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Abstract 

Different image processing techniques have recently been investigated for the characterization 

of complex porous media, such as bones, stones and soils. Among these techniques, 3D 

thinning algorithms are generally used to extract a one-voxel-thick skeleton from 3D porous 

objects while preserving the topological information. Models based on simplified skeletons 

have been shown to be efficient in retrieving morphological information from large scale 

disordered objects not only at a global level but also at a local level. In this paper, we present 

a series of 3D skeleton-based image processing techniques for evaluating the micro-

architecture of large scale disordered porous media. The proposed skeleton method combines 

curve and surface thinning methods with the help of an enhanced shape classification 

algorithm. Results on two different porous objects demonstrate the ability of the proposed 

method to provide significant topological and morphological information. 
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1. Introduction 

Various domains are concerned with the characterization of porous media. Natural materials 

(e.g. wood, stones, Fontainebleau sands, biological materials such as bones) and manmade 

materials (e.g. industrial foams, ceramics, electronic nanodevices) are examples of porous 

media from different application fields. These porous objects are usually considered not only 

in industry but also in research as multiphase materials composed of several elements 

arranged in space as a complex, sometimes messy, network. The problems of porous media 

have raised considerable interest among the scientific community as they cover a wide range 

of applications and scales: the exploration of underground entities at the microscopic scale in 

geology, and the examination of soil structures [18], the degradation of monuments [27], or 

the analysis of bones and the synthesis of industrial materials [8]. In most of these problems, 
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the challenge is to study the physical behavior of these objects by characterizing their 

complex geometry, in order to improve and enhance their performance (glass or carbon fiber), 

to avoid (or limit) weathering or deterioration (stones, metal oxidation), and to understand or 

predict their behaviors (soils, rock reservoir, concrete, bones). This requires determining the 

main characteristics (morphology, texture, topology, etc.) of these porous media. 

Furthermore, the prediction of properties (e.g. transport or mechanical properties) by models 

and simulations needs a realistic description of the phases constituting these porous materials. 

An accurate and powerful non-destructive method to characterize the complex microstructure 

of porous materials is high resolution X-ray Computed Tomography (XCT). This technique 

has gained considerably in importance in recent years for the 3D-characterization of 

materials [6], [44], [26], [9] and [24]. This is notably due to continuous improvements in X-

ray tubes and XCT devices that have led to laboratory systems which can now achieve 

resolutions down to 1 μm and even below depending on the materials and their sizes [25], 

[15], [31] and [48]. 

Starting from these images, the characterization of porous material has gradually switched 

from classical, and often destructive, exploration methods (BET, mercury porosimetry) to a 

non-invasive and increasingly precise science, namely 3D digital image processing. It is often 

necessary to measure from the image a quantity related to the physical property to be 

characterized. For example, transport phenomena and permeability in rocks can be studied 

through the distribution of the grains and the geometry of the pore phase [18]. In materials 

science, the anisotropy of a structure characterized by a Fabric tensor reflects the main 

poroelastic directions [17]. In the biomedical field, quantification and understanding of the 

distribution of the structure primitives of a trabecular bone are relevant for both diagnosis and 

treatment of bone disease. Instead of direct mechanical testing which is destructive and life 

threatening, the classification of these primitives helps in simulating these mechanical tests in 

order to estimate certain mechanical properties, such as stiffness. These mechanical properties 

are usually determined not only by their porosity, but also by the arrangement of trabeculae in 

the 3D space [4], [3] and [5]. 

The image processing methods proposed in the literature for the characterization of porous 

media can be classified in two main categories: global and local. Global methods, which are 

based on geometric models or use image averaging methods, allow the extraction of various 

approximated structural indices, such as the number of solid forms, spacing and orientation of 

the form primitives [10], [11] and [12]. These architectural parameters evaluated at a global 

level suffer from a priori hypotheses defined in the models and lack of precision, but are often 

sufficient to characterize the density, morphology or the anisotropy of porous network. 

