

Id#	Locality or Formation name	Age ± dAge (Ma)	Site Lat. (°) / Long. (°)	Paleopole Lat. (°) / Long. (°	dp / dm ?) (A95)	Paleolat. λ (observed)	expected λ (from Europe APWP)	Δλ (°)	expected λ (from East Asia APWF	Δλ) (°)	ResultNo (GPMDB04	References 4)
1. No	ortheastern blocks/terra	nes										
1.1.a	: Siberia - igneous rocks	- n=9										
1101	Ust Bokson basalts	199 ± 02	52.1 / 100.3	69.8 / 186.5	84/102	49.0	553 + 27	-63 + 71	472 + 31	18 + 72	-	Hankard et al. (2007)
1102	Minusinsk Volcanic Pipes	75.0 ± 0.2	55.0 / 90.3	78.3 / 271.0	8.8 / 11.3	43.3	50.6 ± 5.9	-7.3 + 8.5	47.8 + 3.3	-4.5 + 7.5	8824	Bragin et al. (1999)
1103	Minusinsk Volcanic Pipes	75.0 ± 7.0	55.0 / 90.3	45.0 / 173.2	5.0 / 6.8	39.0	50.6 ± 5.9	-11.6 ± 6.2	47.8 ± 3.3	-8.8 ± 4.8	8825	Bragin et al. (1999)
1104	Transbaikalian Volcanics	119.0 + 17.0	51.8 / 108.0	72.3 / 186.4	6.0	51.9	52.0 + 2.4	-0.2 + 5.2	51.7 + 2.8	0.1 + 5.3	9216	Metelkin et al. (2004)
1105	Bichura town	120.0 + 25.0	50.6 / 107.6	37.0 / 70.4	15.8 / 17.5	60.3	50.8 ± 2.4	9.5 + 12.8	50.5 + 2.8	9.8 + 12.8	-	Cogné et al. (2005)
1106	Lower Cretaceous Andesites	123.0 ± 23.0	53.8 / 124.5	58.3 / 51.0	3.8 / 4.5	50.8	57.3 ± 2.4	-6.5 ± 3.6	56.2 ± 2.8	-5.4 ± 3.8	8325	Halim et al. (1998a)
1107	Lower Cretaceous Andesites	123.0 ± 23.0	53.8 / 124.5	52.5 / 58.6	6.8 / 8.0	51.9	57.3 ± 2.4	-5.4 ± 5.8	56.2 ± 2.8	-4.3 ± 5.9	8326	Halim et al. (1998a)
1108	Ingoda River	123.0 ± 5.0	51.2 / 112.2	58.5 / 176.8	5.2 / 6.0	53.6	52.3 ± 2.4	1.3 ± 4.6	51.8 ± 2.8	1.8 ± 4.7	-	Cogné et al. (2005)
1109	Kondersky massif	132.5 ± 67.5	57.7 / 134.6	75.0 / 163.0	10.4 / 10.9	69.7	62.7 ± 2.8	7.1 ± 8.6	61.3 ± 2.4	8.5 ± 8.5	6843	Pavlov (1993)
1.1.b	: Siberia - sediments - n=	=18										
1110	Western Siberia, Russia	19.5 ± 3.5	60.0 / 83.0	70.0 / 230.0	4.7 / 6.1	42.1	61.4 ± 2.7	-19.3 ± 4.3	54.7 ± 3.1	-12.6 ± 4.5	3980	Gorbunov (1971)
1111	Gusinoe Lake, Buryatia	121.0 ± 9.0	51.2 / 106.5	77.1 / 166.5	10.5 / 11.9	56.1	51.1 ± 2.4	4.9 ± 8.6	50.9 ± 2.8	5.1 ± 8.7	7899	Kravchinsky (1995)
1112	Tchulym-Yenisei Depression	123.0 ± 23.0	56.5 / 89.5	74.0 / 135.0	10.4 / 11.2	65.3	52.8 ± 2.4	12.4 ± 8.5	53.6 ± 2.8	11.7 ± 8.6	4196	Pospelova et al. (1971)
1113	Tchulym-Yenisei Depression	123.0 ± 23.0	56.5 / 90.5	76.0 / 138.0	8.7 / 9.3	64.1	53.0 ± 2.4	11.1 ± 7.2	53.7 ± 2.8	10.4 ± 7.3	4195	Pospelova et al. (1971)
1114	Tchulym-Yenisei Depression	123.0 ± 23.0	56.0 / 88.5	69.0 / 125.0	9.0 / 9.5	69.2	52.2 ± 2.4	17.1 ± 7.5	53.0 ± 2.8	16.3 ± 7.5	4194	Pospelova et al. (1971)
1115	Tchulym-Yenisei Depression	123.0 ± 23.0	56.0 / 88.0	73.0 / 138.0	6.9 / 7.5	63.9	52.1 ± 2.4	11.8 ± 5.8	52.9 ± 2.8	11.0 ± 6.0	4193	Pospelova et al. (1971)
1116	Khatanga Depression	134.5 ± 1.5	70.5 / 98.0	73.0 / 178.0	5.3 / 5.6	66.7	65.1 ± 2.8	1.6 ± 4.8	68.1 ± 2.4	-1.4 ± 4.7	4197	Pospelova (1971)
1117	Eastern Coast of Anabar Gulf	139.0 ± 1.0	75.0 / 114.0	63.0 / 174.0	5.3 / 5.6	66.8	69.3 ± 6.0	-2.5 ± 6.4	74.2 ± 2.4	-7.4 ± 4.7	4202	Pospelova et al. (1968)
1118	Eastern Coast of Anabar Gulf	139.0 ± 1.0	75.0 / 114.0	64.0 / 177.0	12.2 / 13.0	66.9	69.3 ± 6.0	-2.4 ± 10.9	74.2 ± 2.4	-7.4 ± 9.9	4201	Pospelova et al. (1968)
1119	Eastern Coast of Anabar Gulf	139.0 ± 1.0	75.0 / 114.0	64.0 / 170.0	5.4 / 5.7	68.7	69.3 ± 6.0	-0.6 ± 6.5	74.2 ± 2.4	-5.6 ± 4.7	4200	Pospelova et al. (1968)
1120	Eastern Coast of Anabar Gulf	139.0 ± 1.0	75.0 / 114.0	62.0 / 174.0	5.3 / 5.6	66.0	69.3 ± 6.0	-3.3 ± 6.4	74.2 ± 2.4	-8.2 ± 4.7	4199	Pospelova et al. (1968)
1121	Gusinoe Lake, Buryatia	141.0 ± 5.0	51.2 / 106.3	62.3 / 168.6	11.0 / 12.7	55.6	48.1 ± 6.0	7.5 ± 10.0	50.9 ± 2.4	4.8 ± 9.0	7900	Kravchinsky (1995)
1122	Khatanga Depression	148.5 ± 2.5	70.5 / 98.0	54.0 / 123.0	5.5 / 5.7	70.1	72.0 ± 6.6	-1.9 ± 6.9	-	-	4356	Pospelova et al. (1971)
1123	Mogzon village, Trans-Baikal	153.5 ± 7.5	51.8 / 112.0	71.3 / 152.7	9.9 / 10.8	63.5	60.0 ± 6.6	3.4 ± 9.5	-	-	7917	Kuzmin et al. (1996)
1124	Trans-Baikal	153.5 ± 7.5	51.5 / 117.5	59.6 / 306.7	5.0 / 8.5	21.3	61.0 ± 6.6	-39.7 ± 6.6	-	-	7910	Zhitkov et al. (1994)
1125	Irans-Baikal	153.5 ± 7.5	51.5 / 112.0	71.0 / 162.5	9.9 / 10.8	60.3	59.8 ± 6.6	0.6 ± 9.5	-	-	7902	Kravchinsky (1995)
1126	Chita area	153.5 ± 7.5	51.8 / 112.0	64.4 / 161.0	6./ / /.3	62.1	60.0 ± 6.6	2.1 ± 7.5	-	-	9148	Kravchinsky et al. (2002)
1127	Trans-Baikal	153.5 ± 7.5	51.5 / 117.5	76.9 / 14.9	7.8 / 9.7	47.0	61.0 ± 6.6	-14.0 ± 8.2	-	-	1922	Kuzmin et al. (1996)
1.2.a	: Amuria - igneous rocks	- <i>n</i> =27										
1201	Taatsyn Gol 3	12.7 ± 0.3	45.5 / 101.0	71.6 / 178.0	14.6 / 18.2	46.6	47.5 ± 2.0	-0.9 ± 11.8	42.7 ± 5.4	3.9 ± 11.8	-	Hankard et al. (2007a)
1202	Mongolian basalts	29.5 ± 6.5	43.5 / 104.5	70.0 / 204.0	8.3 / 11.5	37.3	47.5 ± 3.8	-10.2 ± 7.3	37.9 ± 2.8	-0.6 ± 7.0	7278	Gorshkov et al. (1991)
1203	Taatsyn Gol 1-2	29.8 ± 1.8	45.4 / 101.3	81.9 / 275.6	3.5 / 4.8	37.3	49.0 ± 3.8	-11.7 ± 4.1	39.7 ± 2.8	-2.4 ± 3.6	-	Hankard et al. (2007a)
1204	Khaton Sudal basalts	39.4 ± 0.6	44.5 / 101.4	72.0 / 202.6	6.3 / 8.5	38.6	48.2 ± 3.3	-9.6 ± 5.7	35.7 ± 4.5	2.9 ± 6.2	-	Hankard et al. (2007a)
1205	Bogonal Group	51.5 + 1.5	44.0 / 135.0	78.4 / 236.7	10.3	40.6	51.7 + 3.4	-11.1 + 8.7	41.5 + 5.9	-0.8 + 9.5	8352	Otofuii et al. (1995)
1206	Khuts Uul	57.1 ± 0.8	43.2 / 104.6	69.6 / 148.0	6.3 / 7.3	55.7	43.2 ± 2.9	12.5 ± 5.5	37.1 ± 5.9	18.6 ± 6.9		Hankard et al. (2008)
1207	Sumber Uul - Tulga	62.1 ± 5.9	42.6 / 104.0	85.2 / 92.5	3.9 / 4.9	47.3	42.5 ± 2.9	4.8 ± 3.9	35.9 ± 4.1	11.4 ± 4.5	-	Hankard et al. (2008)
1208	Sijanov Group	66.0 ± 2.0	44.0 / 135.0	85.8 / 347.1	12.7 / 16.8	40.4	46.7 ± 3.2	-6.3 ± 10.5	40.5 ± 4.1	-0.1 ± 10.7	8353	Otofuji et al. (1995)
1209	Levosobolevsk Group	66.5 ± 4.5	46.5 / 138.5	68.0 / 245.0	10.3 / 14.4	36.8	49.7 ± 3.2	-12.9 ± 8.6	43.4 ± 4.1	-6.5 ± 8.9	4304	Nevolina and Sokarev (1986)
1210	Samarinsk Group	68.0 ± 3.0	46.5 / 138.5	83.0 / 20.0	12.0 / 15.5	42.8	49.7 ± 3.2	-6.9 ± 9.9	43.4 ± 4.1	-0.5 ± 10.1	4305	Nevolina and Sokarev (1986)
1211	Kisin and Sijanov Groups	72.5 ± 6.5	44.0 / 135.0	85.9 / 11.3	10.1	41.6	46.7 ± 3.2	-5.1 ± 8.5	44.1 ± 3.3	-2.5 ± 8.5	8307	Uno et al. (1999)
1212	Kisin Group	74.0 ± 3.0	44.0 / 135.0	85.2 / 19.6	14.3	41.8	46.7 ± 3.2	-4.9 ± 11.7	44.1 ± 3.3	-2.3 ± 11.7	8305	Uno et al. (1999)
1213	Kisin Group	74.0 ± 3.0	44.0 / 135.0	71.5 / 38.9	9.9	39.4	46.7 ± 3.2	-7.3 ± 8.3	44.1 ± 3.3	-4.7 ± 8.3	8962	Otofuji et al. (2003)
1214	Shovon - Khurmen Uul	93.4 ± 2.6	44.4 / 103.8	84.7 / 195.0	5.8 / 7.5	44.1	42.8 ± 5.2	1.3 ± 6.2	39.4 ± 3.0	4.6 ± 5.2		Hankard et al. (2007b)
1215	Tsost Field/ Shovon/ Khurmen	98.5 + 6.5	44.5 / 102.0	81.1 / 165.7	3.9	47.8	45.6 + 6.7	2.2 + 6.2	42.2 + 3.6	5.6 + 4.2	-	van Hinsbergen et al. (2008)
1216	Arts-Bogd	104.6 ± 6.6	44.3 / 102.2	80.5 / 159.0	5.2 / 6.3	48.9	45.5 ± 6.7	3.4 ± 6.8	42.0 ± 3.6	6.9 ± 5.1	-	Hankard et al. (2007b)

Table A1: Mesozoic and Cenozoic selected paleomagnetic poles of Asia, as sorted from a compilation of Global Paleomagnetic Database 2004 and 2005-2008 litterature following Thomson ISI web of sciences reference system. N=533

1217	Bikin	106.0 ± 6.0	46.5 / 134.7	57.0 / 76.8	12.4	53.9	52.5 ± 4.2	1.4 ± 10.5	48.5 ± 3.6	5.3 ± 10.3	-	Otofuji et al. (2006)
1218	Eastern Artz Bogd	117.0 ± 2.0	44.5 / 102.0	75.6 / 132.3	4.9	56.3	43.8 ± 2.4	12.5 ± 4.4	43.7 ± 2.8	12.6 ± 4.5	-	van Hinsbergen et al. (2008)
1219	Torey Lakes	120.0 ± 10.0	50.1 / 115.9	70.8 / 322.4	4.3 / 6.3	32.4	52.0 ± 2.4	-19.6 ± 3.9	51.3 ± 2.8	-18.9 ± 4.1	-	Cogné et al. (2005)
1220	Ih Bogd and Baga Bogd	121.5 ± 3.5	44.5 / 102.0	82.0 / 172.3	4.3	46.7	43.8 ± 2.4	2.8 ± 3.9	43.7 ± 2.8	3.0 ± 4.1	-	van Hinsbergen et al. (2008)
1221	Inner Mongolia	123.0 ± 23.0	44.5 / 118.5	82.9 / 249.5	5.7	39.6	47.2 ± 2.4	-7.6 ± 4.9	46.2 ± 2.8	-6.6 ± 5.1	6485	Zhao et al. (1990)
1222	Mongolian basalts	123.0 ± 23.0	45.0 / 100.5	84.0 / 129.0	5.5 / 6.6	50.2	44.0 ± 2.4	6.2 ± 4.8	44.0 ± 2.8	6.2 ± 4.9	7279	Gorshkov et al. (1991)
1223	Mongolia	123.0 ± 23.0	45.4 / 107.6	82.9 / 221.7	4.9 / 6.4	42.2	45.8 ± 2.4	-3.7 ± 4.4	45.4 ± 2.8	-3.3 ± 4.5	1810	Pruner (1987)
1224	Kremljevka Peak	129.0 ± 5.0	51.8 / 117.5	86.8 / 61.8	6.8 / 7.9	53.5	53.1 ± 2.8	0.4 ± 5.9	53.1 ± 2.4	0.4 ± 5.8	-	Cogné et al. (2005)
1225	Unda River	153.0 ± 7.0	51.7 / 117.5	73.3 / 275.9	5.3 / 7.4	35.9	61.2 ± 6.6	-25.3 ± 6.8	-	-	-	Cogné et al. (2005)
1226	Inner Mongolia	156.0 ± 10.0	48.0 / 120.0	68.5 / 231.6	9.5	37.0	63.2 ± 5.0	-26.2 ± 8.6	-	-	6487	Zhao et al. (1990)
1227	Shadaron	161.0 ± 15.0	51.5 / 117.5	59.6 / 279.0	3.2 / 5.4	22.1	66.1 ± 5.0	-43.9 ± 4.7	-	-	9146	Kravchinsky et al. (2002)
1.2.b	: Amuria - sediments - n:	=2										
1228	Trans-Baikal	153.5 7.5	51.5 / 117.5	59.6 / 306.7	5.0 / 8.5	21.3	61.0 ± 6.6	-39.7 ± 6.6	-	-	7910	Zhitkov et al. (1994)
1229	Amur	168.5 7.5	53.6 / 127.0	46.0 / 34.9	10.0 / 15.5	34.3	72.6 ± 6.7	-38.3 ± 9.6	-	-	9015	Kravchinsky et al. (2002)
1.3.a	: North China Block (NC	CB) - igneous i	rocks - n=14									
1301	Hannduba Formation	150 + 110	41.0 / 114.7	834 / 1928	62	42.0	455 + 27	-34 + 54	38.6 + 2.5	34 + 53	5719	Zheng et al. (1991)
1302	Miocene Basalts	160 ± 20	36.3 / 118.6	85 2 / 238 4	5.6	33.8	411 + 27	-72 + 50	323 + 31	15 ± 51	7227	Zhao et al. (1994)
1302	Shandong Basalta	160 ± 2.0	36.4 / 118.8	86.6 / 236.1	4.9	34.8	41.2 ± 2.7	64 + 45	32.5 ± 3.1 32.4 ± 3.1	1.5 ± 5.1 23 ± 4.6	7050	Zhao (1987)
1304	Hannuoba Basalt Formation	10.0 ± 2.0 195 ± 45	40.2 / 112.7	837 / 2323	54/75	36.8	41.2 ± 2.7 44.5 ± 2.7	-0.4 ± 4.5	35.8 ± 3.1	2.5 ± 4.0 10 + 50	7050	$P_{an et al.}(2005)$
1205	Hamuoba Basalt Formation	19.5 ± 4.5	40.2 / 112.7	89.6 / 20.2	0.477.5 00	41.1	44.5 ± 2.7	-7.0 ± 4.8	35.0 ± 5.1	1.0 ± 3.0	7000	$7h_{2} = 1.(2005)$
1206	Hannuoba Basait Formation	20.0 ± 6.0	41.0 / 116.2	88.6 / 29.2	8.2	41.1	43.0 ± 2.7	-4.5 ± 0.9	30.9 ± 3.1	4.2 ± 7.0	6196	$Z_{\text{Ha0}} \text{ et al.} (1994)$
1207	Inner Mongolia, China	20.0 ± 0.0	41.3 / 110.0	88.0 / 29.2 72.2 / 107.5	0.2	41.0	40.1 ± 2.7	-4.3 ± 0.9	$3/.4 \pm 3.1$	4.2 ± 7.0	0480	Zhao et al. (1990)
1307	Inner Mongolia, China Shandong Province	104.0 ± 2.0 122.0 + 22.0	41.3 / 121.9	/2.3 / 19/.5	2.9 / 3./	45.5	45.2 ± 6.7	-2.0 ± 5.8	41.7 ± 3.0 27.0 ± 2.8	1.0 ± 3.7	9243	Z_{nu} et al. (2004) Lin (1084)
1200	Shandong Flovince	123.0 ± 23.0 122.0 ± 1.0	33.9 / 119.4	09.0 / 200.9	12.3 / 17.3	41.0	39.1 ± 2.4	-2.9 ± 10.2	37.9 ± 2.0	-1.6 ± 10.2	0044	Zhu et el (2004)
1309	Fuxin Basin, China	125.0 ± 1.0	42.1 / 121.3	87.0 / 218.2	5.9	41.8	43.3 ± 2.4	-5.7 ± 5.1	44.5 ± 2.8	-2.0 ± 3.2	9244	Zhu et al. (2004)
1310	Qingshan Group: Lushan	131.5 ± 6.5	36.0 / 119.5	/6.4 / 1/2.3	11.1	43.3	38.8 ± 2.8	4.5 ± 9.2	37.9 ± 2.4	5.4 ± 9.1	-	Huang et al. (2007)
1311	Qingshan Group: Shidui	131.5 ± 6.5	36.4 / 119.2	76.3 / 217.9	5.2	33.2	39.1 ± 2.8	-5.9 ± 4.7	38.3 ± 2.4	-5.1 ± 4.6	-	Huang et al. (2007)
1312	Qingshan Group: Liquanzhuang	$g 131.5 \pm 6.5$	36.6 / 120.6	38.7 / 200.8	5.8	28.7	39.6 ± 2.8	-11.0 ± 5.2	38.7 ± 2.4	-10.0 ± 5.0	-	Huang et al. (2007)
1313	Qingshan Group: Xuefang	131.5 ± 6.5	36.7 / 120.7	56.9 / 173.8	6.6	49.7	39.7 ± 2.8	10.0 ± 5.7	38.7 ± 2.4	11.0 ± 5.6	-	Huang et al. (2007)
1314	Qingshan Group: Wandi	131.5 ± 6.5	36.9 / 120.9	58.2 / 44.3	4.1	37.4	40.0 ± 2.8	-2.5 ± 4.0	39.0 ± 2.4	-1.6 ± 3.8	-	Huang et al. (2007)
1.3.b	: North China Block (NC	CB) - sediment	ts - n = 21									
1315	Zhoukoudian cave deposits	0.5 ± 0.5	39.8 / 115.9	82.8 / 241.8	6.7 / 7.4	35.4	41.8 ± 2.6	-6.4 ± 5.7	40.6 ± 5.4	-5.2 ± 6.9	2315	Liu et al. (1977)
1316	Lochuan loess deposits	1.0 ± 1.0	35.8 / 109.2	88.3 / 268.8	8.5 / 12.1	34.2	37.4 ± 2.6	-3.2 ± 7.1	36.6 ± 5.4	-2.4 ± 8.1	119	Heller and Liu (1984)
1317	Nan Shan Redbeds	14.0 ± 9.0	39.1 / 96.7	73.0 / 253.5	4.2 / 7.0	23.2	40.8 ± 2.0	-17.6 ± 3.7	36.2 ± 2.5	-13.0 ± 3.9	9168	Dupont-Nivet and Butler (2003)
1318	Yaoquanzi Redbeds	28.5 ± 5.5	40.0 / 97.7	66.8 / 256.5	3.9 / 6.8	18.0	43.2 ± 3.8	-25.2 ± 4.4	34.1 ± 2.8	-16.2 ± 3.8	9169	Dupont-Nivet and Butler (2003)
1319	Zuoyan Formation	82.5 ± 17.5	40.1 / 112.9	79.6 / 170.1	5.8	45.1	39.1 ± 5.9	6.0 ± 6.6	36.8 ± 3.4	8.3 ± 5.4	5720	Zheng et al. (1991)
1320	Dayu Group Sandstone	82.5 ± 17.5	41.3 / 123.8	59.4 / 205.5	7.3	38.6	41.9 ± 5.9	-3.3 ± 7.5	39.9 ± 3.4	-1.3 ± 6.4	9058	Lin et al. (2003)
1321	Wangshi Group	102.0 ± 13.0	36.5 / 120.5	81.3 / 293.4	5.3	27.9	40.3 ± 6.7	-12.5 ± 6.8	36.8 ± 3.6	-8.9 ± 5.1	-	Huang et al. (2007)
1322	Luanping Group	123.0 ± 23.0	41.0 / 117.5	76.1 / 346.3	6.4 / 9.5	31.2	43.6 ± 2.4	-12.5 ± 5.5	42.7 ± 2.8	-11.5 ± 5.6	8809	Sun et al. (1998)
1323	Zidan Group	123.0 ± 23.0	36.6 / 109.0	84.6 / 310.2	3.8 / 5.7	31.5	37.7 ± 2.4	-6.1 ± 3.6	37.0 ± 2.8	-5.5 ± 3.8	7046	Cheng et al. (1988)
1324	Xinminpo Sediments	123.0 ± 23.0	40.0 / 97.7	75.5 / 169.9	7.7	42.9	38.6 ± 2.4	4.3 ± 6.5	38.7 ± 2.8	4.2 ± 6.6	8902	Chen et al. (2002)
1325	Longshou Redbeds	123.0 ± 23.0	39.1 / 100.5	82.5 / 231.7	5.8 / 8.3	33.9	38.3 ± 2.4	-4.4 ± 5.0	38.2 ± 2.8	-4.2 ± 5.2	9170	Dupont-Nivet and Butler (2003)
1326	Zhidan Group	123.0 ± 23.0	35.1 / 107.6	75.8 / 208.7	6.1 / 9.1	31.3	35.9 ± 2.4	-4.7 ± 5.2	35.4 ± 2.8	-4.1 ± 5.4	7085	Ma et al. (1993)
1327	Zidan Group	123.5 ± 23.5	35.0 / 108.0	75.9 / 210.8	6.3 / 9.4	30.8	35.9 ± 2.4	-5.1 ± 5.4	35.3 ± 2.8	-4.5 ± 5.5	7042	Ma et al. (1991)
1328	Laiyang Group	131.5 ± 6.5	36.0 / 120.0	81.6 / 163.1	5.8	41.9	38.9 ± 2.8	3.0 ± 5.2	38.0 ± 2.4	3.9 ± 5.0	-	Huang et al. (2007)
1329	Mengyen Formation	153.5 ± 7.5	35.8 / 117.5	74.2 / 215.6	3.7 / 5.4	32.1	46.1 ± 6.6	-13.9 ± 6.1	-	-	7043	Cheng and Fang (1980)
1330	Wulian Formation	153.5 ± 7.5	35.8 / 119.2	81.0 / 31.1	9.3 / 13.1	35.6	46.4 ± 6.6	-10.8 ± 9.1	-	-	7044	Cheng and Fang (1980)
1331	Laiyang Formation	153.5 ± 7.5	35.9 / 119.4	71.3 / 225.8	6.7 / 10.3	28.8	46.5 ± 6.6	-17.7 ± 7.5	-	-	7062	Lin (1984)
1332	Santai Formation	161.0 ± 15.0	36.6 / 117.9	72.1 / 202.0	6.8 / 9.5	36.4	51.8 ± 5.0	-15.4 ± 6.8	-	-	7064	Lin (1984)
1333	Yungan Formation	168.5 ± 7.5	38.6 / 112.0	76.1 / 214.6	12.5 / 17.9	34.4	58.9 ± 6.7	-24.5 ± 11.3	-	-	7036	Fang et al. (1988)
1334	Yungang Formation	168.5 ± 7.5	40.2 / 112.8	76.2 / 199.9	8.3	39.5	60.5 ± 6.7	-21.0 ± 8.5	-	-	5721	Zheng et al. (1991)
1335	Middle Jurassic Sediments	168.5 ± 7.5	36.7 / 109.2	74.3 / 232.8	4.0 / 6.0	27.1	57.0 ± 6.7	-29.9 ± 6.2	-	-	6240	Yang et al. (1992)
1.4.a	: Korea peninsula - igne	ous rocks - n=	-14									
1401	Pohang Basin Volcanics	18.5 ± 3.5	35.9 / 129.5	56.7 / 217.2	9.1	30.5	41.3 ± 2.7	-10.8 ± 7.6	$32.6~\pm 3.1$	-2.1 ± 7.7	7220	Kikawa et al. (1994)

