(Fig. 6) that is correlated with a whole-rock SiO2 enrichment along the metamorphic gradient 386 

(Lafay et al., in press). This finding suggests the onset of antigorite crystallization at 320°C, 387 

assisted by SiO2-rich fluids, according to Reaction (3), by dissolution-precipitation processes 388 

(Fig. 8). Rüpke et al. (2004) have shown that above a depth of 50 km (T < 300°C), oceanic 389 

sediments release almost 50% of their initial water content. This fluid is enriched in volatile 390 

elements and silica and potentially hydrated the mantle wedge (e.g., Bebout and Barton, 1989; 391 

Bebout et al., 1999). Fluid exchange between the subducted oceanic sediments and our 392 

serpentinite samples is clearly demonstrated by the enrichment of volatile elements, 393 

particularly in the antigorite (Lafay et al., in press). Thus, the most favorable circumstances 394 

for silicification are waters that are equilibrated with sedimentary rocks in the Alpine wedge 395 

and that percolated into the serpentinites, as observed in the Catalina Schist in California 396 

(Bebout and Barton, 1989, Bebout et al., 2004). 397 

As already discussed, we also observed the solid-state transformation of lizardite into 398 

antigorite, suggesting the progression of Reaction (1) between 340 and 380°C. In the natural 399 

samples presented here, this reaction occurred at slightly higher temperatures than were 400 

predicted by thermodynamic calculations (260-310°C at 10 kbar, Evans, 2004). 401 

At a minimum temperature of 460°C, secondary olivine crystallized (Fig. 2), which suggests 402 

the onset of antigorite destabilization. This is compatible with a decrease of the whole-rock 403 

L.O.I from 13 wt% to < 12 wt% (Lafay et al., in press). According to Evans (2004), it 404 

corresponds to the reaction: 405 

(4) Atg + Brc = 2 Fo + 3 H2O 406 

In the natural samples studied, this reaction occurred at T ≥ 460°C and P > 12 kbar , as 407 

predicted by thermodynamic calculations (Evans, 2004). However, this reaction involves 408 

brucite, which we did not detect in the samples. Thus, we propose that the brucite produced 409 

by Reaction (1) at lower temperatures is completely consumed by Reaction (4) along the 410 

subduction gradient (Fig. 8). 411 



8. Conclusion 412 

 Raman spectroscopy and XRD are efficient methods for identifying different species 413 

of serpentine because serpentine optical identification is difficult. In addition, various 414 

serpentine species are often interpenetrated, and Raman micro-spectrometry proves to be a 415 

useful micro-characterization tool for resolving structural differences at the scale of the 416 

various grain generations. The application of these methods to samples from the Alps shows 417 

that lizardite is preserved under sub-greenschist facies conditions in oceanic environment and 418 

ophiolites. Antigorite progressively replaces lizardite under LT- to MT-blueschist facies 419 

conditions (320-390°C) and is the sole serpentine phase under HT-blueschist to eclogites 420 

facies conditions (> 380°C). Our study shows several generations of serpentine in sea-floor 421 

and metamorphic processes. Below 320°C, lizardite and chrysotile are the only stable 422 

serpentine species. Between 320°C and 390°C, lizardite and antigorite coexist and antigorite 423 

develops at the expense of lizardite through two processes. Antigorite first appears at the 424 

lizardite grain boundaries through dissolution-precipitation processes in the presence of SiO2. 425 

We propose that this fluid comes from the local dehydration of the surrounding 426 

metasediments in subduction environments. Antigorite also crystallizes in the cores of the 427 

lizardite mesh through solid-state transitions at slightly higher temperatures, between 340°C 428 

and 380°C. This transition is characterized by mixed lizardite/antigorite Raman spectra. 429 

Above 390°C and 12 kbar, lizardite is absent and antigorite is the only stable serpentine 430 

species. Above 460°C, antigorite begins to destabilize into olivine. We did not detected 431 

brucite in any of the studied samples, although this mineral is theoretically involved in the 432 

transition from lizardite to antigorite. We propose that the brucite produced at low 433 

temperatures is consumed at higher temperatures and remains a transition phase. This process 434 

would explain why brucite is rarely observed in natural samples in oceanic and subduction 435 

environments worldwide.  436 
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Figure captions 620 

Fig. 1. (a) Tectonic sketch map of the southwestern Alps, and Tmax results of metasediments 621 

obtained by the RSCM method. Seven serpentinites were sampled along the paleo-subduction 622 

zone from sub-greenschist (Chenaillet) to eclogitic (Monviso) facies conditions. (b) 623 

Characteristic evolution of Raman spectra from selected metasediments. Positions of the 624 

graphite G band and D1, D2, D3 defect bands are indicated. For each spectrum, the value of 625 

the mean R2 ratio (R2=D1/[G+D1+D2] peak area ratio) is given (see Table 1). (c) Tmax results 626 

projected onto a WSW – ENE cross section (XX').  627 

 628 

Fig. 2. XRD patterns of serpentinites. The mineralogy is dominated by a magnetite and 629 

serpentine assemblage. The antigorite peaks (black star) and olivine (Ol) appear in samples 630 

RQ01 and Vi01. The presence of olivine is due to the onset of antigorite destabilization into 631 

olivine.  632 

 633 

Fig. 3. Raman spectra acquired from different varieties of serpentine from the study area in 634 

low frequency (150-1150 cm-1) and OH stretching (3600 to 3720 cm-1) ranges. The 635 

characteristic bands of antigorite (373, 1043, 3670 and 3700 cm-1) and lizardite (390, 3680, 636 