In this paper, however, we focus mainly on local approaches since they allow the 

measurement of quantitative indices of the structure by detecting the form primitives of the 

network, i.e. extraction of the internal structures such as beams and plates (e.g in the case of 

trabecular bones), which are fundamentally different, providing a set of new measures 

available directly from the images [16], [12] and [14]. Our aim is to demonstrate that using 

well chosen image processing procedures and an accurate skeleton, it is possible to access 

different morphological and topological features of huge data only from a simple and faithful 

representation of the original object. 

In general, local-based techniques work locally on the 3D volume, and make few or no 

geometrical approximations by extracting useful information in each voxel or structure 



primitive. For example, the Hoshen–Kopelman percolation method [21] allows the isolation 

and characterization of the connected sets of the object, namely solid or porous clusters in the 

case of a porous media. It actually performs a local decomposition based on a neighborhood 

criterion. The numerical calculation of topological constants, such as Betti numbers or 

Poincare Euler characteristics (i.e. connectivity), is also based on this type of local counting 

process within a neighborhood [35]. All these algorithms are strictly deterministic and 

quantify properties of the media exactly. For example, characterization of the thicknesses of 

the structure primitives is based on the principle of the thickness map proposed by Hildebrand 

and Ruegsegger [20]. The methods of 3D skeletonization, thinning, medial axis [7] and the 

Voronoi distance map [22] are all methods enabling the decomposition of the media into 

primitives based on a simplified representation, while retaining the useful structural 

information. The segmentation of porous objects using these local techniques allows the 

measurement of many classical morphological and topological parameters, supplemented by 

new descriptors of structure, form and anisotropy. 

In this work, the different phases of the porous media need first to be distinguished 

(segmentation step) prior to calculating characteristics (e.g. porosity, specific surface, Euler 

number) or simulating properties (e.g. conductivity, mechanical properties) on 3D images of 

different porous samples. Unfortunately, artifacts and/or noise often prevent segmentation of 

the 3D raw images [28]. As shown in the following, the segmentation of 3D images is specific 

to the application, imaging modality and nature of the object to be studied. Hence, the 

segmentation process is often preceded by an image analysis procedure (based on 

mathematical morphology tools and classical denoising filters in our case). After 

segmentation, a binarized media (represented by only two phases) is obtained. If the phase of 

interest is the pore phase (e.g. stones), it is assigned the value 255, and the solid phase the 

value 0 (the dual image is chosen if the phase of interest is the solid phase (e.g. bones)). 

Mechanical properties and topological and morphological characteristics are usually analyzed 

using the solid phase of the porous objects, whereas other properties such as the transfer 

properties are determined using the porous phase. Once the zone of interest is well identified, 

quantitative analysis of the datasets becomes possible. 

To assist in the local decomposition of porous media, simplified skeleton-based methods have 

been investigated [42], [37] and [33]. Shape information has been integrated directly into the 

models proposed to enhance the efficiency of such methods in terms of accuracy [36], 

[7] and [29]. A skeleton is characterized by the following properties [45]: minimum thickness, 

homotopy equivalence, geometry preservation and reversibility. 

Most variants of 3D binary skeletons are based on curve thinning or surface thinning. Since 

curve thinning does not preserve the geometry of non-cylindrical shapes, and surface thinning 

cannot erode beam shapes sufficiently, neither curve nor surface thinning is suitable for the 

analysis of porous media. To overcome this problem, shape information should be integrated 

into the skeleton models. A compound curve-surface (called here hybrid) skeleton has 

recently been proposed [2] and [23] to create structural models that take into account the 

shape of the object. These models enable a precise description of the local geometry. 

In this paper, based on a previously proposed curve-surface thinning method [23], a complete 

image processing procedure is proposed to characterize different porous materials: the pore 

phase of limestone and solid phase of trabecular bones. Using different morphological and 

topological features we show that it is possible to distinguish between two sets of trabecular 

bones composed of osteoarthritic and osteoporotic samples. In addition, our proposed method 



is validated on geological applications (building stones) by the characterization of stone 

images. 