1402	Janggi Subgr., L. Yangbuk Gr.	20.5 ± 2.5	36.0 / 129.5	64.5 / 222.1	10.4 / 15.5	31.0	41.4 ± 2.7	-10.4 ± 8.6	32.7 ± 3.1	-1.8 ± 8.7	8439	Lee et al. (1999)
1403	Eocene Volcanics	51.5 ± 2.5	36.0 / 129.5	44.3 / 198.9	15.7 / 21.5	37.9	43.3 ± 3.4	-5.4 ± 12.9	32.8 ± 5.9	5.0 ± 13.4	8440	Lee et al. (1999)
1404	Gongju Volcanics	77.0 ± 6.0	36.4 / 127.1	67.2 / 235.3	8.9	26.7	37.6 ± 5.9	-10.8 ± 8.5	35.3 ± 3.3	-8.6 ± 7.6	8918	Doh et al. (2002)
1405	Gyeonggi Massif, Cheowon	82.5 ± 15.0	38.0 / 127.1	63.7 / 213.2	5.4	35.1	39.1 ± 5.9	-4.0 ± 6.4	37.3 ± 3.4	-2.1 ± 5.1	-	Park et al. (2005)
1406	Gyeonggi Massif, Yesan	82.5 ± 15.0	36.5 / 126.8	60.8 / 25.8	7.6	26.4	37.6 ± 5.9	-11.2 ± 7.7	35.8 ± 3.4	-9.4 ± 6.7	-	Park et al. (2005)
1407	Gyongsang Basin, Milyang	82.5 ± 15.0	35.2 / 128.4	73.1 / 204.6	7.0	37.5	36.6 ± 5.9	0.9 ± 7.3	34.8 ± 3.4	2.7 ± 6.2	-	Park et al. (2005)
1408	Gyongsang Basin, Uiseong	82.5 ± 15.0	36.2 / 128.5	81.3 / 70.0	13.0 / 17.0	40.4	37.0 ± 5.9	2.8 ± 11.4	35.8 ± 3.4	4.6 ± 10.7	-	Park et al. (2005)
1409	Okcheon Belt, Gongju	82.5 ± 15.0	36.3 / 126.9	67.2 7 235.3	8.9	26.6	$3/.4 \pm 5.9$	-10.9 ± 8.5	35.6 ± 3.4	-9.0 ± 7.6	-	Park et al. (2005)
1410	Okcheon Belt, Neungju	82.5 ± 15.0	35./ / 12/.2	/8.8 / 228.3	4.8	32.8	36.9 ± 5.9	-4.1 ± 0.1	35.1 ± 3.4	-2.2 ± 4.7	-	Park et al. (2005)
1411	South Korea voicanics	103.3 ± 40.3	30.0 / 129.0	75.9 / 221.0 50.6 / 205.4	9.2 / 15.2	26.0	41.5 ± 4.2	-7.3 ± 8.1	37.4 ± 3.0	-5.0 ± 7.9	5455	Rienzie and Sharon (1966)
1412	Gyongsang Basin, Milyang	109.0 ± 9.0	35.2 / 128.4	59.6 / 205.4	11.1	30.2	40.4 ± 4.2	-4.3 ± 9.5	$3/.0 \pm 3.7$	-1.5 ± 9.4	-	Park et al. (2005)
1413	Gyongsang Basin, reongyang	109.0 ± 9.0	36.5 / 129.2	84.3 / 1/4.4	10.5	40.4	41.8 ± 4.2	-1.4 ± 8.9	39.0 ± 3.7	1.4 ± 8.8	-	Park et al. (2005)
1414	South Korea voicanics	121.0 ± 9.0	30.1 / 128./	67.6 / 205.1	3.8	38.1	41.1 ± 2.4	-3.0 ± 5.0	39.5 ± 2.8	-1.4 ± 5.2	374	Lee et al. (1987)
1.4.0.	Korea península - seaim	enis - n = 15					20.0 2 .0				6000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1415	Paegunsan Syncline Sediments	0.5 ± 0.5	37.2 / 128.8	87.4 / 76.1	5.7 7 7.7	38.7	39.9 ± 2.6	-1.1 ± 5.0	37.8 ± 5.4	0.9 ± 6.3	6983	Otofuji et al. (1989)
1416	Pyeongan Supergroup	2.5 ± 2.5	37.3 / 128.5	85.6 / 39.4	8.4	37.2	39.9 ± 2.6	-2.7 ± 7.0	37.9 ± 5.4	-0.7 ± 8.0	8156	Doh et al. (1997)
1417	Duho Fm., Upper Yeonil Group	12.5 ± 1.5	36.0 / 129.5	84.0 / 353./	11.2 / 16.6	31.6	39.8 ± 2.0	-8.2 ± 9.1	34.1 ± 2.5	-2.5 ± 9.2	8437	Lee et al. (1999)
1418	Lower Yeonii Group	16.0 ± 2.0 77.5 + 12.5	30.0 / 129.5	10.8 / /3.4	8.0 / 11.5	33.0	41.4 ± 2.7	-7.8 ± 0.8	32.7 ± 3.1	0.9 ± 0.9	8438	Lee et al. (1999)
1419	Milum - K2	77.5 ± 12.5	25.2 / 128.3	71.5 / 205.2	27	42.5	30.9 ± 3.9	5.7 ± 9.4	34.7 ± 3.3	7.9 ± 0.3	1121	$P_{\text{rel}} = t = 1 (2005)$
1420	Milyang-K2 North Korea Sandstones	82.5 ± 13.0 82.5 ± 17.5	33.2 / 128.4	69.0 / 177.0	3.1 18/58	37.3 49.6	30.0 ± 3.9 30.0 ± 5.0	0.7 ± 5.0 0.7 ± 6.1	34.6 ± 3.4 38.0 ± 3.4	2.5 ± 4.0	3700	Curariy et al. (1966)
1421	Gyeongsang Supergroup	105.5 ± 40.5	36.0 / 128.5	64.0 / 195.0	64/84	42.0	39.9 ± 3.9 41.2 ± 4.2	9.7 ± 0.1 08 ± 61	37.4 ± 3.6	11.0 ± 4.7 4.7 ± 5.9	1068	Otofuii et al. (1966)
1422	Milyong K11	100.0 ± 9.0	35.2 / 128.5	67.8 / 206.4	4.4	36.7	41.2 ± 4.2	0.3 ± 0.1 37 ± 40	37.4 ± 3.0 37.6 ± 3.7	4.7 ± 3.9	1008	Park at al. (2005)
1423	Uiseong K11	109.0 ± 9.0 100.0 ± 0.0	36.2 / 128.4	64.4 / 206.0	43	37.5	40.4 ± 4.2	-5.7 ± 4.9	38.6 ± 3.7	-0.9 ± 4.0 12 ± 4.5	-	Park et al. (2005)
1424	Vaanguang K11	109.0 ± 9.0	36.5 / 120.3	78.0 / 212.0	4.1	267	41.4 ± 4.2	-4.0 ± 4.8	20.0 ± 3.7	-1.2 ± 4.5	-	Park at al. (2005)
1425	Haman Formation	109.0 ± 9.0 115.0 ± 3.0	30.5 / 129.2	78.9 / 213.9	+.1 8 8 / 12 1	38.4	41.0 ± 4.2 40.9 ± 2.4	-3.1 ± 4.7 -25 ± 73	39.0 ± 3.7 38.4 ± 3.7	-2.5 ± 4.4 0.1 + 7.6	- 8486	The et al. (2003)
1420	Silla Formation	1215 ± 35	35.9 / 128.6	51.2 / 191.7	65/84	43.4	40.9 ± 2.4 40.9 ± 2.4	-2.5 ± 7.5 25 + 55	393 ± 28	41 + 57	8484	Zhao et al. (1999)
1428	Milyang-K1M	127.0 ± 9.0	35.2 / 128.4	59.6 / 194.7	46	41.6	40.2 ± 2.1	14 + 43	38.4 + 2.0	31 ± 42	-	Park et al. (2005)
1429	Bansong and Nampo Fms.	173.0 ± 27.0	36.7 / 127.3	49.0 / 35.0	12.3 / 19.8	25.5	56.0 ± 6.7	-30.6 + 11.2	-	-	1067	Otofuii et al. (1986)
												0 j ()
1.5.a.	South China Block (SCE	8) - igneous ra	ocks - n=6									
1501	Shiukuran River, Taiwan	13.0 ± 3.0	23.5 / 121.4	79.5 / 293.3	9.4 / 17.4	13.1	26.9 ± 2.0	-13.8 ± 7.7	21.3 ± 2.5	-8.2 ± 7.8	3386	Hsu et al. (1966)
1502	Loho Area Tuffs, Taiwan	13.0 ± 3.0	23.3 / 121.3	42.2 / 194.0	17.2 / 26.8	27.9	26.7 ± 2.0	1.2 ± 13.9	21.1 ± 2.5	6.8 ± 13.9	3388	Hsu et al. (1966)
1503	Chiaopanshan Basalts, Taiwan	14.0 ± 9.0	24.8 / 121.3	81.7 / 294.0	8.0 / 14.0	16.6	28.2 ± 2.0	-11.7 ± 6.6	22.6 ± 2.5	-6.1 ± 6.7	3384	Hsu et al. (1966)
1504	Kungkuan and Chiopanshan, T.	15.5 ± 7.5	24.9 / 121.4	84.5 / 191.1	10.9 / 17.5	26.7	29.9 ± 2.7	-3.2 ± 9.0	22.7 ± 2.5	4.0 ± 8.9	7081	Miki et al. (1993)
1505	Lamma and High Islands dykes	85.0 ± 5.0	22.2 / 114.2	69.3 / 211.2	8.9	18.3	22.3 ± 5.2	-4.0 ± 8.2	19.9 ± 3.0	-1.6 ± 7.5	-	Li et al. (2005)
1506	Zhejiang Ignimbrites	153.5 ± 7.5	29.4 / 120.0	73.0 / 213.7	12.6	26.9	40.3 ± 6.6	-13.4 ± 11.4	-	-	7063	Lin (1984)
1.5.b.	: South China Block (SCE	8) - sediments	- n=54									
1507	Guizhou Province	0.5 ± 0.5	26.6 / 106.7	84.0 / 112.2	1.8 / 2.6	32.6	28.1 ± 2.6	4.5 ± 2.5	27.5 ± 5.4	5.1 ± 4.6	8073	Huang and Opdyke (1996)
1508	Guizhou Province	2.5 ± 2.5	26.6 / 106.7	87.1 / 270.2	5.2	23.8	28.1 ± 2.6	-4.3 ± 4.6	27.5 ± 5.4	-3.6 ± 6.0	8072	Huang and Opdyke (1996)
1509	Nanjing, Yichang regions	14.0 ± 9.0	30.5 / 111.5	74.7 / 40.8	11.2	34.4	33.3 ± 2.0	1.1 ± 9.1	28.0 ± 2.5	6.4 ± 9.2	1806	Kent et al. (1987)
1510	Fenghuanshan Formation	44.0 ± 6.0	22.8 / 108.4	83.8 / 236.0	4.3	18.9	27.7 ± 3.3	-8.8 ± 4.3	14.5 ± 4.5	4.4 ± 5.0	7226	Zhao et al. (1994)
1511	Liuchou and Nadu Formations	47.0 ± 13.0	23.6 / 107.0	58.6 / 18.2	7.4	20.6	28.3 ± 3.4	-7.7 ± 6.5	15.2 ± 4.5	5.4 ± 6.9	7113	Gilder et al. (1993)
1512	Yongen Red Sandstone	49.5 ± 15.5	26.1 / 101.7	70.1 / 224.6	4.9	14.3	29.9 ± 3.4	-15.6 ± 4.8	19.8 ± 5.9	-5.5 ± 6.1	9076	Yoshioka et al. (2003)
1513	Leidashu Formation	49.5 ± 15.5	26.4 / 102.3	70.6 / 286.1	11.6	7.0	30.4 ± 3.4	-23.3 ± 9.7	20.2 ± 5.9	-13.1 ± 10.4	6435	Huang and Opdyke (1992)
1514	Xialiushi fm.	60.0 ± 5.0	26.9 / 112.9	82.6 / 300.7	4.4	19.6	28.5 ± 2.9	-8.9 ± 4.2	21.8 ± 5.9	-2.2 ± 5.9	-	Sun et al. (2006)
1515	Dayao Red Sandstone	60.5 ± 4.5	25.7 / 101.3	72.3 / 218.4	4.5	16.8	25.5 ± 2.9	-8.7 ± 4.3	18.9 ± 4.1	-2.1 ± 4.9	9077	Yoshioka et al. (2003)
1516	Daijiaoping fm.	77.0 + 11.0	26.9 / 112.9	71.9 / 236.3	4.7	16.1	26.1 + 5.9	-10.0 + 6.0	23.6 + 3.3	-7.4 + 4.6	-	Sun et al. (2006)
1517	Xiaoba, Leidashu Formations	78.0 ± 22.0	26.5 / 102.3	80.8 / 296.8	7.7	17.6	24.2 ± 5.9	-6.6 ± 7.8	21.5 ± 3.3	-3.9 ± 6.7	552	Kent et al. (1986)
1518	Anhui	78.0 + 22.0	30.8 / 118.2	82.4 / 221.5	6.7	28.8	30.7 + 5.9	-2.0 + 7.1	28.3 + 3.3	0.5 + 60		Gilder et al. (1999)
1519	Puko, Yanzijing Formations	82.5 + 17.5	32.0 / 119.0	76.3 / 172.6	10.3	39.3	32.0 + 5.9	7.3 + 9.5	30.0 ± 3.0	9.4 + 8.7	551	Kent et al. (1986)
1520	Guangdong Sediments	82.5 ± 17.5	24.1 / 115.2	79.8 / 188.3	77	26.7	237 ± 59	30 ± 78	216 ± 34	51 ± 67	9122	Morinaga and Liu (2004)
1521	Fujian Sediments	82.5 ± 17.5	26.0 / 117.0	79.5 / 206.9	5.3	25.6	25.8 ± 5.9	-0.3 ± 6.3	238 + 34	18 ± 50	9121	Morinaga and Liu (2004)
1522	Zheijang Sediments	82.5 + 17.5	28.8 / 119.8	80.5 / 212.3	6.3	28.0	29.0 ± 5.9	-1.0 + 6.9	27.0 ± 3.4	1.0 ± 5.0 1.0 ± 5.7	9120	Morinaga and Liu (2004)
						20.0		1.0 ± 0.0	200 2 000	1.0 ± 0.0		