3703 cm-1) are indicated in grey. (a) Raman spectra of lizardite and chrysotile. (b) Raman 637 

spectra of antigorite related to the Tmax. (c) Raman spectra of mixed lizardite/antigorite 638 

serpentine.  639 

 640 

Fig. 4. Photomicrographs of characteristic textures of serpentinite from the study area: Atg, 641 

antigorite; lz, lizardite; Chr, chrysotile; Mag, magnetite; x, polarized light; x’, crossed-642 

polarized light. The Tmax obtained from the associated metasediments is also indicated. 643 

(a-a’). Sample ICH2 (Chenaillet massif). Mesh texture developed from olivine is observed in 644 

locations where lizardite is the only developed serpentine species. At the top of the image, 645 

secondary veins infilled by chrysotile cross-cut the mesh texture. 646 

(b-b’). Sample CR02 comes from the low-temperature blueschist domain (Cristillan massif). 647 

The sample is dominated by mesh texture underlined by lizardite. Secondary antigorite 648 

crystallized at the boundary of the lizardite minerals. In the antigorite zone, relics of lizardite 649 

(brownish minerals) are still present. 650 

(c-c’). Sample RQ23 comes from medium-temperature blueschist domain (Rocca Bianca 651 

massif). The sample is equally dominated by lizardite and antigorite. In the lizardite-dominant 652 

zone (greenish color), the mesh texture is partly preserved; however, antigorite developed at 653 

the expense of lizardite at the grain boundaries. Antigorite minerals with interlocked 654 

microstructures also form millimeter-sized patches that are free of lizardite relics. 655 



(d-d’). Sample RQ16 comes from the intermediate-temperature blueschist domain (Refuge du 656 

Viso). The sample is dominated by antigorite minerals, which are developed in a dense 657 

network of veins at the expense of lizardite preserved in mesh texture.  658 

 659 

Fig. 5. Photomicrographs of characteristic textures of serpentine species from the western 660 

Alps: Atg, antigorite; Lz, lizardite; Chr, chrysotile; Mag, magnetite; x, polarized light; x’, 661 

crossed-polarized light. The Tmax obtain on the associated metasediments is also indicated. 662 

(a-a'). Sample BB01 comes from the high-temperature blueschist domain (Bric Bouchet 663 

massif). This sample is dominated by antigorite. The magnetite underlines the early mesh 664 

structure.  665 

(b-b'). Sample RQ01 comes from the high-temperature blueschist domain (Traversette 666 

massif). In this sample, only antigorite is observed. Mesh and bastite textures are well 667 

preserved, suggesting a static crystallization of antigorite, most likely at the expense of early 668 

lizardite produced during ocean floor metamorphism.  669 

(c-c'). Sample Vi01 comes from Monviso eclogitic ophiolite. The antigorite is the only 670 

serpentinite species that preserves the mesh texture underlined by magnetite. 671 

 672 

Fig. 6. Microprobe analyses (in weight %) of serpentinite samples plotted in an Al2O3 versus 673 

SiO2 diagram (cf Table 3). The arrow indicates the metamorphic trend from sub-greenschist 674 

to eclogitic metamorphic facies conditions. The antigoritization processes in the serpentinites 675 

are characterized by a chemical homogenization associated with the increase in the 676 

metamorphic conditions.  677 

 678 

Fig. 7. Idealized sketch determined from natural serpentinites that shows the evolution of the 679 

antigoritization processes under a HP metamorphic gradient. (a) Characteristic Raman spectra 680 

of serpentine species from the study area. The bands of antigorite (373, 1043, 3670 and 3700 681 

cm-1) are indicated in grey. (b) In sub-greenschist conditions, only lizardite is present. (c) In 682 

LT-blueschist, antigorite appears along the lizardite grain boundaries via a dissolution-683 

precipitation process. (d) In MT-blueschist, the antigorite becomes the major phase. The veins 684 

of antigorite at the lizardite grain boundaries widen and the cores of lizardite show a mixed 685 

lizardite/ antigorite Raman spectra related to the onset of the solid-state transition. (e) In HT-686 

blueschist, antigorite becomes the sole serpentine variety. Antigorite develops infra-687 

millimetric blades superimposed over the original mesh texture.  688 

 689 

Fig. 8. Phase diagram of antigorite and lizardite (after Evans, 2004): Lz, lizardite; Atg, 690 

antigorite; Chr, chrysotile; Fo, forsterite; Tlc, talc; Brc, brucite. Reactions (1) and (3) 691 

correspond to the onset of the reactions while (1') and (3') correspond to the end of these 692 



reactions with the complete consumption of lizardite. Metamorphic facies are from Spear 693 

(1993). The natural stability field domain of coexisting lizardite and antigorite is restricted to 694 

a temperature range between ~320 and 390°C. At 390°C and above, the lizardite is entirely 695 

replaced by antigorite. Above 460°C, Reaction (4) results in the onset of crystallization of 696 

olivine. Between 320 and 390°C, the antigorite develops though Reaction (3) in the presence 697 

of SiO2-rich fluids by dissolution-precipitation processes. Between 340 and 380°C, Reaction 698 

(2) is also observed in the core of lizardite antigorite by solid-state transformation.  699 

 700 

Table 1. RSCM results with longitude (Long.) and latitude (Lat.) in decimal degrees 701 

(WGS84), number of Raman spectra (n), R2 ratio (mean and standard deviation) and Tmax 702 

(mean and 1-σ uncertainty). 703 

 704 

Table 2. Mineral assemblage of the studied serpentinites as detected by XRD, with (+ + +) 705 

major phase, (+) minor phase (<10%), and (-) absent or below detection limit (<1%). Facies 706 

metamorphic conditions and Tmax are also given. The black star indicates the presence of 707 

antigorite.  708 

 709 

Table 3. Representative microprobe analyses of serpentine minerals from alpine serpentinites. 710 

All values are in wt% (b.d.l. = below detection limit; n.d. = not determined). 711 
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