The paper is organized as follows. Section 2 describes the materials and the methods used in 

this work. Section 3 presents the experimental results obtained on two different porous media 

(trabecular bone and limestones). Some concluding remarks are discussed in Section 4. 

2. Materials and methods 

To highlight the performance of the proposed method, two radically different porous media 

were chosen: limestones and human bones. The former are studied in the field of building 

conservation and the characterization of the porous phase is imperative to model water 

transport at the pore scale [38]. The latter are studied in the field of research against bone 

disease such as osteoporosis. The characterization of the solid phase is imperative to 

enhancing the model morphology, topology and mechanical properties. 

2.1. Stone sample description 

The limestones used in this study originate from a quarry in the north of Paris (Saint-

Maximin). Two beddings commercially denoted “Roche Franche” (RF) and “Roche Franche 

Fine” (RFF) were selected (Fig. 1(a)). These rocks are beige colored sedimentary limestones 

composed essentially of calcite and quartz with porosities of about 35% (RF) and 25% (RFF) 

and are of middle Lutecien age (i.e. formed 45 million years ago). These stones were widely 

used in the construction of monuments in Paris [39]. Five samples were selected from each 

stone type. The samples used in this study were rod samples drilled parallel to the stone bed. 

 

Fig. 1.  : 3D porous objects: a limesstone (a) and a human femoral head (b). 
 

2.2. Bone sample description 

With the help of surgeons at the Hospital of Orleans in France, cylindrical samples were 

extracted from frozen human femoral heads (Fig. 1(b)) from patients with an a priori 

knowledge of fracture risk. In this study, we used five osteoarthritic (OA) samples and five 

osteoporotic (OP) samples. The bone structure of OA patients are known to be hypertrophied 

with an increased bone density, while the OP patients are characterized by the deterioration in 

the bone micro architecture which leads to bone fragility. They were prepared under 



continuous water irrigation using a precision diamond circular saw. The samples were 

oriented with respect to anatomic axes and cut to a dimension of 6 mm thickness and 8 mm 

diameter. All the samples were defatted chemically in order to conserve only the two main 

phases: trabeculae and pores. 

2.3. Acquisition of 3D images 

Briefly, a specimen was placed on a rotary stage between the X-ray source and the detector. 

The specimen was rotated step by step, taking one projection image at each angular position. 

Due to absorption by the material, the X-ray beam was attenuated when passing through a 

specimen. The change of intensity of the X-ray beam was recorded, resulting in gray level 

images (projections). Using a filtered back projection algorithm, a computer reconstructed the 

projections to obtain cross-sectional images of the sample (tomograms). Stacking these 

reconstructed images forms a 3D image of the sample (volume dataset). At each space 

position of the resulting dataset, a gray-value corresponds to the effective X-ray attenuation 

coefficient. Therefore, if the principal compounds of the object are known and have a 

sufficient density contrast, the distribution of these compounds within the object can be easily 

deduced. Theoretically, with a monochromatic X-ray (e.g. from a synchrotron beamline), the 

relation between pixel value (attenuation coefficient) and the compound's mass density is well 

defined by the Beer–Lambert equation [6]. With a polychromatic X-ray beam, which is the 

case for laboratory XCT, artifacts are inevitable and difficult to remove. It is therefore 

difficult to associate pixel values with material densities in an absolute and quantitative 

manner. Frequently encountered artifacts include: beam hardening effect [46] where an object 

of uniform density appears to have a thick and dense skin or ring effect [30] generally caused 

by temporary and spurious bad pixels in the detector. These effects can be reduced by the 

reconstruction software, but only to a certain extent and less effective for a multi-component 

object. 