1523	Paomagang fm.	82.5 ± 17.5	30.7 / 111.7	71.5 / 280.0	4.3	12.5	29.7 ± 5.9	-17.1 ± 5.8	27.4 ± 3.4	-14.9 ± 4.4	-	Narumoto et al. (2006)
1524	Sanshui Formation	82.5 ± 17.5	23.1 / 113.3	56.2 / 211.5	3.9	14.7	22.4 ± 5.9	-7.8 ± 5.7	20.3 ± 3.4	-5.6 ± 4.1	7115	Gilder et al. (1993)
1525	Shanxian Formation	82.5 ± 17.5	26.0 / 117.4	65.1 / 207.2	5.0	23.5	25.9 ± 5.9	-2.4 ± 6.2	23.8 ± 3.4	-0.3 ± 4.8	7114	Gilder et al. (1993)
1526	Upper Cretaceous Redbeds	82.5 ± 17.5	29.9 / 103.1	88.1 / 75.7	3.6 / 5.3	31.6	27.6 ± 5.9	4.0 ± 5.5	25.2 ± 3.4	6.3 ± 4.0	7049	Zhuang et al. (1988)
1527	Xiaobu Formation	82.5 ± 17.5	26.6 / 102.4	78.9 / 186.6	4.3 / 6.7	27.2	24.3 ± 5.9	2.9 ± 5.8	21.9 ± 3.4	5.3 ± 4.4	7051	Zhu et al. (1988)
1528	Upper Series Deposits	82.5 ± 17.5	22.2 / 108.7	79.4 / 7.1	10.0	19.7	20.8 ± 5.9	-1.1 ± 9.3	18.6 ± 3.4	1.1 ± 8.4	7112	Gilder et al. (1993)
1529	Xiaoba Formation	82.5 ± 17.5	26.5 / 102.4	81.5 / 220.9	7.1	22.2	24.2 ± 5.9	-2.0 ± 7.4	21.8 ± 3.4	0.4 ± 6.3	6433	Huang and Opdyke (1992)
1530	Matoushan Formation	82.5 ± 17.5	25.0 / 101.5	49.3 / 177.1	11.8 / 18.4	27.9	22.6 ± 5.9	5.3 ± 10.6	20.2 ± 3.4	7.7 ± 9.8	6651	Funahara et al. (1992)
1531	Shenhuangshan fm	82.5 ± 17.5	28.1 / 110.2	83.5 / 168.1	5.0	31.4	26.9 ± 5.9	4.5 ± 6.2	24.6 ± 3.4	6.8 ± 4.8	-	Zhu et al. (2006)
1532	Jiangdihe Formation	82.5 ± 17.5	25.9 / 101.7	64.5 / 200.2	2.3 / 4.1	19.7	23.5 ± 5.9	-3.8 ± 5.1	21.1 ± 3.4	-1.4 ± 3.3	8328	Otofuji et al. (1998)
1533	Nanxiong fm	85.0 ± 15.0	27.2 / 115.1	81.0 / 322.2	5.8	19.1	27.3 ± 5.2	-8.2 ± 6.2	25.0 ± 3.0	-5.8 ± 5.2	-	Wang and Yang (2007)
1534	Guanzhou & Nanxiong fm	85.0 ± 15.0	25.9 / 114.9	74.4 / 225.1	5.2	19.7	26.0 ± 5.2	-6.3 ± 5.9	23.7 ± 3.0	-3.9 ± 4.8	-	Wang and Yang (2007)
1535	Cretaceous Redbeds	105.5 ± 40.5	30.1 / 103.0	76.3 / 274.5	11.1	16.5	31.2 ± 4.2	-14.7 ± 9.5	28.1 ± 3.6	-11.6 ± 9.3	6119	Otofuii et al. (1990)
1536	Xichang Redbeds	105.5 + 40.5	27.9 / 102.3	85.2 / 241.7	3.5	24.2	28.9 + 4.2	-4.7 + 4.4	25.9 + 3.6	-1.6 + 4.0	9159	Tamai et al. (2004)
1537	Anhui and Henan Provinces	105.5 ± 40.5	31.6 / 116.0	74.5 / 201.0	47	31.7	349 + 42	-33 + 50	313 + 36	03 ± 47	8234	Gilder and Courtillot (1997)
1538	Upper Lumuwan Formation	103.5 ± 10.5 112.5 ± 12.5	19.0 / 109.4	83.2 / 143.0	9.8	24.6	21.4 ± 4.2	3.2 ± 9.0 3.2 ± 8.5	189 ± 3.0	58 ± 84	7759	Lietal (1995)
1530	Viniin and Guanvin Redbeds	112.0 ± 12.0 113.0 ± 48.0	29.4 / 104.4	71.3 / 226.1	42/73	18.6	30.8 ± 4.2	-122 ± 0.5	28.4 ± 3.7	-98 ± 45	6585	Endial (1995) Enkin et al. (1991)
1540	Sichuan Redbeds	113.0 ± 48.0 113.0 ± 48.0	30.0 / 103.0	78.6 / 273.4	24/41	18.7	311 + 42	-12.2 ± 4.0 -12.4 ± 3.9	288 ± 37	-10.0 ± 3.5	6177	Enkin et al. (1991)
15/10	Lumuwan Formation	115.0 ± 16.0 116.0 ± 16.0	10.2 / 100.4	77.7 / 162.1	4.4	26.3	20.8 ± 2.4	55 ± 40	20.0 ± 3.7	63 ± 42	8423	Liu and Morinaga (1999)
1541	Eulinuwan Formation	110.0 ± 10.0 123.0 ± 23.0	27.0 / 102.3	77.4 / 102.1	115/183	20.5	20.0 ± 2.4 27.0 ± 2.4	3.5 ± 4.0 15 ± 9.4	20.0 ± 2.8 27.5 ± 2.8	0.3 ± 4.2 11 + 95	0423 7052	Zhu at al. (1988)
1542	Zhaijang Sadimanta	123.0 ± 23.0 122.0 ± 22.0	27.3 / 102.5	91.2 / 100.1	63	20.5	27.9 ± 2.4	-1.5 ± 9.4	27.5 ± 2.8	-1.1 ± 9.5	0110	Marinage and Lin (2004)
1545	Duchangha Formation	123.0 ± 23.0 122.0 ± 22.0	26.7 / 120.0	61.5 / 190.1 40.5 / 190.2	116/100	20.1	32.2 ± 2.4 24.0 ± 2.4	-0.9 ± 0.4	30.9 ± 2.8	0.4 ± 0.5	9119	Funchare et al. (1002)
1544	Fuchanghe Formation	123.0 ± 23.0 122.0 ± 22.0	25.0 / 101.5	49.3 / 109.3	11.0 / 19.9	20.1	24.9 ± 2.4	-4.7 ± 9.5	24.3 ± 2.8	-4.4 ± 9.5	6424	Huang and Onduka (1002)
1545		123.0 ± 23.0	20.8 / 102.5	09.0 / 204.0	4.5	20.7	20.0 ± 2.4	-0.1 ± 3.9	20.4 ± 2.8	-3.7 ± 4.1	7111	Gill (1002)
1546	Xinlong Formation	123.0 ± 23.0	22.7 / 108.7	86.5 / 26.4	6.8	23.1	24.1 ± 2.4	-1.0 ± 5.8	23.3 ± 2.8	-0.2 ± 5.9	/111	Gilder et al. (1993)
1547	Donging & Lanlong fm.	123.0 ± 23.0	28.1 / 110.2	/9.8 / 18/.5	0.0	29.9	29.7 ± 2.4	0.2 ± 5.6	28.9 ± 2.8	1.0 ± 5.7	-	Zhu et al. (2006)
1548	Chaochuan and Guantuo fm.	123.0 ± 23.0	29.7 / 120.3	77.1 / 227.6	5.5	25.2	33.3 ± 2.4	-8.1 ± 4.8	32.0 ± 2.8	-6.8 ± 4.9	7061	Lin (1984)
1549	Jieshan Formation	123.0 ± 23.0	26.0 / 117.4	52.1 / 267.5	10.8	-7.6	29.1 ± 2.4	-36.7 ± 8.9	27.9 ± 2.8	-35.5 ± 8.9	6662	Zhei et al. (1992)
1550	Hekou Formation	123.0 ± 23.0	26.0 / 117.2	66.9 / 221.4	5.4	18.5	29.0 ± 2.4	-10.6 ± 4.7	27.9 ± 2.8	-9.4 ± 4.9	6661	Zhei et al. (1992)
1551	South China sediments	153.5 ± 7.5	31.3 / 110.6	59.8 / 206.7	7.3 / 12.1	23.8	40.2 ± 6.6	-16.5 ± 7.9	-	-	8790	Zhu et al. (1998)
1552	Houshan Formation	153.5 ± 7.5	31.5 / 116.5	72.7 / 229.4	4.2 / 6.9	23.6	41.7 ± 6.6	-18.1 ± 6.3	-	-	7045	Cheng and Fang (1980)
1553	Upper Jurassic Redbeds	153.5 ± 7.5	26.7 / 102.4	74.2 / 185.7	3.8	27.4	33.9 ± 6.6	-6.5 ± 6.1	-	-	6510	Huang and Opdyke (1991)
1554	Jianyang Redbeds	153.5 ± 7.5	30.4 / 104.5	61.3 / 222.7	4.2	14.4	38.0 ± 6.6	-23.6 ± 6.3	-	-	8823	Yokoyama et al. (2001)
1555	Penglaizhou Formation	153.5 ± 7.5	31.8 / 106.7	64.7 / 236.0	7.0	14.3	39.8 ± 6.6	-25.6 ± 7.7	-	-	8483	Yokoyama et al. (1999)
1556	Maotanchang and Heishidu fm.	153.5 ± 7.5	31.6 / 116.0	74.4 / 222.8	5.9	26.0	41.7 ± 6.6	-15.7 ± 7.1	-	-	8233	Gilder and Courtillot (1997)
1557	Zhuji and Zhongongshan fm.	167.5 ± 10.5	31.6 / 116.0	72.9 / 254.7	6.4	18.2	51.8 ± 6.7	-33.6 ± 7.4	-	-	8232	Gilder and Courtillot (1997)
1558	South Sichuan Sediments	168.5 ± 7.5	27.5 / 101.8	62.3 / 187.0	7.7 / 12.4	26.3	47.3 ± 6.7	-21.0 ± 8.2	-	-	7053	Zhu et al. (1988)
1559	South China sediments	168.5 ± 7.5	31.3 / 110.6	84.1 / 322.1	10.1 / 15.9	26.2	51.6 ± 6.7	-25.4 ± 9.7	-	-	8791	Zhu et al. (1998)
1560	Ziliujing Formation	$168.5\ \pm\ 7.5$	26.6 / 106.7	67.8 / 185.3	10.2 / 15.6	28.8	46.8 ± 6.7	-18.0 ± 9.8	-	-	7065	Lin (1984)
2. Ja	pan islands											
2 a.	Ianan - igneous rocks - n:	=25										
2001	Northeast Japan	05 ± 05	38.1 / 140.5	851 / 2359	79/109	37.5	412 ± 26	-37 + 67	385 ± 54	-11 + 77	7557	Otake et al. (1993)
2001	Control Jopon	0.5 ± 0.5	25 2 / 129 1	83.1 / 233.3	1.3 / 10.3	21.6	41.2 ± 2.0	-5.7 ± 0.7	36.5 ± 5.4	-1.1 ± 7.7	1054	Taunakawa at al. (1993)
2002	Japan	0.5 ± 0.5 10 + 10	35.0 / 130.0	84.9 / 4.1	74/37	20.0	38.2 ± 2.0 38.1 ± 2.6	-0.7 ± 4.0 82 \pm 28	35.7 ± 5.4 35.5 ± 5.4	-4.1 ± 3.3 55 ± 47	6084	Kikowa et al. (1980)
2003	Goto Islands	1.0 ± 1.0 1.0 ± 1.0	32.9 / 128.9	82.5 / 202.4	10.9 / 15.5	34.7	356 ± 26	-0.2 ± 2.0	335 ± 54	12 ± 97	6991	Ishikawa et al. (1909)
2004	Japan	1.0 ± 1.0 1.0 ± 1.0	35.0 / 139.0	86.1 / 55.2	61/86	35.3	35.0 ± 2.0 38.1 ± 2.6	-0.8 ± 9.0 -2.7 ± 5.3	35.5 ± 5.4	1.2 ± 9.7	7797	Kono (1971)
2005	Central Hokkaido	1.0 ± 1.0 1.5 ± 1.5	43 3 / 143 5	823 / 323	67/89	40.1	465 ± 26	-64 ± 57	43.7 ± 5.4	-36 ± 69	7812	Fujiwara et al. (1975)
2000	NE Japan	1.5 ± 1.5 60 ± 10	40.0 / 141.0	883 / 1867	14.1	41.2	40.5 ± 2.0	-0.7 ± 0.7 3.1 ± 11.4	40.4 ± 5.4	-5.0 ± 0.9 0.8 ± 12.1	7157	Otofuji et al. (1975)
2007	NE Japan Kanta Mountaina	0.0 ± 1.0 7.0 ± 1.0	40.0 / 141.0	70 4 / 152 1	65 / 8 2	41.2	44.3 ± 2.0	-3.1 ± 11.4	40.4 ± 3.4	0.0 ± 12.1	6085	Takahashi at al. (1994)
2008	NE Japan	7.0 ± 1.0	28 2 / 140 7	75.0 / 91.0	7.0	40.5	40.2 ± 2.0	0.1 ± 3.4	34.3 ± 2.3 260 ± 2.5	11.7 ± 3.0	1082	TaxanaSili Ci al. (1909)
2009	INE Japan Kunahu Jaland	8.0 ± 2.0	30.3 / 140./	13.0 / 81.0	/.U 9.5 / 12.9	44.5	42.3 ± 2.0	2.0 ± 3.0	30.9 ± 2.3	1.0 ± 3.9	2022	rsunakawa et al. (1963)
2010	Cantral Janan	6.3 ± 0.3	33.0 / 130.0 26.9 / 120.2	13.3 / 240./	0.2/13.8	24.4	50.6 ± 2.0	-12.4 ± 1.0	31.2 ± 2.3	-0.7 ± 7.1	SUSZ 8107	Otefaili et al. (1007)
2011	Central Japan	10.5 ± 5.5	30.8 / 139.3	82.0 / 259.1	1.5	32.9	41.0 ± 2.0	-8.1 ± 0.1	35.4 ± 2.5	-2.5 ± 0.2	819/	(1997)
2012	Sw Japan Okinawa and Paukau Islanda	11.3 ± 2.3 11.5 ± 1.5	265 / 127.0 265 / 127.9	00.U / 3/.0 87.7 / 3/7.2	0.//9.4	20.4	40.0 ± 2.0 30.2 ± 2.0	-4.3 ± 3.0 00 ± 2.3	34.9 ± 2.3 24.6 ± 2.5	1.2 ± 3.7	390 7711	Milei (1985)
2013	Control Jopon	11.3 ± 1.3 12.0 ± 1.0	20.3 / 12/.8	02.2 / 347.3	2.0 / 5.3	20.4	30.2 ± 2.0	-7.7 ± 2.3	24.0 ± 2.3 24.7 ± 2.5	-4.2 ± 2.0	7556	Takabashi and Watanaba (1002)
2014	Central Japan	12.0 ± 1.0	30.2 / 138.0	01.1 / 220.9	4.0 / 0.0	51.9	40.4 ± 2.0	-0.3 ± 3.0	34.7 ± 2.3	-2.8 ± 3.8	1330	Takanashi and watanabe (1993)

2015	NE Japan	12.0 ± 2.0	40.0 / 141.0	85.4 / 43.2	12.0	39.2	44.3 ± 2.0	-5.0 ± 9.7	38.6 ± 2.5	0.6 ± 9.8	7156	Otofuji et al. (1994)
2016	Japan	13.5 ± 1.5	38.8 / 141.2	85.9 / 236.6	6.2	38.2	43.0 ± 2.0	-4.8 ± 5.2	37.4 ± 2.5	0.9 ± 5.3	-	Hoshi and Teranishi (2007)
2017	SW Japan	14.0 ± 1.0	35.0 / 134.0	86.1 / 214.0	10.5	35.6	39.0 ± 2.0	-3.4 ± 8.6	33.3 ± 2.5	2.3 ± 8.6	6131	Otofuji et al. (1991)
2018	Goto Islands	15.0 ± 2.0	32.9 / 128.9	79.7 / 31.3	7.3 / 10.9	31.0	38.3 ± 2.7	-7.3 ± 6.2	31.0 ± 2.5	0.0 ± 6.2	6989	Ishikawa and Tagami (1991)
2019	Central Honshu	15.5 ± 1.5	35.1 / 137.6	82.3 / 216.6	6.2	36.2	40.8 ± 2.7	-4.6 ± 5.4	33.6 ± 2.5	2.6 ± 5.3	8888	Hoshi and Yokoyama (2001)
2020	SW Japan	16.0 ± 2.0	35.0 / 134.0	55.7 / 231.5	14.2	24.4	40.6 ± 2.7	-16.1 ± 11.6	32.1 ± 3.1	-7.7 ± 11.6	6132	Otofuji et al. (1991)
2021	Goto Islands	16.0 ± 4.0	32.9 / 128.9	83.7 / 327.8	6.6 / 10.4	26.9	38.3 ± 2.7	-11.3 ± 5.7	29.6 ± 3.1	-2.7 ± 5.8	6990	Ishikawa and Tagami (1991)
2022	NE Japan	17.0 ± 1.0	40.2 / 141.3	84.3 / 198.4	10.5	43.1	46.0 ± 2.7	-2.9 ± 8.7	37.8 ± 3.1	5.3 ± 8.8	8476	Hoshi and Matsubara (1998)
2023	NE Japan	17.5 ± 7.5	40.0 / 139.7	87.6 / 25.6	8.8 / 11.8	39.0	45.8 ± 2.7	-6.8 ± 7.4	37.5 ± 3.1	1.5 ± 7.5	1064	Tosha and Hamano (1986)
2024	SW Japan	19.0 ± 3.0	35.4 / 137.0	49.3 / 214.4	9.3 / 13.5	33.7	41.1 ± 2.7	-7.4 ± 7.7	32.7 ± 3.1	1.0 ± 7.8	6236	Hayashida et al. (1991)
2025	SW Japan	19.0 ± 4.0	36.5 / 137.0	78.9 / 240.0	6.9 / 9.9	33.3	42.2 ± 2.7	-8.9 ± 5.9	33.8 ± 3.1	-0.5 ± 6.1	389	Itoh (1988)
2.b: .	Iapan - sediments - n=15											
2026	NE Japan	0.5 ± 0.5	35.2 / 139.2	82.4 / 284.9	2.8 / 4.3	28.8	38.3 ± 2.6	-9.5 ± 3.1	35.7 ± 5.4	-6.8 ± 4.9	6061	Kovama et al. (1989)
2027	Oiso Hills, NE Japan	0.5 + 0.5	35.2 / 139.2	46.5 / 223.1	8.9	28.5	38.3 + 2.6	-9.7 + 7.4	35.7 + 5.4	-7.1 + 8.3	6062	Koyama et al. (1989)
2028	Oga Peninsula, NE Japan	12.0 ± 2.0	39.9 / 139.8	84.0 / 172.2	10.3 / 13.1	44.9	44.1 ± 2.0	0.8 ± 8.4	38.5 ± 2.5	6.4 ± 8.5	1023	Tosha and Hamano (1988)
2029	West Hokkaido	12.5 + 10.5	43.2 / 140.5	77.9 / 249.5	12.1	38.3	47.4 + 2.0	-9.2 + 9.8	41.8 + 2.5	-3.5 + 9.9	6994	Tanaka et al. (1991)
2030	Tanegashima Island	13.0 ± 3.0	31.3 / 131.0	66.2 / 27.7	6.2 / 10.2	23.3	35.2 ± 2.0	-11.9 ± 5.2	29.5 ± 2.5	-6.2 ± 5.3	6995	Kodama et al. (1991)
2031	Hokkaido	135 + 15	42.8 / 141.9	70.0 / 255.0	12.0	32.7	471 + 20	-144 + 97	415 + 25	-88 + 98	7497	Kodama et al. (1993)
2032	Oga Peninsula, NE Japan	15.0 ± 2.0	39.9 / 139.8	89.5 / 285.7	10.4 / 14.1	39.5	45.7 + 2.7	-6.2 + 8.6	38.5 + 2.5	1.0 + 8.6	1022	Tosha and Hamano (1988)
2033	Southwest Japan	150 ± 10	34.7 / 136.9	66.6 / 217.8	16.4	35.0	40.4 + 2.7	-53 + 133	331 + 25	19 + 133	1059	Havashida (1986)
2034	Southwest Japan	15.0 ± 1.0 15.0 ± 1.0	35 4 / 137 2	70.0 / 206.9	0.0	30.0	411 ± 2.7	-12 ± 21	33.9 ± 2.5	60 ± 20	1061	Hayashida (1986)
2034	NE Japan	15.0 ± 1.0 160 ± 2.0	38.0 / 141.0	78.6 / 269.0	59/89	30.5	438 ± 27	-133 ± 52	35.0 ± 2.0 35.6 ± 3.1	-51 + 53	6986	Vamazaki (1980)
2035	SW Japan	165 ± 15	34.7 / 136.4	51.8 / 220.9	103/157	29.7	40.4 ± 2.7	-10.6 ± 8.5	32.0 ± 3.1	-2.1 ± 5.5 -2.2 ± 8.6	726	Havashida and Ito (1984)
2037	Kanto Mountains central Japan	10.0 ± 1.0 190 + 30	36.0 / 139.0	15.8 / 199.9	78/114	32.6	418 ± 27	-92 ± 66	335 + 31	-0.9 ± 6.7	1063	Hyodo and Niitsuma (1986)
2038	Southwest Japan	19.0 ± 3.0 19.0 + 3.0	35.4 / 137.2	42 1 / 222 5	99	26.0	411 + 27	-151 + 82	32.7 ± 3.1	-68 ± 83	1062	Havashida (1986)
2030	Southwest Japan	19.0 ± 3.0 19.0 ± 3.0	34.7 / 136.9	44.4 / 205.3	14.8	37.9	40.4 ± 2.7	-25 ± 120	32.0 ± 3.1	5.0 ± 0.0	1060	Hayashida (1986)
2035	Goto Islands	19.0 ± 3.0 19.5 ± 3.5	32.9 / 128.9	66.8 / 26.7	126/202	25.4	383 ± 27	-12.8 ± 10.3	29.6 ± 3.1	-4.2 + 10.4	6988	Ishikawa and Tagami (1991)
2010	Goto Islands	1510 2 510	526 / 1266	0010 / 2017	1210 / 2012	2011	0010 2 217	1210 1 1010	2010 2 011	112 - 1011	0,00	Isinia (1991)
3. So	utheast Asia											
310	· Malaysia Burma jone	ous rocks n-	-4									
2101	. Maiaysia-Durma - ignee	ns rocks - n - 225 + 75	-7	007 (015)	0 (/ 10 0	1.1	57.07	16 . 80	20.00	40.00	(571	6 L 14L (1000)
3101	West Sarawak, Borneo	22.5 ± 7.5	1.4 / 110.3	88./ / 215.5	9.6 / 19.2	1.1	5.1 ± 2.1 57 + 27	-4.0 ± 8.0	-3.8 ± 2.8	4.9 ± 8.0	6572	Schmidtke et al. (1990)
2102	West Salawak, Bollieo	22.3 ± 7.3	1.4 / 110.5	44.0 (25.0	9.4 / 10./	3.0	3.7 ± 2.7	-2.7 ± 7.0	-3.0 ± 2.0	0.9 ± 7.0	0372	Schillidike et al. (1990)
3103	Malay Peninsula, Malaysia	88.5 ± 23.5	2.5 / 103.0	44.0 / 35.0	0./	17.4	1.2 ± 5.2	10.2 ± 8.1	-1.0 ± 3.0	19.0 ± 7.4	2/34	McElninny et al. (1974)
2104 21 h	Malaysia	104.0 ± 10.0	5.8 / 105.4	57.7 7 51.8	4.1 / 0./	22.8	3.7 ± 0.7	17.1 ± 0.5	2.1 ± 5.0	20.0 ± 4.4	0085	Halle et al. (1983)
5.1.0	: Malaysia-Burma - seain	nents - n=0				12.0						
3105	Sarawak, Borneo, Malaysia	22.5 ± 17.5	1.1 / 110.9	47.4 39.1	7.7 / 14.3	13.0	5.4 ± 2.7	7.6 ± 6.5	-4.1 ± 2.8	17.1 ± 6.6	6570	Schmidtke et al. (1990)
3106	Sarawak, Borneo, Malaysia	22.5 ± 17.5	1.1 / 110.9	69.8 150.6	3.9 / 6.8	16.5	5.4 ± 2.7	11.1 ± 3.8	-4.1 ± 2.8	20.6 ± 3.8	6569	Schmidtke et al. (1990)
3107	Sarawak, Borneo, Malaysia	113.0 ± 48.0	1.4 / 110.0	0.5 191.9	8.1 / 15./	8.1	4.2 ± 4.2	3.9 ± 7.3	1.5 ± 3.7	6.6 ± 7.1	6568	Schmidtke et al. (1990)
3108	Malaysia	130.5 ± 30.5	3.3 / 103.0	71.0 41.0	8.2	11.9	3.2 ± 2.8	8.7 ± 6.9	3.2 ± 2.4	8.7 ± 6.8	6082	Haile and Khoo (1980)
3109	Sarawak, Borneo, Malaysia	146.5 ± 14.5	1.3 / 110.3	1.9 15.9	2.7 / 5.3	-4.4	10.9 ± 6.6	-15.3 ± 5.7	2.3 ± 2.4	-6.7 ± 2.9	6567	Schmidtke et al. (1990)
3110	Sarawak, Borneo, Malaysia	153.5 ± 7.5	1.1 / 110.4	41.0 18.0	17.7	-1.1	10.8 ± 6.6	-11.8 ± 15.1	-	-	6564	Schmidtke et al. (1990)
2.2	a. T. :	1 0										
3.2.a	: Simao Terrane - igneous	s rocks - n=0										
	no data											
3.2.b	: Simao Terrane - sedime	nts - n=18										
3201	Mengyejing Formation	14.0 ± 9.0	23.5 / 100.8	48.5 / 196.5	4.6 / 8.5	13.8	25.6 ± 2.0	-11.8 ± 4.0	20.7 ± 2.5	-7.0 ± 4.2	7601	Haihong et al. (1995)
3202	Sanhaogou Formation	22.5 ± 6.5	23.5 / 100.7	70.0 / 197.8	5.0 / 8.7	19.6	26.9 ± 2.7	-7.3 ± 4.5	17.8 ± 2.8	1.8 ± 4.6	7603	Haihong et al. (1995)
3203	Mengla Group	39.5 ± 16.5	23.5 / 100.7	13.2 / 172.2	5.4 / 9.1	22.0	27.4 ± 3.3	-5.4 ± 5.1	14.7 ± 4.5	7.3 ± 5.6	7602	Haihong et al. (1995)
3204	Eocene Redbeds	45.0 ± 11.0	26.5 / 99.3	14.5 / 169.7	10.9	23.7	30.0 ± 3.4	-6.3 ± 9.1	17.6 ± 4.5	6.1 ± 9.4	8616	Sato et al. (2001)
3205	Yunlong Formation	60.5 ± 4.5	25.8 / 99.4	42.6 / 189.9	8.3 / 14.8	16.8	25.3 ± 2.9	-8.5 ± 7.0	18.9 ± 4.1	-2.1 ± 7.4	8656	Yang et al. (2001)
3206	Nanxing Formation	108.0 ± 22.0	25.6 / 100.2	83.6 / 152.7	10.0	29.4	26.3 ± 4.2	3.1 ± 8.7	24.0 ± 3.7	5.4 ± 8.5	7138	Huang and Opdyke (1993)
3207	Mangang Formation	108.0 ± 22.0	21.6 / 101.4	33.7 / 179.3	8.2	21.5	22.6 ± 4.2	-1.1 ± 7.4	20.2 ± 3.7	1.3 ± 7.2	7140	Huang and Opdyke (1993)
3208	Mangang Formation	108.0 ± 22.0	23.4 / 100.9	18.9 / 170.0	8.9	26.0	24.3 ± 4.2	1.7 ± 7.9	21.9 ± 3.7	4.1 ± 7.7	7139	Huang and Opdyke (1993)
3209	Jinxing and Nanxin fm.	108.0 ± 22.0	23.0 / 101.0	35.8 / 173.1	5.6	27.3	23.9 ± 4.2	3.3 ± 5.6	21.6 ± 3.7	5.7 ± 5.4	-	Sato et al. (2007)
	~											· /

3210	Nanxin Formation	110.5 ± 21.5	25.8 / 99.4	54.6 / 171.8	4.4	30.8	26.4 ± 4.2	4.4 ± 4.9	24.1 ± 3.7	6.7 ± 4.6	8303	Sato et al. (1999)
3211	Mangang Formation	123.0 ± 23.0	23.4 / 100.6	-13.9 / 161.3	4.3 / 6.3	19.9	23.1 ± 2.4	-3.2 ± 3.9	22.8 ± 2.8	-2.9 ± 4.1	7600	Haihong et al. (1995)
3212	Jingxing Formation	123.0 ± 23.0	23.4 / 100.4	13.6 / 171.5	12.8 / 21.3	22.5	23.1 ± 2.4	-0.6 ± 10.4	22.7 ± 2.8	-0.3 ± 10.5	7599	Haihong et al. (1995)
3213	Jingxing Formation	123.0 + 23.0	25.5 / 99.5	50.9 / 167.3	20.6	33.3	24.9 + 2.4	8.4 + 16.6	24.7 + 2.8	8.6 + 16.6	7133	Funahara et al. (1993)
3214	Jinxing Formation	123.0 + 23.0	25.8 / 99.4	36.2 / 178.2	8.8 / 14.5	23.5	25.2 + 2.4	-1.8 + 7.3	25.0 + 2.8	-1.5 + 7.4	8654	Yang et al. (2001)
3215	Nanxin and Hutoushi fm.	123.0 + 23.0	25.8 / 99.4	59.7 / 167.6	6.9 / 10.0	33.0	25.2 + 2.4	7.8 + 5.8	25.0 + 2.8	8.0 + 6.0	8655	Yang et al. (2001)
3216	Bazhulu Formation	1535 + 75	25.4 / 100.2	76.3 / 250.0	10.4	13.4	322 + 66	-188 + 99			7141	Huang and Ondyke (1993)
3210	Managa Formation	155.5 ± 7.5 168.5 ± 7.5	23.4 / 100.2	0.5 / 166.6	12.2	10.4	32.2 ± 0.0 43.8 ± 6.7	-10.0 ± 0.0 24.3 ± 11.1			71/3	Huang and Opdyke (1993)
2217	Mengga Formation	108.5 ± 7.5	24.5 / 90.4	-0.3 / 100.0	12.2	19.0	43.0 ± 0.7	-24.5 ± 11.1	-	-	7143	Huang and Opdyke (1993)
5216	Hepingxiang Formation	108.3 ± 7.3	23.6 / 100.5	14.0 / 1/3.0	4.2	20.8	45.4 ± 0.7	-22.3 ± 0.3	-	-	/142	Huang and Opdyke (1995)
3.3.a	: Khorat plateau - igneo	us rocks - n=2	2									
3301	Central Chao Phraya Basin	5.5 ± 5.5	15.3 / 100.9	66.4 / 189.5	6.2	14.6	17.4 ± 2.0	-2.9 ± 5.2	16.2 ± 5.4	-1.7 ± 6.6	405	McCabe et al. (1988)
3302	Khorat Plateau	5.5 ± 5.5	14.6 / 103.4	85.7 / 171.4	5.4	16.2	16.9 ± 2.0	-0.8 ± 4.6	15.5 ± 5.4	0.7 ± 6.1	406	McCabe et al. (1988)
3.3.h	: Khorat plateau - sedim	ents - n=11										
2202	Yan Chau & Law Chau fre	025 · 175	21.7 / 102.0	82.0 / 220.7	6.0	10.4	106 . 50	12.72	172 . 22	11.60		T-logarte et el (2005)
3303	Plant Chau & Lay Chau Im.	82.3 ± 17.3	21.7 / 103.9	82.9 / 220.7	0.9	16.4	19.0 ± 3.9	-1.5 ± 7.5	17.5 ± 5.5	1.1 ± 0.2	-	Takemoto et al. (2003)
3304	Phu Thok fm.	102.5 ± 15.0	18.1 / 103.9	59.4 / 190.8	3.5	17.1	19.9 ± 6.7	-2.8 ± 6.0	16.4 ± 3.6	0.7 ± 4.0	-	Charusiri et al. (2006)
3305	Khot Kruat Formation	110.0 ± 22.0	17.5 / 103.0	45.0 / 189.0	9.0 / 16.0	15.1	18.9 ± 4.2	-3.8 ± 7.9	16.4 ± 3.7	-1.4 ± 7.8	6356	Marante and Vella (1986)
3306	Khok Kruat Formation	112.5 ± 12.5	16.2 / 102.6	62.7 / 173.3	2.4	23.2	17.5 ± 4.2	5.7 ± 3.9	15.1 ± 3.7	8.1 ± 3.5	7110	Yang and Besse (1993)
3307	Phu Phan and Khok Kruat fm.	115.0 ± 10.0	16.8 / 103.3	59.7 / 192.7	9.4	14.8	17.2 ± 2.4	-2.5 ± 7.8	15.8 ± 3.7	-1.0 ± 8.1	-	Charusiri et al. (2006)
3308	Sao Khua fm.	135.0 ± 10.0	16.8 / 103.3	59.7 / 178.2	5.7	22.0	14.9 ± 6.0	7.1 ± 6.6	16.6 ± 2.4	5.4 ± 4.9	-	Charusiri et al. (2006)
3309	Red sediments	153.5 ± 7.5	16.8 / 100.0	84.6 / 258.7	11.0 / 21.0	11.8	23.8 ± 6.6	-12.0 ± 10.3	-	-	1534	Barr et al. (1978)
3310	Sao Khua Formation	153.5 ± 7.5	16.6 / 103.0	64.8 / 178.1	2.3	21.3	24.3 ± 6.6	-3.0 ± 5.6	-	-	7109	Yang and Besse (1993)
3311	Phra Wihan Formation	168.5 ± 7.5	13.0 / 102.0	60.0 / 174.0	10.0 / 16.0	20.2	32.9 ± 6.7	-12.7 ± 9.6	-	-	6359	Marante and Vella (1986)
3312	Sao Khua Formation	168.5 ± 7.5	13.0 / 102.0	59.0 / 184.0	5.0 / 9.0	15.2	32.9 ± 6.7	-17.7 ± 6.7	-	-	6358	Marante and Vella (1986)
3313	Redbeds	173.0 ± 27.0	16.9 / 100.7	69.0 / 177.0	8.0 / 13.7	20.6	36.7 ± 6.7	-16.1 ± 8.3	-	-	2360	Haile and Tarling (1975)
4												
4. Ti	betan blocks/terranes	rocks n=0										
4.1.0	. Lhusa block - igneous i	OCKS - n = 9										0.0.0
4101	Bomi Granites	2.5 ± 2.5	29.8 / 95.7	82.2 / 194.7	8.5 / 13.1	28.3	30.6 ± 2.6	-2.3 ± 7.1	30.7 ± 5.4	-2.5 ± 8.1	6123	Otofuji et al. (1990)
4102	Pana volcanics	41.5 ± 1.5	30.0 / 91.2	87.5 / 81.4	4.8 / 7.1	32.5	32.4 ± 3.3	0.1 ± 3.3	20.7 ± 4.5	11.7 ± 5.3	-	Tan et al. (2010)
4103	Linzizong volcanics	50.5 ± 3.5	30.0 / 91.1	76.4 / 212.7	4.0 / 6.7	22.3	32.2 ± 3.4	-9.9 ± 4.2	22.8 ± 5.9	-0.5 ± 5.7	-	Dupont-Nivet et al. (2010)
4104	Lingzizong Volcanics	65.0 ± 15.0	29.9 / 91.0	69.0 / 270.0	16.5 / 31.8	8.9	25.7 ± 3.2	-16.8 ± 13.4	22.4 ± 4.1	-13.5 ± 13.6	101	Westphal et al. (1983)
4105	Shexing Formation	87.5 ± 22.5	30.0 / 91.2	37.7 / 173.8	3.7 / 6.1	23.2	27.0 ± 5.2	-3.8 ± 5.1	23.2 ± 3.0	0.0 ± 3.8	-	Tan et al. (2010)
4106	Qelico Volcanics	90.0 ± 5.0	31.7 / 91.0	74.0 / 318.0	11.1 / 19.1	20.2	28.6 ± 5.2	-8.4 ± 9.8	24.8 ± 3.4	-4.6 ± 9.2	2434	Lin and Watts (1988)
4107	Nagqu Volcanics	96.0 ± 4.0	31.5 / 92.0	78.0 / 282.0	4.0 / 6.9	19.7	31.4 ± 6.7	-11.7 ± 6.2	24.8 ± 3.4	-5.1 ± 4.0	2433	Lin and Watts (1988)
4108	Basu Granites	98.5 ± 29.5	30.0 / 96.7	61.6 / 312.6	6.2 / 12.2	6.1	30.6 ± 6.7	-24.5 ± 7.3	27.2 ± 3.6	-21.1 ± 5.7	6122	Otofuji et al. (1990)
4109	Xigaze ophiolite and flysch	101.5 ± 4.5	29.2 / 89.5	0.4 / 15.0	17.5 / 32.3	13.7	28.8 ± 6.7	-15.1 ± 15.0	25.6 ± 3.6	-11.9 ± 14.3	738	Pozzi et al. (1984)
4.1.b	e: Lhasa block - sediment	s - n=14										
4110	Linzizong Formation	48.0 ± 4.0	29.8 / 90.8	67.9 / 229.8	6.0 / 11.2	12.4	32.0 ± 3.4	-19.6 ± 5.5	20.5 ± 4.5	-8.2 ± 6.0	6369	Otofuji et al. (1991)
4111	Sediments, Dingri	57.0 ± 1.0	28.7 / 87.0	50.6 / 307.7	5.3 / 10.6	-2.9	26.3 ± 2.9	-29.2 ± 4.8	21.2 ± 5.9	-24.2 ± 6.3	1301	Besse et al. (1984)
4112	Red Beds	78.0 ± 22.0	30.0 / 91.3	67.5 / 283.1	2.8 / 5.4	7.9	26.1 ± 5.9	-18.2 ± 5.2	23.3 ± 3.3	-15.4 ± 3.5	2316	Zhu et al. (1977)
4113	Takena Formation	82.5 + 17.5	29.9 / 91.2	68.0 / 279.0	3.5 / 6.9	8.1	26.0 + 5.9	-17.9 + 5.5	23.5 + 3.4	-15.4 + 3.9	2432	Lin and Watts (1988)
4114	Shexing Formation	87.5 + 22.5	30.0 / 91.2	70.1 / 300.4	1.4 / 2.7	12.3	27.0 + 5.2	-14.7 + 4.3	23.2 + 3.0	-10.9 + 2.6	-	Tan et al. (2010)
4115	Zangbo Suture Zone Rocks	90.0 + 50.0	31.0 / 82.5	24.6 / 342.5	18.3 / 36.2	4.5	26.9 + 5.2	-22.4 + 15.2	22.8 + 3.0	-18.3 + 14.8	6209	Otofuii et al. (1989)
4116	Takena Formation	92.5 + 27.5	30.2 / 91.5	68.0 / 340.0	6.8 / 11.6	20.3	27.2 + 5.2	-6.9 + 6.8	23.4 + 3.0	-3.1 + 5.9	1290	Pozzi et al. (1982)
4117	Takena Formation Redbeds	990 + 130	29.9 / 91.0	64.0 / 348.0	56/95	21.3	297 + 67	-84 + 70	264 + 36	-52 + 53	100	Westphal et al. (1983)
4118	Takena Group	112.5 + 12.5	31.0 / 91.0	68.3 / 305 3	3.8 / 7 1	12.5	30.0 + 4.2	-17.5 + 4.5	28.0 + 3.7	-15.5 + 4.2	1199	Achache et al. (1982)
4119	Basu Formation	112.5 + 12.5	30 1 / 96 9	751 / 264 5	17.0 / 30.9	15.5	30.2 + 4.2	-147 + 140	280 + 37	-12.5 + 13.9	6121	Otofuii et al. (1990)
4120	Ounrang section	1200 ± 100	29.2 / 89.0	27.5 / 352.6	27/52	79	264 + 24	-185 + 29	26.7 ± 2.8	-188 + 31	-	Abraievitch et al. (2005)
4121	Dazhugu section	120.0 ± 10.0 120.0 ± 10.0	29.3 / 89.5	61.9 / 261.9	57/113	14	267 ± 2.4	-252 + 49	270 ± 2.8	-255 + 51	_	Abrajevitch et al. (2005)
4122	Lhasa ophiolithes	120.0 ± 10.0 120.0 ± 10.0	291 / 884	299 / 335 0	34/67	-2.7	263 ± 20	-290 + 33	266 + 28	-293 + 35	-	Abraievitch et al. (2005)
4123	Sangha formation	1685 ± 75	30 1 / 96 9	66.8 / 294.1	74/145	7.8	494 + 67	-416 + 80	2010 1 210		_	Otofuii et al. (2007)
140	Sangou formation	1000 - 1.0	00.1 / JU.J	00.0 / 2/7.1	7 T T T T T T T T	1.0	1211 - 201	11.0 ± 0.0				Otorap of m. (2007)