For the stone samples, microtomography analyses were performed using an industrial CT 

device Nanotom 180NF (GE Phoenix|X-ray, Wunstorf, Germany) available at the ISTO. This 

unit has a 180 kV nanofocus X-ray tube and a digital detector array (2304 × 1152 pixels 

Hamamatsu detector). Samples were placed in the chamber and rotated by 360 degrees during 

acquisition. The resulting projections were converted into a 3D image stack using a micro-

cluster of four PCs with the Phoenix 3D reconstruction software (filtered back projection 

Feldkamp algorithm [19]). The reconstruction software contains several different modules for 

artifact reduction (e.g. beam hardening, ring artefacts) to optimize the results. Finally, the 16-

bit 3D image was converted into 8-bit (256 gray levels) for the image analysis processing. 

The samples (in the form of 6 mm diameter rods) were mounted and waxed on a glass rod. An 

operating voltage of 110 kV and a filament current of 59 μA were applied. The distance 

between the X-ray source and the sample and between the X-ray source and the detector was 

15 and 500 mm, respectively, giving a voxel size of 3 μm. The 2000 projection images 

(angular increment of 0.18°) were acquired during stone rotation (with an acquisition time of 

4 h). Using the central part of the 3D image, an isotropic region of interest of 256
3
 voxels was 

selected for both RF and RFF stone samples (Fig. 2). 



 

Fig. 2. : Area of interest of 256
3
 voxels selected from two different stone samples: RFF 

sample (a) and RF sample (b). 
 

For the bone samples, images were obtained using the Skyscan 1072 high-resolution μCT. The X-ray 

source was set at 80 kV and 100 μA, and the magnification was set so as to obtain a pixel size of 

12 μm. A 1024 × 1024 12-bit digital cooled CCD coupled to a scintillator was used to record the 

radiographic projections. A total of 209 projections were acquired over an angular range of 180° 

(angular step of 0.9°). Due to the cone beam, the radiographic images were processed with the 

Feldkamp algorithm. All the radiographic images were used to reconstruct the image slices using the 

Conebeam Reconstruction Software, version 2.6. Using the central part of the 3D image, an isotropic 

region of interest of 2563 voxels was selected for both OA and OP bone samples, as seen in Fig. 3. 

 

 

Fig. 3. : Area of interest of of 256
3
 voxels selected from two different bone samples: OA 

sample (a) and OP sample (b). Bone material is in gray color while pore material is in white. 
 

2.4. Segmentation of 3D images 

Since our image processing tools are only applicable to binarized images, the 3D raw data of 

bone and stone samples were pretreated (segmented). Segmentation is the process of 

partitioning the billions of gray level voxels of the 3D image into distinct phases. This is 

rarely a trivial and automatic process. 



The segmentation process applied on the two materials presented in this article consists of 

three main operations: filtering, binarization and correction. The following paragraphs 

describe each image processing operation. 

2.4.1. Filtering 

Using imaging systems, acquired real data are usually noisy, with a signal to noise ratio that 

depends on the quality of the acquisition equipment. If data are acquired from a laboratory 

μCT scanner, the noise might be linked to blurring, hardening of the beam, or its conical 

geometry, making the reconstruction difficult. 

In the stone case, as previously mentioned, the gray level value of a voxel is related to the X-

ray absorption of the sample at the voxel position. Thus, in the case of the stone samples, 

pores appear in dark gray, silica compounds in medium gray and calcite compounds in light 

gray (Fig. 4). Even if these different phases are distinguishable to the naked eye, direct 

thresholding of the raw image is not possible. Indeed, the raw gray level histogram (Fig. 5) 

does not show any well defined peaks. Hence, most of the segmentation complexity is related 

to the presence of noise (voxels with the same gray value can in fact belong to two distinct 

phases) and blur (the borders between the phases are not well defined) [28]. To solve this 

problem, alternate sequential filters [28] were first used to remove the noise, but as they 

destroy the structural components smaller than the structuring element used, they cannot be 

pursued far enough. 

 

Fig. 4. : Selected 2D cuts of the stone (a) and bone (b) samples. 
 