4.2.a: Qiangtang block - igneous rocks - n=0 no data

4.2.b	: Qiangtang block - sedir	nents - n=12										
4201	Longmuco and Domar	1.0 ± 1.0	34.0 / 80.4	79.7 / 193.5	6.3 / 9.6	29.5	33.8 ± 2.6	-4.3 ± 5.5	35.0 ± 5.4	-5.5 ± 6.6	7463	Chen et al. (1993)
4202	Yaxicuo Group	30.5 ± 0.5	35.0 / 93.0	57.4 / 188.8	7.7 / 12.7	26.0	37.7 ± 3.8	-11.7 ± 6.9	29.0 ± 2.8	-3.0 ± 6.6	8969	Liu et al. (2003)
4203	Xialaxiu	39.0 ± 2.0	32.8 / 96.6	52.6 / 352.0	6.0 / 10.7	17.6	36.0 ± 3.3	-18.4 ± 5.5	23.7 ± 4.5	-6.2 ± 6.0	-	Cogné et al. (1999)
4204	Fenghuoshan Group	41.0 ± 10.0	34.6 / 92.9	70.4 / 221.0	11.8 / 20.1	21.4	37.2 ± 3.3	-15.8 ± 9.8	25.4 ± 4.5	-4.0 ± 10.1	8970	Liu et al. (2003)
4205	Fenghuoshan Group	57.5 ± 7.5	34.6 / 92.8	55.0 / 201.0	3.2 / 5.6	18.5	33.0 ± 2.9	-14.4 ± 3.5	27.5 ± 5.9	-9.0 ± 5.4	2438	Lin and Watts (1988)
4206	Fenghuoshan Group	57.5 ± 7.5	34.6 / 92.4	61.0 / 253.0	3.8 / 7.4	6.9	32.9 ± 2.9	-26.0 ± 3.8	27.5 ± 5.9	-20.6 ± 5.6	2437	Lin and Watts (1988)
4207	Fenghuoshan Group	57.5 ± 7.5	34.5 / 92.7	62.6 / 210.5	3.9 / 6.8	19.0	32.8 ± 2.9	-13.8 ± 3.9	27.4 ± 5.9	-8.4 ± 5.7	8345	Halim et al. (1998)
4208	Cretaceous Sediments	100.0 ± 20.0	33.8 / 80.4	66.2 / 245.0	5.1	10.7	32.0 ± 6.7	-21.3 ± 6.7	29.1 ± 3.6	-18.4 ± 5.0	7464	Chen et al. (1993)
4209	Mankang Formation	107.0 + 18.0	297/987	567 / 1727	10.6	33.1	30.1 + 4.2	30 + 91	272 + 36	59 + 90	6248	Huang et al. (1992)
4210	Laoran Formation	107.0 ± 10.0 115.0 ± 15.0	29.7 / 98.6	48.5 / 175.9	95	29.8	28.8 ± 2.4	10 ± 7.1	27.2 ± 3.0 27.8 ± 3.7	20 ± 82	6120	Otofuii et al. (1992)
4210	Cuowa Formation	115.0 ± 10.0 135.5 ± 10.5	29.7 / 98.5	40.6 / 170.5	13.0	31.8	25.0 ± 2.4	1.0 ± 7.0 58 ± 11.5	27.0 ± 3.7 28.6 ± 2.4	2.0 ± 0.2 3.1 ± 10.6	6247	Huong et al. (1990)
4211	Yanshiping Group	159.5 ± 10.5 159.5 ± 8.5	33.6 / 92.1	72.0 / 25.0	7.8 / 10.6	38.8	43.0 ± 5.0	-4.2 ± 7.4	- 28.0 ± 2.4	5.1 ± 10.0	2436	Lin and Watts (1988)
4.3.a	: Kunlun block - igneous	rocks - n=0										
126	no data	n=3										
4201	West Visbu	$n_{3} - n_{-3}$	22.2 / 06.7	52.0 / 205.4	56/100	16 5	250 . 20	10 5 . 40	20.4 + 2.5	12.0 . 4.0		$C_{2} = \pi i + \pi i + (1000)$
4301	West Yushu	10.0 ± 5.0	33.2 / 96./	53.9 / 205.4	5.6 / 10.0	16.5	35.0 ± 2.0	-18.5 ± 4.8	30.4 ± 2.5	-13.8 ± 4.9	-	Cogne et al. (1999)
4302	Kekexili	14.5 ± 8.5	36.0 / 89.3	71.0 / 196.3	10.9	28.6	37.2 ± 2.0	-8.6 ± 8.9	33.1 ± 2.5	-4.5 ± 8.9	-	Chen et al. (2002)
4303	Wanxiou Group	123.0 ± 23.0	34.5 / 100.1	80.1 / 281.8	7.8 / 12.7	24.6	33.8 ± 2.4	-9.2 ± 6.5	33.6 ± 2.8	-9.0 ± 6.6	8344	Halim et al. (1998)
4.4.a	: Qaidam block - igneou	s rocks - n=1										
4401	Qaidam	101.0 ± 11.0	35.6 / 101.8	76.9 / 194.9	10.0	33.8	36.9 ± 6.7	-3.0 ± 9.6	33.4 ± 3.6	0.4 ± 8.5	-	Sun et al. (2006)
4.4.b	: Oaidam block - sedime	nts - n=30										
4402	Amigang	22 + 04	36.0 / 101.5	768 / 2928	45/74	23.0	372 + 26	-141 + 42	369 + 54	-139 + 56	-	Yan et al. (2006)
4403	Ganija	31 ± 05	36.0 / 101.5	78 2 / 287 3	29/48	24.3	37.2 ± 2.6	-12.9 + 3.1	369 ± 54	-12.7 ± 4.9	-	Yan et al. (2006)
4404	Xiao Qaidam Section B	35 ± 15	37 4 / 95 3	70.8 / 273.3	38/66	18.2	382 ± 26	-20.0 ± 3.7	383 ± 54	-201 ± 53	9041	Dupont-Nivet et al. (2002)
4405	Xiao Qaidam Section B	3.5 + 1.5	37.4 / 95.3	82.8 / 272.8	3.1 / 9.7	30.2	38.2 + 2.6	-8.0 + 3.2	38.3 + 5.4	-8.1 + 5.0	9042	Dupont-Nivet et al. (2002)
4406	Hot Springs Sediments	4.0 + 1.0	35.9 / 101.3	74.5 / 289.0	12.8 / 21.9	20.5	37.0 + 2.6	-16.5 + 10.4	36.8 + 5.4	-16.3 + 11.1	9047	Pares et al. (2003)
4407	Herija Sediments	4.0 ± 1.0	36.2 / 101.4	75.3 / 278.1	5.2 / 8.8	21.5	37.3 ± 2.6	-15.8 ± 4.7	37.1 ± 5.4	-15.6 ± 6.0	9046	Pares et al. (2003)
4408	Herjia Sediments	4.0 ± 1.0	36.2 / 101.4	73.6 / 287.1	7.6 / 13.1	19.9	37.3 ± 2.6	-17.5 ± 6.4	37.1 ± 5.4	-17.2 ± 7.5	9045	Pares et al. (2003)
4409	Hot Springs Sediments	4.0 ± 1.0	35.9 / 101.3	77.6 / 280.9	7.0 / 11.5	23.5	37.0 ± 2.6	-13.5 ± 6.0	36.8 ± 5.4	-13.3 ± 7.1	9048	Pares et al. (2003)
4410	Honggouzi	4.0 ± 1.0	38.7 / 91.1	86.5 / 254.2	5.7	35.3	39.2 ± 2.6	-3.8 ± 5.0	39.6 ± 5.4	-4.3 ± 6.3	-	Chen et al. (2002)
4411	Herija	5.3 ± 1.7	36.0 / 101.5	78.3 / 266.4	1.1 / 1.9	24.7	38.1 ± 2.0	-13.5 ± 1.8	36.9 ± 5.4	-12.2 ± 4.4	-	Yan et al. (2006)
4412	Ashigong	9.3 ± 2.3	36.0 / 101.5	72.5 / 267.7	2.4 / 3.8	18.9	38.1 ± 2.0	-19.2 ± 2.5	33.3 ± 2.5	-14.3 ± 2.8	-	Yan et al. (2006)
4413	Jungong, Xining	10.0 ± 5.0	34.7 / 100.7	66.0 / 228.6	3.9 / 6.9	18.3	36.8 ± 2.0	-18.4 ± 3.5	31.9 ± 2.5	-13.6 ± 3.7	-	Cogné et al. (1999)
4414	Huatougou	12.5 ± 10.5	38.3 / 90.9	79.9 / 274.5	3.2	28.2	39.6 ± 2.0	-11.4 ± 3.0	35.4 ± 2.5	-7.2 ± 3.2	-	Chen et al. (2002)
4415	Subei	170 + 70	39 5 / 94 7	69.0 / 327.8	3.7	25.3	423 + 27	-170 + 37	345 + 31	-91 + 39	-	Chen et al. (2002)
4416	Low Garang	180 ± 10	36.0 / 101.5	58.0 / 214.7	65/113	19.2	394 ± 2.7	-202 + 56	312 + 31	-119 + 58	-	Yan et al. (2006)
4417	Guidemen	19.9 ± 0.9	36.0 / 101.5	43.6 / 212.0	5.8 / 11.0	11.5	39.4 + 2.7	-27.9 + 5.1	31.2 ± 3.1	-19.6 + 5.3	-	Yan et al. (2006)
4418	Xining	28.5 + 5.5	36.0 / 101.5	54.1 / 212.1	4.4 / 7.8	18.0	39.7 + 3.8	-21.7 + 4.7	30.3 + 2.8	-12.3 + 4.2	-	Yan et al. (2006)
4419	Mahai	285 + 55	38 4 / 94 3	634 / 2112	9.9	23.4	413 + 38	-179 + 85	32.5 ± 2.8	-91 + 82	-	Chen et al. (2002)
4420	Xiao Qaidam Section A	285 ± 55	37.5 / 95.2	70.8 / 242.3	79/135	20.8	40.5 ± 3.8	-196 ± 70	31.6 ± 2.8	-10.8 ± 6.7	9043	Dupont-Nivet et al. (2002)
4421	E Bo Liang Sediments	28.5 ± 5.5 28.5 ± 5.5	38.7 / 92.8	75.1 / 243.5	4.0 / 6.4	25.4	41.4 + 3.8	-16.0 + 4.4	32.7 + 2.8	-7.3 + 3.9	9044	Dupont-Nivet et al. (2002)
4422	Xorkoli Redbeds	285 + 55	389/914	80.6 / 243.9	48/72	30.5	415 + 38	-110 + 49	32.9 ± 2.8	-2.5 + 4.4	9167	Dupont-Nivet and Butler (2003)
4423	Xining basin	39.0 ± 2.0	36.5 / 102.0	61.6 / 211.3	9.7 / 16.1	23.4	40.4 + 3.3	-17.0 + 8.2	27.7 + 4.5	-4.4 + 8.6	-	Cogné et al. (1999)
4424	intercalated redbeds + basalts	101.0 + 11.0	35.6 / 101.8	75 2 / 182 3	71	36.7	369 ± 67	-0.2 + 7.8	334 + 36	33 + 64	-	Sun et al. (2006)
4425	Tula Redbeds Eastern Part	1130 ± 480	37 5 / 87 2	63.6 / 216.6	63/110	18.8	358 ± 42	-170 ± 61	339 + 37	-152 ± 58	9194	Dupont-Nivet et al. (2004)
4426	Tula Redbeds, Western Part	113.0 ± 48.0	37.6 / 86.9	66.5 / 246.4	3.3 / 6.0	15.3	35.8 ± 4.2	-20.5 ± 4.3	33.9 ± 3.7	-18.7 ± 4.0	9195	Dupont-Nivet et al. (2004)
4427	Hekou Group	1230 + 230	37.5 / 101.5	487 / 1997	4.1	22.5	37.0 + 2.4	-145 + 38	368 ± 28	-143 + 40	7584	Frost et al. (1995)
4428	Hekou Group	123.0 ± 23.0 123.0 ± 23.0	36.2 / 103.5	50 3 / 195 5	4.6	25.9	36.2 ± 2.4	-103 ± 42	35.8 ± 2.8	-99 + 43	8343	Halim et al. (1998)
4420	Hustougou	125.0 ± 25.0	38 / / 00 7	50.1 / 107.2	73	10.5	30.2 ± 2.4	10.5 ± 4.2	35.0 ± 2.0 36.1 ± 2.4	-7.7 ± 4.3	0343	Chap at al. (2002)
4429	Huatugou Redbeds	153.0 ± 15.0 153.5 ± 7.5	387/90.7	50.1 / 19/.2	50/86	19.5	32.2 ± 0.0 42.5 ± 6.6	-12.7 ± 7.0 -23.2 ± 6.6	30.1 ± 2.4	-10.0 ± 0.1	8965	Halim et al. (2002)
4/21	Bulabashai	1775 - 120	381/90.5	617 / 2107	5.0 7 0.0	18.0	-2.5 ± 0.0	370 ± 60	-	-	0705	Chap at al. (2003)
4431	Bulabashel	$1/2.3 \pm 13.8$	30.1 / 88.3	01./ / 519./	5.4	18.0	33.9 ± 0.7	-37.9 ± 0.9	-	-	-	Chen et al. (2002)