 



Fig. 5. : Grayscale histograms recorded for a stone sample (a) and a bone sample (b), 

compared to the histogram of the filtered samples. 
 

The stone samples were filtered using an erosion-dilation based method. In the following, a 

brief description of the method used is given. Let us define Ψ as a 3D image consisting of a 

set of N × N × N voxels, N , on a cubic grid with 26-neighboring voxels. For a 8-bit 

image, each voxel carries an integer value (gray level) in the range of [0, 255]: 

Ψ={νi,j,k},νi,j,k∈[0,255],(i,j,k)∈[0,N−1].  

 
Each voxel is located in the image with a unique triplet of numbers (coordinates): 
 

Ψ(x  )=νi,j,k,x  ={i,j,k}. 

 
The erosion ɛ and the dilation δ by a structuring element B for a gray level image are defined at every 

point x by [43] : 

 

δB((Ψ)(x  )=∨{Ψ(x  −y  )},y  ∈B(x  ), 
ɛB(Ψ)(x  )=∧{Ψ(x  −y  ),−y  ∈B(x  )}. 
 
where ∨ is the supremum (or maximum) operator and ∧ the infinimum (or minimum) operator and 

B(x  ) is the structuring element centred at the point x  . The opening γ and closing φ are defined 

by the equations: 

γB=δBɛB, 

φB=ɛBδB, 
 
A particular family of digital balls Bλ, with radius λ, were used for the structuring elements: 

Bλ(x  )={y  ,d(x  ,y  )≤λ},λ∈N, 
 

where d(x  ,y  ) is the Euclidean distance between the centers of the two voxels at coordinates 

x   and y   in voxel size unit. These balls are a better approximation of the Euclidean sphere than 
those based on the digital distance d26 and they do not penalize the efficiency of the 
implementation [28]. Sequential alternate filtering was applied up to a size λ = 3, leading to the 
filtered image Ψf: 
 

Ψf=γB3φB3γB2φB2γB1φB1(Ψ), 

 

he digital ball B3 has a diameter of 7 voxels (7 × 3 =21 μm) which enables preserving the 

smallest elements of interest in the image. Improvement after denoising appears clearly on the 

histogram of the filtered image in Fig. 5(a). Indeed, it is difficult to distinguish the different 

stone phases from the histogram of the original (non-filtered) image. However, after filtering, 

three peaks are easily distinguished corresponding to the porous, calcite and silica phases of 

the stone. 



In the bone case, the task is less complicated. The first step consists in filtering the samples 

with a standard median 3 × 3 filter to reduce possible artifacts [40]. As can be seen from Fig. 

5(b), the histograms of the bone images before and after filtering are very close. 

2.4.2. Binarization 

In the bone case, this step aims at separating bone tissue from pore voxels. However, the 

distinction between the two phases in micro-scanner images is not always very intuitive as the 

borders separating the gray levels are not clear. Innovative techniques have been proposed to 

solve this problem  [32] and [47]. We chose a standard binarization method using a threshold 

determined as the local minimum after the first mode of the histogram of each image [13]. If δ 

is the binarization threshold, all voxels with a gray level higher than δ are considered as solid 

(bone) Vout = 255, otherwise, as void (pore) (Vout= 0), where Vout is the gray values after the 

binarization operation. 

In the stone case, and after the filtering step, three peaks are easily distinguished (Fig. 5(a)), 

which enables direct thresholding of the three phases. The thresholds are the gray values 

corresponding to the local minima of the histogram. Hence, all the voxels belonging (i) to the 

[0, δL] range represent the pore phase, (ii) to the [δL,δH] range represent the silica phase and 

(iii) to the [δH, 255] range represent the calcite phase. As we are concerned by the water 

transfer in stones, the phase of interest is the pore phase. In other words, the value 255 is 

assigned to the porous phase (gray levels ∈ [0, δL]), and the value 0 is assigned to the solid 

phase (gray levels ∈]δL, 255]). In the case of the stone image (Fig. 5(a)) the threshold value 

used is δL = 96. 

2.5. Correction 

After the binarization step and in order to take into account the anatomical constraints of 

porous objects, a correction step was applied. Each porous object treated in this study was 

considered as a binarized object that has one connected structure. This assumption is well 

justified for bone as well as for stone. In fact, bone tissues consist of one solid phase (all 

trabeculae are interconnected). In addition, the porosity of the stones is composed of open and 

closed porosities. In this study, all the enclosed pores were removed and only the open pores 

were kept (percolating cluster). 

A technique based on Betti numbers was performed to ensure that the object consisted of only 

one connected structure. Considering a 3D space, there are 3 distinct Betti numbers that 

completely define the topology of an object. β0 is the number of connected elements of the 

solid phase Ω. β1 is the number of loops and closed paths of Ω. β2 is the number of internal 

cavities of Ω. The connectivity of an object is usually evaluated using the Euler-Poincare 

Characteristic, N3. It is linked to the Betti numbers through the following equation: 

equation(9) 

N3=β0−β1+β2. 

Based on Betti numbers, one connected component corresponds to β0 = 1, and the number of 

cavities should be 0 which corresponds to β2 = 0. Using the Hoshen–Kopelman (HK) 

algorithm [21], the connected clusters can be deterministically be separated. First, the HK 

algorithm was applied on the solid part and the principal cluster was kept, whereas the 



unconnected parts were removed. Then, the HK algorithm was applied on the porous part and 

the principal cavities were kept. All other small cavities were reassigned to the solid cluster to 

which they belong biologically. At the end of the correction step, the object should have only 

two phases: a 26-connected solid phase and a 6-connected pore phase. 

The next section describes our spatial decomposition of the resulting one-component stone 

and bone structures (Fig. 6(a)) into rods and plates, for which the individual properties were 

associated. 

 

Fig. 6.  : 3D porous media: one-connected objects (a), classified volumes, (b) hybrid 

skeletons, (c) and the final individualized skeletons (d). Rod voxels are in blue, plate voxels 

are in red while node and border voxels are in green. 



2.6. Hybrid skeleton method 

Structural decomposition of skeleton structures has been investigated to characterize the 

morphological and topological properties of porous media. In  [37], curve thinning was 

applied, representing each object's element by a 1D median path. However, this technique 

becomes less effective when the object's elements cannot be properly modeled by a cylinder, 

as in the case of stone and trabecular bone. Unlike curve thinning, surface thinning provides a 

good modeling of plate-like shapes, representing them by a 2D median surface. In surface 

thinning, which rarely generates a 1D-path skeleton, the rod forms are not well represented. 

To overcome these limitations, the object's structure needs to be classified as rod-like or plate-

like elements before being thinned. Surface thinning is therefore applied only on plate-

classified elements, whereas curve thinning is applied on rod-classified elements 

2.6.1. Classification 

This step aims to classify each voxel of the skeleton as belonging to plate or rod elements. 

The objective is to guide the skeletonization process. Based on [7], a recently reported shape 

classification method [1] and [23] was used to decompose the object in two sets of plates and 

rods, taking into account the local shape of the porous object. This classification was 

performed at the voxel level. Each voxel, m was assigned a rod, plate, border or node label, 

using a local topological analysis of the neighborhood voxels N26(m). The voxel classification 

function f(m) can be expressed as follows: 
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First, this function is applied on the surface skeleton generated from the original object. Then, 

a region growth step [23] is applied to propagate the labels to the entire volume. Finally, the 

resulting 4 classes are merged into 2 classes: rod and plate. In this merging process, iterative 

6-connection propagations in the 6 directions of the space are performed. Each voxel labeled 

rod or plate attributes its label to its neighborhood in the considered direction, unless this 

neighborhood has already been assigned a rod or plate label. This process is iterated until no 

more than two classes (rods and plates) are found, as shown in Fig. 6(b). The order of the 

propagation in the 6 directions of the space determines which voxel has to be labeled and the 

error of the labeling step does not exceed one voxel. 