5. Central Asia blocks

5.1.a: Jungar - igneous rocks - n=1Halaqiaola, NE Jungar 17.0 ± 0.1 46.9 / 90.0 5101 78.0 / 167.6 10.9 48.1 49.2 + 2.7-1.0 + 9.041.7 + 3.16.4 + 9.1Huang et al. (2006) 5.1.b: Jungar - sediments - n=4Tugulu Fm. (present day field?) 45.8 / 85.5 7.9 / 9.2 53.2 45.9 ± 2.6 7.3 ± 6.7 6.4 ± 7.7 5102 0.5 ± 0.5 82.6 / 86.0 46.8 + 5.47593 Cogné et al. (1995) 5103 Douggou and Ziniquan Fm. 80.0 + 10.044.2 / 86.0 74.3 / 223.1 6.4 31.9 39.5 + 5.2-7.5 ± 7.0 36.9 + 3.4-4.9 + 5.86203 Chen et al. (1991) 120.0 ± 10.0 44.2 / 86.0 72.3 / 227.3 4.8 / 7.2 40.4 ± 2.4 -10.8 ± 4.3 -11.5 ± 4.4 5104 Oigou and Hutubi Fm. 29.6 41.1 ± 2.8 6202 Chen et al. (1991) 5105 Shengjinkou, Turfan basin 123.0 ± 23.0 42.9 / 89.6 64.5 / 250.0 5.6 18.5 39.9 ± 2.4 -21.4 ± 4.9 40.3 ± 2.8 -21.8 ± 5.0 -Huang et al. (2004) 5.2.a: Tarim - igneous rocks - n=25201 Tuovun 60.0 + 1.240.2 / 75.3 49.0 / 160.9 7.9 31.7 36.0 + 2.9-4.3 + 6.732.1 + 5.9-0.4 + 7.9Huang et al. (2005) 5202 Tuovun 113.0 ± 2.0 40.2 / 75.3 64.1 / 172.1 12.0 32.8 36.5 ± 4.2 -3.7 ± 10.2 35.1 ± 3.7 -2.3 ± 10.0 8955 Gilder et al. (2003) 5.2.b: Tarim - sediments - n=2741.9 / 83.3 2.2 / 1.4 -17.2 ± 2.4 5203 Yaha section 8.9 ± 3.7 72.5 / 284.5 25.4 42.6 ± 2.0 38.9 ± 2.5 -13.6 ± 2.7 Charreau et al. (2006) in Gilder et al. (2008) -23.2 ± 3.4 35.5 ± 2.5 5204 Wugia Formation 14.0 ± 9.0 38.5 / 80.5 58.6 / 210.0 3.8 / 6.8 15.8 39.0 ± 2.0 -19.7 ± 3.6 9009 Dupont-Nivet et al. (2002) 5205 Turfan Sediments 14.5 ± 9.5 43.0 / 89.6 66.8 / 255.1 5.1 20.4 44.2 ± 2.0 -23.8 ± 4.4 40.1 ± 2.5 -19.7 + 4.59108 Huang et al. (2004) 5206 17.0 + 7.075.8 / 229.5 9.6 40.1 + 2.7-13.7 + 8.032.9 + 3.1-6.5 + 8.1Chen et al. (2002) Oiemo 38.1 / 86.6 26.4-5207 Aksai 28.5 ± 5.5 39 2 / 94 3 63.9 / 219.7 9.8 21.7 42.1 ± 3.8 -20.3 ± 8.4 33.3 ± 2.8 -11.6 ± 8.2 Chen et al. (2002) 5208 Tarim sediments 45.0 ± 11.0 36 2 / 81 5 40.6 / 140.1 12.5 / 15.9 447 368 + 34 7.9 ± 10.4 26.7 ± 4.5 180 + 1068799 Zhu et al. (1998) 5209 Tongyouluke fm. 82.5 ± 15.0 38.5 / 76.2 60.3 / 190.9 8.0 / 13.4 22.3 32.7 + 5.9-10.5 + 8.030.1 + 3.4-7.9 + 7.0Shen et al. (2005) 5210 Wuqia Sediments 82.5 ± 17.5 39.5 / 75.0 70.8 / 222.6 5.4 / 8.9 22.7 33.6 ± 5.9 -10.8 ± 6.4 31.0 ± 3.4 -8.2 ± 5.1 6954 Chen et al. (1992) 5211 Yingiisha Sediments 82.5 ± 17.5 38.5 / 76.4 71.0 / 234.0 6.8 / 11.6 20.7 32.7 ± 5.9 -12.1 ± 7.2 30.1 ± 3.4 -9.5 ± 6.1 6952 Chen et al. (1992) Basheniiqike Formation 82.5 ± 17.5 41.6 / 83.5 66.3 / 222.9 8.7 36.6 ± 5.9 -14.3 ± 8.4 34.0 ± 3.4 -11.7 ± 7.5 Li et al. (1988) 5212 22.3 1268 5213 Tarim sediments 82.5 ± 17.5 42.0 / 82.9 64.0 / 229.0 7.3 / 12.7 19.3 36.9 ± 5.9 -17.6 ± 7.5 34.3 ± 3.4 -15.0 ± 6.4 8800 Zhu et al. (1998) 5214 Turfan Basin Sediments 105.5 ± 55.5 43.0 / 90.0 65.1 / 227.8 5.1 / 8.423.0 41.6 ± 4.2 -18.6 ± 5.3 39.3 + 3.6 -16.3 ± 5.0 7592 Cogné et al. (1995) 5215 Touyun Sediments 115.0 ± 2.0 40.2 / 75.3 53.2 / 183.4 6.1 22.0 34.6 ± 2.4 -12.6 ± 5.2 35.1 ± 3.7 -13.1 ± 5.7 Gilder et al. (2003) -5216 Tongvouluke Sediments 123.0 ± 23.0 38.5 / 76.2 63.1 / 190.3 4.9 / 8.0 24.2 33.1 ± 2.4 -8.9 ± 4.4 34.2 ± 2.8 -9.9 ± 4.5 Shen et al. (2005) -0.5 ± 3.3 5217 Shusanhe Formation 123.0 ± 23.0 41.7 / 80.5 81.9 / 208.3 3.4 / 4.8 36.4 37.0 ± 2.4 37.9 ± 2.8 -1.4 ± 3.5 6632 Fang et al. (1990) -9.7 ± 5.6 5218 Yingjisha Sediments 123.0 ± 23.0 38.5 / 76.4 70.4 / 212.1 6.6 / 10.8 23.5 33.1 ± 2.4 34.2 ± 2.8 -10.7 ± 5.7 6953 Chen et al. (1992) 123.0 ± 23.0 $35.0\ \pm\ 2.8$ Chen et al. (1992) 5219 Wuqia Sediments 39.5 / 75.0 66.3 / 226.6 9.0 / 15.9 18.0 33.9 ± 2.4 -15.8 ± 7.5 -17.0 ± 7.5 6955 5220 Tarim sediments 123.0 ± 23.0 36.3 / 78.8 72.3 / 206.6 9.8 / 15.9 24.4 31.4 ± 2.4 -7.0 ± 8.1 32.3 ± 2.8 -7.9 ± 8.2 8801 Zhu et al. (1998) 5221 S Tien Shan sediments 123.0 ± 23.0 399/733 78.3 / 211.7 47/71 30.8 34.0 ± 2.4 -3.2 ± 4.2 35.2 ± 2.8 -4.4 ± 4.4 7886 Bazhenov and Burtman (1990) 5222 S.Tien Shan sediments 123.0 ± 23.0 39.6 / 72.4 82.0 / 258.6 7.8 / 11.5 31.6 33.5 + 2.4 -1.9 ± 6.5 34.8 ± 2.8 -3.1 ± 6.6 7882 Bazhenov and Burtman (1990) 5223 S.Tien Shan sediments 123.0 ± 23.0 39.7 / 73.3 72.4 / 207.5 5.2 / 8.2 26.5 33.8 ± 2.4 -7.3 ± 4.6 35.0 ± 2.8 -8.4 ± 4.7 7883 Bazhenov and Burtman (1990) 129.5 ± 16.5 35.9 ± 2.4 5224 40.2 / 75.3 53.2 / 183.4 6.1 22.0 32.6 ± 2.8 -10.6 ± 5.4 -13.8 ± 5.2 8956 Gilder et al. (2003) Touyun Redbeds 5225 130.5 ± 30.5 41.8 / 82.0 65.0 / 209.0 9.0 24.5 35.5 ± 2.8 -11.0 ± 7.5 38.3 ± 2.4 -13.8 ± 7.5 1267 Li et al. (1988) Yageliemu and Kalaza Fm. 68.6 / 171.8 42.7 ± 6.6 -4.9 ± 7.0 5226 Kalaza Formation 153.5 ± 7.5 41.7 / 80.5 5.7 / 7.8 37.8 6633 Fang et al. (1990) 5227 Ketzilenur and Oiketai Fm. 168.5 ± 7.5 41.7 / 80.5 49.4 / 171.1 7.3 / 11.0 30.0 57.5 ± 6.7 -27.5 ± 7.9 6634 Fang et al. (1990) 5228 Tarim sediments 168.5 ± 7.5 41.8 / 83.0 49.9 / 173.0 7.3 / 11.0 30.7 58.2 ± 6.7 -27.6 ± 7.9 8803 Zhu et al. (1998) 168.5 ± 7.5 36.0 / 79.2 53.9 / 186.4 -32.3 ± 6.4 Zhu et al. (1998) 5229 Tarim sediments 4.4 / 7.6 19.5 51.8 ± 6.7 -8802 5.3.a: Kazakhstan block - igneous rocks - n=35.6 / 8.6 42.5 ± 3.3 -12.9 ± 5.2 32.9 ± 4.5 -3.3 ± 5.7 7274 5301 N.Tien Shan 38.0 ± 22.0 42.4 / 77.1 77.1 / 248.5 29.6 Thomas et al. (1993) 5302 78.8 / 234.2 -4.6 ± 2.5 Ferghana 123.0 ± 23.0 41.5 / 77.2 2.0 / 2.9 30.8 35.4 ± 2.4 36.6 ± 2.8 -5.8 ± 2.8 7304 Eroshkin (1991) 5303 Ferghana 133.0 ± 3.0 41.5 / 77.2 82.0 / 252.0 3.8 / 5.5 33.5 33.3 ± 2.8 0.2 ± 3.8 36.7 ± 2.4 -3.2 ± 3.6 6712 Abdullaev et al. (1993) 5.3.b Kazakhstan block - sediments - n=31 N.Ferghana sediments 41.1 / 71.7 83.0 / 238.0 2.0 / 2.8 40.3 ± 2.6 -6.1 ± 2.6 -7.8 ± 4.6 Abdullaev et al. (1993) 5304 1.0 ± 1.0 34.3 42.1 ± 5.4 6684 5305 Fergana Sediments Combined 12.5 + 10.540.5 / 70.7 73.0 / 263.0 4.0 / 7.0 23.8 40.2 + 2.0-16.4 + 3.637.5 + 2.5-13.7 + 3.84080 Khramov (1982) 5306 N.Ferghana sediments 14.5 ± 9.5 41.5 / 72.2 77.0 / 264.0 5.0 / 7.828.7 41.3 + 2.0 -12.6 ± 4.3 38.5 ± 2.5 -9.8 + 4.56693 Abdullaev et al. (1993) 74.0 / 292.0 5307 N.Ferghana sediments 14.5 ± 9.5 41.0 / 72.8 7.5 / 11.6 28.0 40.9 ± 2.0 -12.9 ± 6.2 38.0 ± 2.5 -10.0 ± 6.3 6688 Abdullaev et al. (1993) 1.0 / 1.4 38.1 ± 2.5 5308 Ispisarskaya suite 14.5 ± 9.5 41.1 / 72.2 84.0 / 261.0 35.2 40.9 ± 2.0 -5.8 ± 1.8 -2.9 ± 2.2 6689 Abdullaev et al. (1993) 5309 N.Ferghana sediments 14.5 ± 9.5 41.2 / 71.9 83.0 / 288.0 1.0 / 1.4 35.4 41.0 ± 2.0 -5.6 ± 1.8 38.2 ± 2.5 -2.8 ± 2.2 6690 Abdullaev et al. (1993) $43.2~\pm2.7$ 36.9 ± 3.1 5310 Dzhety-Ogyuz formation 19.5 ± 3.5 42.2 / 76.7 86.7 / 300.6 10.0 / 13.4 39.8 -3.4 ± 8.3 2.9 + 8.47271 Thomas et al. (1993) 22.5 ± 6.5 38.8 / 69.6 47.5 / 323.0 7.0 / 12.5 18.2 39.0 ± 3.8 -20.9 ± 6.0 32.8 ± 2.8 -14.6 ± 6.0 5311 Tajik Depression Sediments 7487 Thomas et al. (1994) 5312 Massaget formation 27.0 ± 11.0 41.3 / 71.3 62.6 / 290.8 5.9 / 10.3 18.6 41.3 ± 3.8 -22.7 ± 5.6 35.3 ± 2.8 -16.6 ± 5.2 7276 Thomas et al. (1993)

5313	Baldjuansk Group	27.5 ± 11.5	38.4 / 70.4	59.0 / 305.0	7.6 / 13.5	17.4	38.3 ± 3.8	-21.0 ± 6.8	32.4 ± 2.8	-15.0 ± 6.5	4170	Bazhenov et al. (1978)
5314	Pamirs Sandstones, siltstones	27.5 ± 11.5	37.9 / 70.2	36.9 / 330.9	4.1 / 7.5	15.5	37.8 ± 3.8	-22.3 ± 4.5	31.9 ± 2.8	-16.4 ± 4.0	7841	Bazhenov and Burtman (1990)
5315	Pamirs Sandstones, siltstones	27.5 ± 11.5	39.6 / 73.3	54.1 / 181.4	3.8 / 6.3	22.1	39.9 ± 3.8	-17.8 ± 4.3	33.5 ± 2.8	-11.4 ± 3.8	7840	Bazhenov and Burtman (1990)
5316	Shurysai and Sumsarsk Groups	29.0 ± 6.0	41.0 / 72.0	73.0 / 259.0	4.4 / 7.3	24.1	41.1 ± 3.8	-17.0 ± 4.7	34.9 ± 2.8	-10.8 ± 4.2	4138	Yeroshkin (1973)
5317	Pamirs Red sandstones	29.0 ± 6.0	38.8 / 70.4	66.1 / 296.0	4.3 / 7.3	20.6	38.7 ± 3.8	-18.1 ± 4.6	32.8 ± 2.8	-12.2 ± 4.1	7838	Bazhenov and Burtman (1990)
5318	Alagin Series	31.0 ± 8.0	38.9 / 71.0	59.1 / 318.7	5.3 / 8.8	22.8	38.9 ± 3.8	-16.1 ± 5.2	32.9 ± 2.8	-10.1 ± 4.8	7839	Bazhenov and Burtman (1990)
5319	Zaalaiskiv Range, Taiikistan	36.0 ± 20.0	39.4 / 73.3	53.0 / 179.0	4.3 / 7.2	22.4	39.0 ± 3.3	-16.6 ± 4.3	29.9 ± 4.5	-7.5 ± 5.0	4171	Bazhenov et al. (1978)
5320	Chaktal Basin Sediments	44.0 ± 21.0	41.7 / 71.5	71.3 / 274.8	6.8 / 11.0	24.2	41.0 ± 3.3	-16.8 ± 6.0	32.3 ± 4.5	-8.0 ± 6.5	7433	Thomas et al. (1993)
5321	Narvn redbeds	45.0 ± 11.0	41.2 / 74.7	69.0 / 241.5	7.6 / 12.9	20.6	40.6 ± 3.4	-20.0 ± 6.7	31.7 ± 4.5	-11.1 ± 7.1	7275	Thomas et al. (1993)
5322	Fergana Sediments Combined	82.5 ± 17.5	41.0 / 73.0	78.0 / 198.0	14.0 / 20.5	33.5	34.9 ± 5.9	-1.4 ± 12.2	32.3 ± 3.4	1.2 ± 11.5	4219	Khramov (1973)
5323	N.Pamirs sediments	97.0 + 3.0	37.9 / 70.2	42.9 / 333.6	5.3 / 9.1	20.6	34.7 + 6.7	-14.1 + 6.8	32.2 + 3.6	-11.6 + 5.1	7889	Bazhenov and Burtman (1990)
5324	Fergana Sediments Combined	105.5 + 40.5	41.0 / 73.0	86.0 / 228.0	4.1 / 5.7	37.4	36.9 + 4.2	0.5 + 4.7	35.5 + 3.6	1.8 + 4.4	4232	Khramov (1973)
5325	Zaalaiskiv Range Sediments	1060 ± 60	393 / 717	48.0 / 184.0	74/133	15.9	350 + 42	-191 + 68	337 + 36	-178 ± 66	4315	Bazhenov and Burtman (1982)
5326	Zaalaiskiy Range Sediments	120.0 ± 20.0	39.5 / 73.2	20.0 / 134.0	49/70	34.8	33.6 ± 2.4	13.1 ± 0.0 13 ± 4.4	348 ± 28	01 + 45	4319	Bazhenov and Burtman (1982)
5327	Darvaz Range Sediments	120.0 ± 20.0 120.0 ± 20.0	38.9 / 71.0	76.0 / 225.0	24/38	26.1	32.6 ± 2.4	-65 ± 27	339 ± 28	-78 ± 30	4318	Bazhenov and Burtman (1982)
5328	Peter I Range Sediments	120.0 ± 20.0 120.0 ± 20.0	39.0 / 71.1	82.0 / 217.0	47/68	32.3	32.0 ± 2.0 32.7 ± 2.4	-0.5 ± 4.2	340 ± 2.0	-18 ± 44	4320	Bazhenov and Burtman (1982)
5329	Ferghana Redbeds	120.0 ± 20.0 121.5 ± 24.5	40.4 / 73.2	747 / 2762	54/86	26.1	344 + 24	-83 ± 47	357 ± 28	-95 ± 49	7239	Bazhenov (1993)
5330	N Pamirs sediments	121.0 ± 21.0 123.0 ± 23.0	38.9 / 71.1	85.0 / 221.3	24/34	34.5	326 ± 24	19 ± 27	33.9 ± 2.0	0.6 ± 3.0	7884	Bazhenov and Burtman (1990)
5331	N Pamirs sediments	123.0 ± 23.0 123.0 ± 23.0	39.6 / 73.4	20.3 / 138.5	91/135	31.7	32.0 ± 2.1 33.7 ± 2.4	-20 ± 75	34.9 ± 2.0 34.9 ± 2.8	-32 + 76	7885	Bazhenov and Burtman (1990)
5332	N Pamirs sediments	123.0 ± 23.0 123.0 ± 23.0	37.9 / 70.2	49.5 / 336.6	27/43	25.8	315 ± 24	-2.0 ± 7.5 -57 + 29	378 ± 2.0	-7.0 ± 3.1	7887	Bazhenov and Burtman (1990)
5333	N Pamirs sediments	123.0 ± 23.0 123.0 ± 23.0	38.0 / 71.0	753 / 2215	2.7 7 4.5	25.8	31.5 ± 2.4 32.6 ± 2.4	-5.7 ± 2.7	32.0 ± 2.0 33.0 ± 2.8	-7.0 ± 3.1 81 ± 20	7888	Bazhenov and Burtman (1990)
5334	Tajik Basin Redbeds	125.0 ± 25.0 126.0 ± 14.0	38.6 / 68.8	82.0 / 323.0	40/60	36.0	20.8 ± 2.8	-6.0 ± 2.7 -6.2 ± 3.0	33.5 ± 2.0 33.5 ± 2.4	26 ± 37	6342	Pozzi and Feinberg (1991)
5551	rujik Bushi Redbedis	120.0 ± 11.0	50.0 / 00.0	02.0 / 525.0	1.0 7 0.0	50.0	29.0 1 2.0	0.2 ± 5.5	55.5 ± 2.1	2.0 ± 5.7	0512	rozzi alid reliberg (1991)
54a	· Middle Fast Asia blocks	ioneous rou	cks n-1									
5401	Iron	205 + 150	222/621	72.0 / 210.0	60/122	16.5	212 . 29	148 + 61	24.1 + 4.5	76 . 66	2202	K mutual K (1076)
51h	Middle East Asia blocks	JAJ ± 15.0	n = 16	12.0 / 219.0	0.97 12.5	10.5	51.5 ± 5.6	-14.0 ± 0.1	24.1 ± 4.5	-7.0 ± 0.0	2362	Riulislek, R. (1970)
5.4.0	. Midule East Asia blocks	- seatments -	-n=40	(0.0.1.001.0	61 / 10 5	20.0	27.7 2.0	16.0 5.1		15.0 5.0	2070	1 (1071)
5402	Turan	11.0 ± 3.0	39.0 / 58.0	69.0 / 204.0	6.1 / 10.5	20.9	37.7 ± 2.0	-16.8 ± 5.1	36.2 ± 2.5	-15.3 ± 5.3	3978	Mammedov (1971)
5403	Turan	12.5 ± 10.5	38.0 / 58.5	76.0 / 238.0	7.4 / 12.2	24.0	36.8 ± 2.0	-12.8 ± 6.1	35.2 ± 2.5	-11.2 ± 6.2	3975	Mammedov (1971)
5404	Tajikistan	14.0 ± 9.0	38.0 / 69.1	83.0 / 291.0	3.0 / 4.0	32.7	37.6 ± 2.0	-4.9 ± 2.9	35.0 ± 2.5	-2.4 ± 3.1	4087	Khramov (1970)
5405	Turan	14.0 ± 9.0	36.0 / 62.0	82.0 / 140.0	9.5 / 13.1	37.3	35.0 ± 2.0	2.2 ± 7.8	33.1 ± 2.5	4.2 ± 7.9	3979	Mammedov (1971)
5406	Turan	14.0 ± 9.0	40.5 / 53.5	80.0 / 203.0	3.// 5.4	31.7	38.9 ± 2.0	-1.1 ± 3.4	37.7 ± 2.5	-6.0 ± 3.6	3977	Mammedov (1971)
5407	Tajikistan	19.5 ± 3.5	38.0 / 68.6	67.0 / 282.0	9.5 / 1/.0	18.0	38.2 ± 2.7	-20.1 ± 7.9	32.7 ± 3.1	-14.7 ± 8.0	7489	Thomas et al. (1994)
5408	Tajikistan	19.5 ± 3.5	38.0 / 69.0	42.0 / 328.5	6.0 / 10.0	17.8	38.2 ± 2.7	-20.4 ± 5.3	32.7 ± 3.1	-15.0 ± 5.4	/488	Thomas et al. (1994)
5409	Tajikistan	19.5 ± 3.5	37.7768.2	60.0 / 299.0	1.5 / 13.5	16.2	37.8 ± 2.7	-21.6 ± 6.4	32.4 ± 3.1	-16.2 ± 0.5	7490	Thomas et al. (1994)
5410	Tajikistan	19.5 ± 3.5	38.1 / 6/.4	69.0 / 2/7.5	8.5 / 15.0	19.4	38.1 ± 2.7	$-18./\pm/.1$	32.9 ± 3.1	-13.5 ± 7.2	/491	Thomas et al. (1994)
5411	Tajikistan	25.5 ± 9.5	38.2 / 66.3	67.4 / 237.7	5.9 / 10./	15.8	37.6 ± 3.8	-21.8 ± 5.6	32.3 ± 2.8	-16.4 ± 5.2	8091	Chauvin et al. (1996)
5412	Tajikistan	27.5 ± 11.5	38.0 / /0.1	37.0 / 331.0	4.2 / 1./	15.7	37.9 ± 3.8	-22.2 ± 4.5	32.0 ± 2.8	-16.3 ± 4.0	4168	Bazhenov et al. (1978)
5413	Tajikistan	27.5 ± 11.5	37.7768.1	43.5 / 326.0	7.0 / 12.5	17.5	37.4 ± 3.8	-19.9 ± 6.4	31.7 ± 2.8	-14.2 ± 6.0	/492	Thomas et al. (1994)
5414	Turan	41.0 ± 15.0	38.0 / 59.0	66.0 / 226.0	3.0 / 5.4	14.5	35.5 ± 3.3	-21.0 ± 3.6	29.0 ± 4.5	-14.5 ± 4.3	4129	Mammedov and Nazarov (19/1)
5415	Turan	60.5 ± 4.5	38.0 / 56.0	77.0 / 246.0	12.5 / 20.0	25.2	31.5 ± 2.9	-6.3 ± 10.3	30.0 ± 4.1	-4.9 ± 10.5	4135	Nazarov (1971)
5416	Turan	62.5 ± 2.5	36.5 / 60.5	/5.0 / 204.0	6.6 / 10.9	24.0	30.5 ± 2.9	-0.5 ± 5.8	28.5 ± 4.1	-4.4 ± 6.2	4134	Mammedov and Nazarov (1971)
5417	Kopet Dag	69.5 ± 13.5	36.9 / 60.4	73.5 / 181.0	6.1 / 9.5	27.4	28.9 ± 2.9	-1.5 ± 5.5	28.9 ± 4.1	-1.5 ± 5.9	7854	Bazhenov and Burtman (1990)
5418	Turkmenistan	72.5 ± 16.5	38.2 / 56.0	74.0 / 193.0	2.8 / 2.8	25.9	29.8 ± 3.2	-3.9 ± 3.4	28.3 ± 3.4	-2.4 ± 3.5	1520	Bazhenov,M.L.
5419	Turkmenistan	72.5 ± 16.5	38.5 / 56.5	74.0 / 193.0	1.6 / 2.5	26.2	30.1 ± 3.2	-3.9 ± 2.9	28.6 ± 3.4	-2.4 ± 2.9	4302	Bazhenov et al. (1978)
5420	Kopet Dag	73.5 ± 17.5	37.8 / 58.8	70.1 / 183.6	11.1 / 17.8	25.0	29.6 ± 3.2	-4.6 ± 9.2	28.0 ± 3.4	-3.0 ± 9.3	7853	Bazhenov and Burtman (1990)
5421	Kopet Dag	73.5 ± 17.5	38.5 / 57.0	74.1 / 192.0	4.5 / 4.5	26.6	30.2 ± 3.2	-3.6 ± 4.4	28.6 ± 3.4	-2.1 ± 4.5	7855	Bazhenov and Burtman (1990)
5422	Kopet Dag	$/3.5 \pm 1/.5$	39.2 / 55.8	/5.// 205.5	4.2 / 6.6	26.6	30.8 ± 3.2	-4.2 ± 4.2	29.3 ± 3.4	-2.7 ± 4.3	7852	Bazhenov and Burtman (1990)
5423	Kopet Dag	73.5 ± 17.5	39.1 / 55.7	77.2 / 202.0	4.5 / 7.0	28.2	30.7 ± 3.2	-2.5 ± 4.4	29.2 ± 3.4	-1.0 ± 4.5	7851	Bazhenov and Burtman (1990)
5424	Kopet Dag	78.0 ± 22.0	39.2 / 55.6	72.2 / 186.4	4.1 / 6.5	26.6	31.6 ± 5.9	-5.1 ± 5.7	29.3 ± 3.4	-2.7 ± 4.2	7850	Bazhenov and Burtman (1990)
5425	Turkmenistan	78.5 ± 7.5	40.4 / 54.8	73.8 / 201.2	4.2 / 6.7	26.4	32.7 ± 5.9	-6.3 ± 5.8	30.3 ± 3.4	-3.9 ± 4.3	9218	Guzhikov et al. (2003)
5426	Kopet Dag	79.5 ± 14.5	38.9 / 56.2	75.1 / 199.1	5.2 / 8.2	26.6	31.3 ± 5.9	-4.8 ± 6.3	28.9 ± 3.4	-2.4 ± 5.0	7856	Bazhenov and Burtman (1990)
5427	Turan	84.5 ± 1.5	40.0 / 54.0	80.0 / 162.0	2.0 / 3.0	36.3	32.3 ± 5.9	4.0 ± 5.0	28.6 ± 3.0	1.1 ± 2.9	4298	Khramov (1982)
5428	Russia	95.0 ± 5.0	42.3 / 47.4	72.0 / 141.0	7.6 / 10.3	38.7	36.4 ± 5.2	2.3 ± 8.1	30.5 ± 3.0	8.2 ± 6.5	6700	Fomin (1993)
5429	Turkmenistan	96.5 ± 28.5	38.9 / 56.3	/5.0 / 145.3	6.//9.2	37.6	34.0 ± 6.7	3.6 ± 7.6	32.1 ± 3.0	5.5 ± 6.1	/8/5	Baznenov and Burtman (1990)
5430	Kopet Dag	103.0 ± 9.0	38.2 / 56.1	/3.9 / 164.5	0.1 / 9.1	31./	53.3 ± 6.7	-1.0 ± 7.2	31.4 ± 3.6	0.3 ± 5.7	/8/8	Baznenov and Burtman (1990)
5431	Kopet Dag	103.0 ± 9.0	38.2 / 55.4	/0.8 / 164.7	0.//10.2	29.9	33.2 ± 6.7	$-3.3 \pm /.0$	31.3 ± 3.6	-1.4 ± 0.1	/8/6	Baznenov and Burtman (1990)
5452	Kopet Dag	103.0 ± 9.0	31.8/39.1	84.2 / 181.3	126/170	34.0 45.7	33.2 ± 0.7	1.3 ± 1.8	31.2 ± 3.0	3.4 ± 0.3	/881	Bashanay and Burtman (1990)
3433	Koper Dag	103.0 ± 9.0	30.2/31.1	19.4 / 99.2	13.0 / 17.0	43.7	33.4 ± 0.7	12.3 ± 12.1	31.3 ± 3.0	14.2 ± 11.3	1019	Dazhenov and Burtinan (1990)

5434	Kopet Dag	106.0 ± 6.0	38.2 / 56.1	59.6 / 113.6	10.2 / 12.4	48.3	31.7 ± 6.7	16.6 ± 8.8	31.4 ± 3.6	16.9 ± 8.7	7877	Bazhenov and Burtman (1990)
5435	Kopet Dag	106.0 ± 6.0	38.1 / 57.9	86.0 / 138.1	10.2 / 13.9	38.7	31.9 ± 6.7	6.8 ± 8.8	31.4 ± 3.6	7.3 ± 8.7	7880	Bazhenov and Burtman (1990)
5436	Turkmenistan	109.5 ± 15.5	38.5 / 56.5	74.0 / 145.0	4.1 / 5.7	37.2	32.1 ± 4.2	5.1 ± 4.7	31.5 ± 3.7	5.6 ± 4.4	4314	Bazhenov (1986)
5437	Turkmenistan	109.5 ± 15.5	38.2 / 56.0	75.0 / 151.0	4.8 / 4.8	35.4	31.7 ± 4.2	3.7 ± 5.1	31.2 ± 3.7	4.2 ± 4.8	1519	Bazhenov (1987)
5438	Kopet Dag	109.5 ± 15.5	39.1 / 55.3	65.7 / 146.7	8.9 / 12.8	34.5	32.5 ± 4.2	2.0 ± 7.9	32.0 ± 3.7	2.5 ± 7.7	7873	Bazhenov and Burtman (1990)
5439	Kopet Dag	109.5 + 15.5	39.0 / 55.4	64.0 / 130.3	9.3 / 12.2	40.9	32.4 + 4.2	8.4 + 8.2	31.9 + 3.7	8.9 + 8.0	7874	Bazhenov and Burtman (1990)
5440	Tajikistan	112.5 + 12.5	38.0 / 70.1	50.0 / 333.0	38/61	24.1	335 + 42	-93 + 45	32.3 + 3.7	-82 + 42	4316	Bazhenov and Burtman (1982)
5441	Tajikistan	120.0 ± 20.0	381/669	804 / 2139	2.6/4.0	29.9	312 + 24	-13 + 28	32.6 ± 2.8	-2.7 + 3.1	7165	Bazhenov et al. (1994)
5442	Tajikistan	120.0 ± 20.0 120.0 ± 20.0	38.1 / 68.7	63.6 / 257.5	96/181	11.9	31.2 ± 2.1 31.5 ± 2.4	-195 ± 79	32.0 ± 2.0 32.8 ± 2.8	-20.9 ± 8.0	7162	Bazhenov et al. (1994) Bazhenov et al. (1994)
5443	Tajikistan	120.0 ± 20.0 120.0 ± 20.0	38.1 / 66.9	718 / 2287	41/70	20.7	31.2 ± 2.4 31.2 ± 2.4	-10.5 ± 7.5	32.6 ± 2.8	-120.9 ± 0.0	7164	Bazhenov et al. (1994) Bazhenov et al. (1994)
5444	Pussio	120.0 ± 20.0 133.0 ± 3.0	42.5 / 47.0	70.0 / 179.0	74/115	20.7	31.2 ± 2.4 30.3 ± 2.8	-10.5 ± 5.0 26 ± 63	353 ± 2.0	-12.0 ± 4.0 75 ± 62	6713	Guzhikov (1003)
5445	Turon	153.0 ± 3.0 164.0 ± 3.0	42.57 47.0	74.0 / 109.0	27/33	40.1	30.3 ± 2.0 30.3 ± 5.0	-2.0 ± 0.3	55.5 ± 2.4	-7.5 ± 0.2	4355	Nazarov (1993)
5445	Turan	104.0 ± 3.0	41.0 / 56.0	74.0 / 109.0	2.1 1 3.3	49.1	39.3 ± 3.0	9.0 ± 4.5			4333	Nazarov (1971)
5440	Turan	164.0 ± 3.0	41.0 / 56.0	74.0 / 109.0	2.1 / 3.3	49.1	39.3 ± 5.0	9.8 ± 4.5			4355	Nazarov $(19/1)$
5447	Turan	108.5 ± 7.5	40.0 / 54.0	/6.0 / 225.0	2.4 / 3.8	20.1	$4/.9 \pm 6.7$	-21.7 ± 5.7			4338	Nazarov (1971)
6 Ind	dia											
6 a · 1	India - igneous rocks - n–	41										
6001	Himalayan Layaagranita-	20.0 + 5.0	280/860	695/1625	20/20	20.5	20.0 + 2.7	04 + 27	22 8 1 2 1	77 . 20	0102	Peaketta at al. (1004)
6001	Himalayan Leucogranites	20.0 ± 3.0	28.0 / 80.0	08.5 / 105.5	2.0 / 2.9	30.5	50.0 ± 2.7	0.4 ± 2.7	22.6 ± 5.1	7.7 ± 5.0	6165	Kochette et al. (1994)
6002	Ladakh Intrusives	48.0 ± 2.0	34.6 / /6.1	62.7 / 249.7	2.0 / 3.9	7.4	34.4 ± 3.4	-26.9 ± 3.2	25.1 ± 5.9	$-1/./ \pm 3.9$	613	Klootwijk et al. (1979)
6003	Ladakh Intrusives	48.0 ± 2.0	34.6 / 76.1	64.9 / 268.0	4.7 / 8.9	9.9	34.4 ± 3.4	-24.4 ± 4.6	25.1 ± 5.9	-15.2 ± 5.2	614	Klootwijk et al. (1979)
6004	Deccan Traps, Aurangabad	62.5 ± 2.5	19.8 / 76.5	33.0 / 287.0	5.0 / 7.3	-29.7					2967	Athavale and Anjaneyulu (1972)
6005	Deccan Traps, 6 Sections	62.5 ± 2.5	18.5 / 76.5	34.8 / 259.7	7.2 / 7.2	-36.6					2873	Wensink (1973)
6006	Deccan Traps, 11 Sections comb	62.5 ± 2.5	18.5 / 76.5	34.3 / 261.4	3.9 / 3.9	-37.0					2874	Wensink (1973)
6007	Goa Dykes	62.5 ± 2.5	15.4 / 73.9	41.2 / -78.1	9.8 / 9.8	-27.7					8926	Patil and Rao (2002)
6008	Mount Girnar Volcanics	64.0 ± 2.0	21.5 / 70.5	37.1 / 282.4	5.0 / 7.6	-24.1					2513	Verma and Mital (1972)
6009	Mt.Pavagarh Traps	64.0 ± 4.0	22.5 / 73.5	39.2 / 285.6	4.0 / 6.8	-21.4					2755	Verma and Mital (1974)
6010	Deccan Traps, Jabalpur to Dindc	65.0 ± 5.0	23.2 / 80.5	38.3 / 287.3	5.3 / 8.3	-23.6					2724	Verma et al. (1973)
6011	Deccan traps, Dhar region	65.5 ± 2.5	22.4 / 75.4	29.0 / 293.0	5.3 / 8.3	-27.1					67	Rao and Bhalla (1981)
6012	Deccan traps, Kutch Rift	65.5 ± 2.5	23.5 / 71.0	33.7 / 278.8	5.8 / 9.2	-27.0					-	Paul et al. (2008)
6013	Deccan Traps, Amarkantak	65.5 + 2.5	22.7 / 81.8	33.3 / 295.0	3.9 / 6.3	-25.7					3017	Athavale (1970)
6014	Deccan Traps, Western Ghats	65.5 + 2.5	17.8 / 73.8	34.5 / 283.6	3.4 / 5.1	-30.5					2998	Wensink and Klootwijk (1971
6015	Deccan Traps, Hestern Ghas	65.5 ± 2.5	199/759	39.0 / 279.0	30/50	-27.3					2987	Pal and Bhimasankaram (1971)
6016	Deccan Traps, Junia Deccan Traps, Malwa Plateau	65.5 ± 2.5 65.5 ± 2.5	22.5 / 75.8	363 / 2704	114/174	-29.6					2975	Pal et al. (1971)
6017	Deccan Traps, Mahabaleshwar	65.5 ± 2.5 65.5 ± 2.5	179/736	40.0 / 276.0	74/74	-28.5			_		2693	Kono et al. (1972)
6018	Deccan Traps, Manabaleshwar	65.5 ± 2.5	150 / 7/3	41.4 / 250.0	120 / 120	32.5					2693	Kono et al. (1972)
6010	Decean Traps, Antoon	65.5 ± 2.5	10.0 / 76.5	226 / 200 8	28/50	-32.5					2092	Courtillate tel (1972)
6020	Deccall Haps	03.3 ± 2.3	20.0 / 70.5	32.0 / 290.8	20/60	-20.0					2015	Vorme and Pulleich (1971)
6021	Deccal Traps, Jabaipui	05.5 ± 2.5	23.1 / 60.6	46.0 / 280.0	20/20	-13.4					2913	M-Elbinny (1068)
6021	Deccan Iraps, Combined Result	65.5 ± 2.5	18.0 / 75.0	33.0 / 282.0	3.0 / 3.0	-32.8					3475	McEininny (1968)
6022	Deccan Iraps Overall Result pre	65.5 ± 2.5	20.0 / 75.0	36.9 / 281.3	2.4 / 2.4	-27.9					3772	Wensink (1973)
6023	Deccan Traps Overall Result 199	65.5 ± 2.5	20.0 / 75.0	36.9 / 281.3	2.4 / 2.4	-27.9					5728	Vandamme et al. (1991)
6024	Deccan Traps - Nagpur to Bomb	65.5 ± 2.5	20.0 / 75.0	38.4 / 282.4	6.1 / 6.1	-26.2					5727	Vandamme et al. (1991)
6025	Deccan traps	65.5 ± 1.5	20.1 / 70.1	43.0 / 286.6	8.7 / 15.3	-18.5					8593	Courtillot et al. (2000)
6026	Sonhat Sill	65.5 ± 2.5	23.0 / 82.0	37.0 / 285.0	2.1 / 3.2	-26.2					2892	Klootwijk (1974)
6027	Deccan Dyke Swarms	65.5 ± 2.5	21.5 / 74.3	37.2 / 280.5	9.7 / 9.7	-26.3					8106	Prasad et al. (1996)
6028	Dykes, Mysore State	65.5 ± 2.5	13.3 / 76.0	43.0 / 258.0	23.0 / 23.0	-33.7					2934	Hasnain and Qureshy (1971)
6029	Central Kerala Dykes	69.0 ± 1.0	9.7 / 76.7	34.6 / 274.0	11.8 / 15.5	-42.8					7150	Radhakrishna et al. (1994)
6030	Central Kerala Gabbro Dyke	81.0 ± 3.0	9.7 / 76.7	21.6 / 299.4	12.7 / 17.5	-37.7					7151	Radhakrishna et al. (1994)
6031	Gondwana Dykes	85.0 ± 20.0	23.8 / 85.0	33.5 / 290.0	5.0 / 5.0	-28.0					3034	Athavale and Verma (1970)
6032	Rajmahal Traps combined	116.0 ± 1.0	24.5 / 87.5	7.5 / 296.5	3.0 / 3.5	-47.3					3000	Klootwijk (1971)
6033	Rajmahal Traps	116.0 ± 1.0	24.6 / 87.7	7.0 / 297.0	4.5 / 6.0	-47.4					2999	Klootwijk (1971)
6034	Raimahal Traps	116.0 ± 1.0	24.7 / 87.6	3.0 / 298.0	6.0 / 6.0	-49.5					3045	McDougall and McElhinny (1970)
6035	Raimahal Traps	116.0 ± 1.0	24.5 / 87.5	12.0 / 294.0	4.0 / 5.0	-45.3					3487	Radhakrishnamurty (1963)
6036	Raimahal Trans	1160 ± 10	25.0 / 87.4	93/3048	92/124	-40.0					7744	Das et al. (1996)
6037	Sylhet Traps	1165 ± 0.5	25.0 / 91.0	36.0 / 147.0	18.0 / 24.0	41.2					3582	Athavale et al. (1963)
6038	Sylhet Traps	1165 ± 0.5	25.0 / 91.0	16.0 / 301.0	80/110	-39.6	_			_	3581	Athavale et al. (1963)
6030	Raimahal Trans	1170 ± 10.5	22.07 / 87 7	94 / 2066	30/37	-45.8	-				8107	Poornachundra Rao and Mallikhariuna Rao (1006)
6040	Paimahal Trap	117.0 ± 1.0 127.5 ± 2.5	245/880	0.0 / 30/2	87/109	16.6	-				QQ1/	Sokoj et al. (1007)
0040	кајшана нар	141.J ± 4.J	24.0 / 00.0	0.9/ 304.5	0.// 10.8	-40.0					0014	Sakai et al. (1997)