2.6.2. Skeletonization 

After the classification step, surface [34] and curve [33], thinning techniques were applied 

respectively to the plate and rod subsets. The joint use of these thinning techniques generated 

a skeleton composed of both 2D surfaces at plate shapes and 1D paths at rod shapes, as shown 



in Fig. 6(c). Using this approach, the resulting skeleton consists of a reasonable combination 

of curves and surfaces. The compound curve-surface skeleton is called here hybrid skeleton. 

The hybrid skeleton exploits the advantage of each technique by switching the conditions of 

the morphological erosion from one to another depending on the local form of the structure. 

Thus, the hybrid skeleton better preserves the topology of the original structure [2] and [23]. 

2.6.3. Individualization 

The 3D skeleton was then individualized using a modified classification algorithm, originally 

proposed by Saha and Chaudhuri [41]. Instead of eight classes identified by the original 

algorithm, we propose to identify voxels in four classes, according to their structural roles: 

surface, curve, line-end (border) and node (intersection) voxels. This classification approach 

implements a “functional” rather than “discrete” geometry. The single class Node represents 

an interface zone between primitives of forms of whatsoever kind, and allows great freedom 

of modeling. Thus, we allow the management of various, sometimes complex, intersections 

avoiding the ambiguities that occur in the case of intersections of multiple surfaces and 

multiple curves. Fig. 6(d) represents the skeleton of the two porous materials after the 

individualization step. 

It should be noted that after the classification step, each skeleton voxel is considered to 

correspond to either rod or plate element. However, after the individualization step, all voxels 

of each rod or plate are assigned a label which is different from those assigned to other rod or 

plate elements. 

Note also that all parameters of the different stages, from segmentation to individualization of 

the proposed procedure are automatically initialized. The same procedure can be applied to 

any porous media. However, the segmentation step should be adapted according to the 

application in consideration. 

2.7. Morphological and topological features 

Interesting features characterizing the morphology and the topology of each sample can be 

extracted directly from the skeleton [23]. These features include: skeleton Euler Density 

(Euler.D), Skeleton density, skeleton volume (SV) to total volume (TV) or (SV/TV), 

normalized Number of Line-end voxels (Le.N), normalized Number of Node voxels (No.N) 

and Skeleton Curves to Skeleton Surfaces ratio (SC/SS). Let us define Ω and Ωc as the set of 

solid and pore voxels respectively, TV as the total volume in mm
3
, ρ as the voxel resolution in 

mm
3
, Card(ψ) as the number of elements in the set ψ, and SH as the set of voxels of the hybrid 

skeleton. SHC and SHS denote the curve part and the surface part of the hybrid skeleton 

respectively. N26(m) represents the 26-neighborhood of voxel m. 
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The Euler.D is usually used to express the object connectivity. The SV/TV parameter reflects 

the presence of plates in the porous samples. The more plates there are in the sample, the 

higher the values obtained for the SV/TV parameter. The number of line-ends (Le.N) is an 

indicator of the number of broken branches. The Number of nodes (No.N) is considered as 

indices of element interconnection. The hybrid skeleton consists of a set of curves and 

surfaces. Two efficient and complementary features (number of curve and surface voxels) are 

consequently provided. In this study, these two values are represented as a ratio of Skeleton 

Curve voxels to Skeleton Surface voxels (SC/SS). 

3. Results 

The results of Table 1 and Table 2 represent the values of the previously described parameters 

extracted from the hybrid skeleton of stone and trabecular bone samples, respectively. A 

bilateral hypothesis test was used to evaluate the discriminative power of each feature. Any 

parameter is said to separate the two sets of data if the Students |t| value exceeds 3.35 for a 

high level of significance of 0.01 with a freedom degree of 8. 



 

Table 1. : Mean ± standard deviation and the Student |t| values for different features 

estimated from 10 samples of porous stone objects. Any parameter is said to separate 

the two sets of data if |t| value exceeds 3.35. 

 

Feature name 
RF samples 

 

RFF samples 

 
Student |t| values 

 
μ σ μ σ 

 
SV/TV (×10

−3
 mm

−3
) 24.19 1.91 4.86 2.35 12.77 

Euler.D −4050.02 624.14 −571.32 235.40 10.43 

Le.N (×10
−3

 mm
−3

) 0.31 0.01 0.08 0.04 11.16 

No.N (×10
−3

 mm
−3

) 5.55 0.42 1.61 0.75 9.17 

SC/SS 0.16 0.01 0.36 0.05 7.84 

 

 

Table 2.  : Mean ± standard deviation and the Student |t| values for different features 

estimated from 10 samples of trabecular bone data. Any parameter is said to separate 

the two sets of data if |t| value exceeds 3.35. 

Feature name 
OA samples 

 

OP samples 

 
Student |t| values 

 
μ σ μ σ 

 
SV/TV (×10

−3
 mm

−3
) 24.97 6.82 10.52 0.87 4.20 

Euler.D −29.55 8.03 −9.47 3.56 4.57 

Le.N (×10
−3

 mm
−3

) 0.31 0.05 0.17 0.03 4.80 

No.N (×10
−3

 mm
−3

) 7.00 1.97 2.18 0.28 4.84 

SC/SS 0.13 0.03 0.27 0.05 4.80 

 

 

As can be seen, in addition to globally measured parameters such as SV/TV, Euler.D and 

SC/SS, the locally measured parameters such as Le.N and No.N allow the distinction between 

the OA and OP samples in the case of bone, and between the two RF and RFF sets in the case 

of stone. Furthermore, the values within each group of five samples are very close, providing 

an additional measure of similarity. The skeletons of osteoporosis bone tend to have fewer 

line-end voxels. Similarly, the skeletons of RFF (fine stones) provide a Le.N that is slightly 

less than those provided by the RF stone samples. It should also be noted that No.N can be 

considered as a good discriminator parameter as the values obtained for the trabecular bone or 

stone samples are very different. As shown in Table 1, the RF sample is more connected 

(higher Euler.D and No.N numbers), with bigger voids (higher SV/TV numbers) and with 

higher dead-ends (interesting for dissolution–recrystallization processes) than for the RFF 

sample. 



4. Conclusion 

In this paper, a complete image processing (IP) procedure based on curve-surface skeleton is 

proposed and presented as a powerful tool for the analysis of disordered porous media. The 

proposed IP procedure is based on the evaluation of the local shape of the structure primitives. 

In fact, each plate-like and rod-like element is distinguished. Consequently, precise features in 

terms of microarchitecture can be estimated. Based on real porous data, the proposed method 

was able to better distinguish between different samples. 

Different features linked to the morphology and the topology of the studied data were 

proposed. The results obtained on the different samples show that these features enable the 

different samples to be distinguished. The drawback of this study is the sample size. We are 

currently investigating the use of the proposed method for the characterization of a more 

complete database. Moreover, an appropriate classification method will be considered to 

determine how to combine the different features for a better discrimination of the studied 

samples. In addition to morphological analysis, the new model can be used as a basis for 

mechanical studies using finite elements (FE). The long-term aim of our work is to develop a 

biomechanical simulation protocol that could be used to virtually characterize the stiffness of 

porous media such as bones and stones. This would contribute significantly to detecting bone 

fragilities simply by acquiring 3D images, for example with a high-resolution in-vivo CT, and 

simulating mechanical compression using fast and precise FE models, where the precise 

geometrical description of the medium is essential. Based on the separation of rod-like from 

plate-like shapes, the thinning and individualization methods proposed in this paper are 

currently under investigation, with the objective of improving the geometrical deficiency of 

simplified FE models and reducing the complexity of the micro-mechanical analysis of 

porous structures. 
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