6041	Aulis Volcanics	145.5 ± 15.5	27.8 / 83.4	27.0 / 272.0	18.0 / 26.0	-34.6					6982	Gautam (1989)
6.b: I	India - sediments - n=47											
6042	Upper Siwalik sediments, Pezu	1.0 ± 1.0	32.3 / 70.7	73.6 / 255.5	0.0 / 0.0	15.9	31.5 ± 2.6	-15.6 ± 2.1	33.3 ± 5.4	-17.3 ± 4.3	831	Khan and Opdyke (1981)
6043	Upper Siwalik sediments, Bain I	1.5 ± 1.5	32.5 / 70.6	75.9 / 247.5	0.0 / 0.0	18.4	31.7 ± 2.6	-13.3 ± 2.1	33.5 ± 5.4	-15.1 ± 4.3	830	Khan and Opdyke (1981)
6044	Siwalik Group	1.5 ± 1.5	32.4 / 70.9	76.3 / 269.1	2.9 / 5.0	19.3	31.6 ± 2.6	-12.3 ± 3.1	33.4 ± 5.4	-14.1 ± 4.9	404	Khan et al. (1988)
6045	Upper Siwalik sediments	2.0 ± 1.0	33.5 / 73.1	66.9 / 295.7	2.4 / 4.4	15.5	32.9 ± 2.6	-17.4 ± 2.8	34.5 ± 5.4	-19.0 ± 4.7	600	Rendell et al. (1987)
6046	Upper Siwalik Subgroup	3.0 ± 2.0	33.0 / 73.0	77.6 / 281.8	3.9 / 6.6	22.0	32.3 ± 2.6	-10.4 ± 3.7	34.0 ± 5.4	-12.0 ± 5.3	1135	Opdyke et al. (1979)
6047	Surai Khola Siwaliks	7.0 ± 6.0	28.0 / 82.0	72.2 / 267.5	1.1 / 2.1	10.3	28.7 ± 2.0	-18.4 ± 1.8	25.0 ± 5.4	-14.7 ± 2.2	6129	Appel et al. (1991)
6048	Middle Siwalik sediments	7.5 ± 6.5	32.8 / 73.2	57.4 / 326.6	3.1 / 5.4	19.1	32.7 ± 2.0	-13.7 ± 3.0	29.8 ± 5.4	-10.7 ± 3.2	1136	Opdyke et al. (1982)
6049	Middle Siwalik sediments	7.5 ± 6.5	32.8 / 72.5	75.8 / 279.9	2.9 / 5.0	20.0	32.7 ± 2.0	-12.7 ± 2.8	29.8 ± 5.4	-9.8 ± 3.1	1137	Opdyke et al. (1982)
6050	Siwalik Group	8.5 ± 2.5	27.7 / 83.5	66.8 / 312.0	2.7 / 5.1	11.3	28.5 ± 2.0	-17.2 ± 2.7	24.7 ± 2.5	-13.4 ± 2.9	7095	Gautam and Appel (1994)
6051	Siwalik Group	10.5 ± 2.5	28.9 / 80.7	65.6 / 297.6	2.0 / 3.8	8.7	29.5 ± 2.0	-20.8 ± 2.3	25.9 ± 2.5	-17.2 ± 2.6	8557	Ojha et al. (2000)
6052	Siwalik Group	10.5 ± 5.5	28.7 / 81.3	69.5 / 290.5	1.5 / 2.9	10.5	29.3 ± 2.0	-18.8 ± 2.0	25.7 ± 2.5	-15.2 ± 2.3	8537	Gautam and Fujiwara (2000)
6053	Chinji and Nagri Formations, Siv	13.0 ± 5.0	32.8 / 72.5	70.4 / 280.9	9.5 / 17.4	15.2	32.7 ± 2.0	-17.5 ± 7.8	29.8 ± 2.5	-14.6 ± 7.9	1142	Johnson et al. (1985)
6054	Krol Belt sedimentary sequence	13.5 ± 11.5	30.2 / 78.4	73.0 / 196.0	5.0 / 8.5	21.3	30.6 ± 2.0	-9.2 ± 4.3	27.2 ± 2.5	-5.9 ± 4.5	773	Klootwijk et al. (1982)
6055	Lower Siwaliks	14.5 ± 3.5	32.8 / 73.0	72.1 / 248.7	10.3 / 19.0	14.9	32.7 ± 2.0	-17.8 ± 8.4	29.8 ± 2.5	-14.9 ± 8.5	2853	Wensink (1972)
6056	Habib Rahi Limestone	15.0 ± 10.0	30.0 / 70.1	85.7 / 25.3	8.8 / 12.8	33.0	30.4 ± 2.0	2.6 ± 7.4	27.0 ± 2.5	6.0 ± 7.3	219	Klootwijk et al. (1981)
6057	Lower upper Murree Formation	20.0 ± 5.0	33.1 / 74.3	71.0 / 203.5	3.5 / 6.0	20.1	33.9 ± 2.7	-13.8 ± 3.5	27.8 ± 3.1	-7.7 ± 3.7	566	Klootwijk et al. (1986)
6058	Basal Murree Formation	20.0 ± 5.0	34.3 / 73.9	56.5 / 335.0	5.0 / 8.5	23.5	35.0 ± 2.7	-11.5 ± 4.5	29.0 ± 3.1	-5.5 ± 4.7	569	Klootwijk et al. (1986)
6059	Basal Kalakot Formation	20.0 ± 5.0	34.3 / 73.9	75.0 / 246.0	8.0 / 14.0	19.4	35.0 ± 2.7	-15.6 ± 6.8	29.0 ± 3.1	-9.6 ± 6.9	572	Klootwijk et al. (1986)
6060	Arnas Limestone, Upper Kalako	20.0 ± 5.0	34.3 / 73.9	50.0 / 324.0	6.5 / 12.5	14.5	35.0 ± 2.7	-20.5 ± 5.6	29.0 ± 3.1	-14.5 ± 5.8	570	Klootwijk et al. (1986)
6061	Lower Murree Formation	22.5 ± 6.5	33.1 / 74.3	66.5 / 186.0	3.0 / 5.5	22.2	33.9 ± 2.7	-11.7 ± 3.2	27.0 ± 3.1	-4.9 ± 3.3	567	Klootwijk et al. (1986)
6062	Lower upper Murree Formation	39.5 ± 10.5	33.1 / 74.3	59.0 / 202.0	2.0 / 3.5	11.8	33.0 ± 3.3	-21.2 ± 3.1	23.6 ± 4.5	-11.8 ± 3.9	565	Klootwijk et al. (1986)
6063	Basal Murree Formation	44.0 ± 6.0	34.3 / 73.9	35.0 / 325.0	2.0 / 4.0	6.0	34.1 ± 3.3	-28.1 ± 3.1	24.8 ± 4.5	-18.9 ± 3.9	568	Klootwijk et al. (1986)
6064	Habib Rahi Limestone	44.5 ± 4.5	30.0 / 70.1	61.5 / 200.7	7.5 / 14.4	9.8	29.3 ± 3.3	-19.5 ± 6.6	20.6 ± 4.5	-10.8 ± 7.0	218	Klootwijk et al. (1981)
6065	Spintangi Limestone	47.0 ± 9.0	29.9 / 66.7	-17.0 / 103.8	10.1 / 15.1	31.0	28.3 ± 3.4	2.7 ± 8.5	20.6 ± 5.9	7.7 ± 8.8	235	Klootwijk et al. (1981)
6066	Murree Formation	49.0 ± 7.0	34.2 / 73.6	57.3 / 209.2	5.0 / 9.6	8.8	33.6 ± 3.4	-24.7 ± 4.8	26.1 ± 5.9	-17.2 ± 6.2	7013	Bossart et al. (1989)
6067	Basal Kalakot Formation	53.0 ± 3.0	34.3 / 73.9	31.0 / 318.5	4.5 / 8.5	-0.8					571	Klootwijk et al. (1986)
6068	Sakesar Limestone	53.0 ± 3.0	32.7 / 71.8	55.0 / 235.0	4.5 / 9.5	-1.1					579	Klootwijk et al. (1986)
6069	Sanjawi Limestone	55.0 ± 5.0	30.3 / 68.4	59.4 / 201.8	7.7 / 14.9	7.6					225	Klootwijk et al. (1981)
6070	Brewery Limestone (top)	58.5 ± 2.5	30.2 / 67.0	52.7 / 298.5	11.1 / 22.1	4.2					228	Klootwijk et al. (1981)
6071	Zongpu Formation	59.5 ± 3.5	28.3 / 88.5	65.4 / 2//.6	3.8 / /.6	4.0					8046	Patzelt et al. (1996)
6072	Lockhart Limestone	60.5 ± 4.5	32.7 / 71.8	48.5 / 224.0	4.0 / 8.0	-5.1					578	Klootwijk et al. (1986)
6073	Lockhart Limestone	60.5 ± 4.5	33.0 / /1.4	44.0 / 287.0	4.5 / 9.0	-6.4					576	Klootwijk et al. (1986)
6074	Hangu Formation	62.5 ± 2.5	32.7 / 71.8	58.0 / 265.0	/.0 / 13.5	1.4					5//	Klootwijk et al. (1986)
6075	Member II, Jidula Formation	64.0 ± 4.0	28.3 / 88.5	08.1 / 2/0.2	4.8 / 9.4	0.0					8044	Patzelt et al. (1996)
6077	Member III, Gamba Formation	64.0 ± 4.0	28.3 / 88.5	/1.0 / 258.8	4.3 / 8.3	9.5					8045	Patzelt et al. (1996)
6079	Zongshan Formation	08.0 ± 3.0	20.5 / 00.5	33.8 / 201.4	4.4 / 8.0	-3.7					0045 002	Faizen et al. (1996)
6070	Grande Crawn	104.0 ± 9.0	30.0 / 70.1	4.4 / 269.9	5.0 / 4.0	-30.7					225	$\mathbf{R} = \mathbf{R} + $
6020	Bashun and Drash Esperations	104.0 ± 4.0 105.0 ± 20.0	20.5 / 00.5	50/2/70	5.7 / 9.5	-22.7					8450	Zaman and Tanii (1996)
6081	Barh Group Limostones	105.0 ± 20.0	33.9 / 72.0	-3.0 / 34/.0	3.5 / 10.0	20.6					220	Klootwijk et al. (1981)
6083	Fair Gloup Linestones	103.3 ± 19.3	12 5 / 80.0	14./ / 200.9	3.0/4.0	-29.0					2076	$M_{12} = 1 + 1 (1070)$
6082	Burit Formation	110.0 ± 23.0 112.5 ± 12.5	25 5 / 71 9	20.1 / 293.0	4.0 / 0.5	-39.0					2070	Zemen and Terii (1900)
6084	Timunati Sandatanaa	112.3 ± 12.3 118.5 ± 6.5	16 9 / 91 2	31.1 / 312.3	0.9/1/.0	27.2					2402	Varma and Pullaiah (1967)
6085	Dzong Sandstone	1210 ± 30	10.0 / 01.2	12 0 / 280.0	+.9 / 0.0	-37.5					652	Klootwijk and Bingham (1980)
6086	Kaghani Sandstone	121.0 ± 5.0 120.5 ± 5.5	20.0 / 05.0	17.0 / 209.0	1/1 / 10/6	367					653	Klootwijk and Bingham (1980)
6087	Chiltan Limestone	127.5 ± 3.5 157.0 ± 4.0	20.0 / 67.0	05/3118	73/123	-21.3					232	Klootwijk et al. (1981)
6088	Loralai Limestone	157.0 ± 4.0 168.5 ± 7.5	30.3 / 68.4	310/2716	61/99	-21.5					232	Klootwijk et al. (1981)
0000	Loraial Lillestone	100.J ± 1.J	50.57 00.4	51.07 271.0	0.1 / 7.7	-24.2					221	Kiootwijk et al. (1901)

Notes: Id#: identification number used in the purpose of the present study; references listed in Annex B

References to Table A1.

- Abdullaev, K.A. et al., Paleomagnetic directions and paleomagnetic pole positions: Data for the former USSR, *Catalogue VNIGRI Institute*, Issue 8, St.Petersburg, Russia (unpublished), 1993.
- Abrajevitch, A.V., Ali, J.R., Aitchison, J.C., Badengzhu, Davis, A.M., Liu, J., Ziabrev, S.V., Neotethys and the India-Asia collision: Insights from a paleomagnetic study of the Dazhuqu ophiolite, southern Tibet, *Earth Planet. Sci. Letters*, 233, 87-102, 2005.
- Achache, J., Courtillot, V., Zhou, Y.X., Lu, L.Z., Yuan, X.G., The paleolatitude and geographical extent of Southern Tibet in Middle Cretaceous - new paleomagnetic data, *Palaeomagnetic Research in Southeast and East Asia*, 47-57, 1982.
- Ali, J.R., Hall, R., Baker, S.J., Palaeomagnetic data from a Mesozoic Philippine Sea Plate ophiolite on Obi Island, Eastern Indonesia, J. Asian Earth Sci., 19, 535-546, 2001.
- Athavale, R.N., Paleomagnetism and tectonics of a Deccan Trap lava sequence at Amarkantak, India, J. Geophys. Res., 75, 4000-4006, 1970.
- Athavale, R.N., Anjaneyulu, G.R., Palaeomagnetic results on the Deccan Trap lavas of the Aurangabad region and their tectonic significance, *Tectonophysics*, 14, 87-103, 1972.
- Athavale, R.N., Radhakrishnamurty, C., Sahasrabudhe, P.W., Palaeomagnetism of some Indian rocks, *Geophys. J. R. astron. Soc.*, 7, 304-313, 1963.
- Athavale, R.N., Verma, R.K., Palaeomagnetic results on Gondwana dykes from the Domodar Valley coal-field and their bearing on the sequence of Mesozoic igneous activity in India, *Geophys. J. R. astron. Soc.*, 20, 303-316, 1970.
- Barr, S.M., MacDonald, A.S., Haile, N.S., Reconnaissance palaeomagnetic measurements on Triassic and Jurassic sedimentary rocks from Thailand, *Geol. Soc. Malaysia Bull.*, 10, 53-62, 1978.
- Bazhenov, M.L., Paleomagnetic directions and pole positions: *Data for the USSR Issue 6*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1986.
- Bazhenov, M.L., Paleomagnetism of Cretaceous and Paleogene sedimentary rocks from the Kopet-Dagh and its tectonic implications, *Tectonophysics*, 136, 223-235, 1987.
- Bazhenov, M.L., Cretaceous paleomagnetism of the Fergana Basin and adjacent ranges, central Asia: tectonic implications, *Tectonophysics*, 221, 251-267, 1993.
- Bazhenov, M.L., Burtman, V.S., Carpathians, Caucasus and Parmir belts, Structutal arcs of the Alpine Belt, *Nauka, Moscow*, 167pp., 1990.
- Bazhenov, M.L., Burtman, V.S., Upper Cretaceous paleomagnetic data from Shikotan Island, Kuril Arc: implications for plate kinematics, *Earth Planet. Sci. Letters*, 122, 19-28, 1994.
- Bazhenov, M.L., Burtman, V.S., The kinematics of the Pamir arc, Geotektonika, 4, 54-71, 1982
- Bazhenov, M.L., Burtman, V.S., Gurariy, G.Z., Studies of the curvature of the Parmir arc in the Paleogene using the paleomagnetic method, *Dokl. Acad. Sci. USSR*, 242, 1137-1139, 1978
- Bazhenov, M.L., Burtman, V.S., Krezhovskih, O.A., Shapiro, M.N. Paleotektonicheskie rekonstruktzii rayona cochleneniya Aleutskoy dugi i Kamchatki, *Geotektonika*, *3*, 82-97, 1991
- Bazhenov, M.L., Burtman, V.S., Krezhovskikh, O.A., Shapiro, M.N., Paleomagnetism of Paleogene rocks of the Central-East Kamchatka and Komanorsky Islands: tectonic implications, *Tectonophysics*, 201, 157-173, 1992.
- Bazhenov, M.L., Perroud, H., Chauvin, A., Burtman, V.S., Thomas, J.C., Paleomagnetism of Cretaceous red beds from Tadzhikistan and Cenozoic deformation due to India-Eurasia collision, *Earth Planet. Sci. Letters*, 124, 1-18, 1994.
- Besse, J., Courtillot, V., Pozzi, J.P., Westphal, M., Zhou, Y.X., Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture, *Nature*, *311*, 621-626, 1984.
- Bossart, P., Ottiger, R., Heller, F., Paleomagnetism in the Hazara-Kashmir syntaxis, NE Pakistan, *Eclogae Geol. Helv.*, 82, 585-601, 1989.
- Bragin, V.Y., Reutsky, V.N., Litasov, K.D., Mal'kovets, V.G., Travin, A.V., Mitrokhin, D.V., Paleomagnetism and 40Ar/39Ar-dating of Late Mesozoic volcanic pipes of Minusinsk Depression (Russia), *Phys. Chem. Earth* (A), 24, 545-549,1999.
- Bretshtein, Y.S. et al, Paleomagnetic directions and pole positions: *Data for the USSR Issue 7*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1989.
- Bretshtein, Y.S., Klimova, A.V., Kovalenko, S.V., Magnetic properties of basic and ultrabasic rocks from the central and southern Sikhote-Alin terranes, *Geol. Pac. Ocean*, 13, 761-780, 1997.
- Chamalaun, F.H., Sunata, W., The palaeomagnetism of the Western Banda Arc System, *Palaeomagnetic Research in Southeast and East Asia*, 162-194, 1982.

- Charusiri, P., Imsamut, S., Zhuang, Z., Ampaiwan, T., Xu, X., Paleomagnetism of the earliest Cretaceous to early late Cretaceous sandstones, Khorat Group, Northeast Thailand: Implications for tectonic plate movement in the Indochina block, *Gondwana Res.*, 9, 310-325, 2006.
- Chauvin, A., Perroud, H., Bazhenov, M.L., Anomalous low palaeomagnetic inclinations from Oligocene-Lower Miocene red beds of the south-west Tien Shan, Central Asia, *Geophys. J. Int.*, 126, 303-313, 1996.
- Chen, Y., Cogné, J.P., Courtillot, V., Avouac, J.P., Tapponnier, P., Wang, G., Bai, M., You, H., Li, M., Wei, C., Buffetaut, E., Paleomagnetic study of Mesozoic continental sediments along the northern Tien Shan (China) and heterogeneous strain in central Asia, J. Geophys. Res., 96, 4065-4082, 1991.
- Chen,Y., Cogné, J.P., Courtillot, V., New Cretaceous paleomagnetic poles from the Tarim Basin, northwestern China, *Earth Planet. Sci. Letters*, 114, 17-38, 1992.
- Chen,Y., Cogné, J.P., Courtillot, V., Tapponnier, P., Zhu, X.Y., Cretaceous paleomagnetic results from western Tibet and tectonic implications, *J. Geophys. Res.*, 98, 17981-17999, 1993.
- Chen, Y., Gilder, S., Halim, N., Cogné, J.P., Courtillot, V., New paleomagnetic constraints on central Asian kinematics: Displacement along the Altyn Tagh fault and rotation of the Qaidam Basin, *Tectonics*, 21, 1042, doi:10.1029/2001TC901030, 2002.
- Chen, Y., Wu, H., Courtillot, V., Gilder, S., Large N-S convergence at the northern edge of the Tibetian plateau? New Early Cretaceous paleomagnetic data from Hexi Corridor, NW China, *Earth Planet. Sci. Letters*, 201, 293-307, 2002.
- Cheng, G., Bai, Y., Sun, Y., Paleomagnetic study on the tectonic evolution of the Ordos block, North China (in Chinese), *Seis. Geol.*, 10, 81-87, 1988.
- Cheng, G., Fang, Z., The mode of motion of the Tangcheng-Lujiang fault zone by preliminary determination (in Chinese), *Seis. Geol.*, 2, 76, 1980.
- Cogné, J-P., Chen, Y., Courtillot, V., Rocher, F., Wang, G., Bai, M., You, H., A paleomagnetic study of Mesozoic sediments from the Junggar and Turfan Basins, northwest China, *Earth Planet. Sci. Letters*, 133, 353-366, 1995.
- Cogné, J.P., Halim, N., Chen, Y., Courtillot, V., Resolving the problem of shallow magnetizations of Tertiary age in Central Asia: insights from paleomagnetic data from the Qiangtang, Kunlun and Qaidam blocks (Tibet, China), and a new hypothesis, *J. Geophys. Res.*, 104, 17715-17734, 1999.
- Cogné, J.P., Kravchinsky, V.A., Halim, N., Hankard, F., Late Jurassic Early Cretaceous closure of the Mongol-Okhotsk Ocean demonstrated by new Mesozoic palaeomagnetic results from the Trans-Baïkal area (SE Siberia), Geophys. J. Int., 165, 813-834, 2005.
- Courtillot, V., Besse, J., Vandamme, D., Montigny, R., Jaeger, J-J., Capetta, H., Deccan flood basalts at the Cretaceous/Tertiary boundary, *Earth Planet. Sci. Letters*, 80, 361-374, 1986.
- Courtillot, V., Gallet, Y., Rocchia, R., Feraud, G., Robin, E., Hofmann, C., Bhandari, N., Ghevariya, Z.G., Cosmic markers, 40Ar/39Ar dating and paleomagnetism of the KT sections in the Anjar area of the Deccan large igneous province, *Earth Planet. Sci. Letters*, *182*, 137-156, 2000.
- Creer, K.M., Ispir, Y., Palaeomagnetic and rock magnetic studies on Cenozoic basalts from Kyushu, Japan, *Geophys. J. Roy. Astron. Soc.*, 20, 127-148, 1970.
- Das, A.K., Piper, J.D.A., Bandyopadhyay, G., Mallik, S.B., Polarity inversion in the Rajmahal lavas, north-east India: trap emplacement near commencement of the Cretaceous Normal Superchron, *Geophys. J. Int.*, 124, 427-452, 1996.
- Didenko, A., Harbert, W., Stavsky, A., Paleomagnetism of Khatyrka and Maynitsky superterranes, Koryak highlands, far eastern Russia, *Tectonophysics*, 220, 141-155, 1993.
- Doh, S-J., Suk, D-W., Kim, B-Y., Paleomagnetic and rock magnetic studies of Cretaceous rocks in the Eumsung basin, Korea, *Earth Planets Space*, *51*, 337-349, 1999.
- Doh, S.J., Kim, W., Suk, D., Park, Y.H., Cheong, D., Palaeomagnetic and rock-magnetic studies of Cretaceous rocks in the Gongju Basin, Korea: implication of clockwise rotation, *Geophys. J. Int.*, 150, 737-752, 2002.
- Dupont-Nivet, G., Butler, R.F., Yin, A., Chen, X., Paleomagnetism indicates no Neogene rotation of the Qaidam Basin in northern Tibet during Indo-Asian collision, *Geology*, *30*, 263-266, 2002.
- Dupont-Nivet, G., Guo, Z., Butler, R.F., Jia, C., Discordant paleomagnetic direction in Miocene rocks from the central Tarim Basin: evidence for local deformation and inclination shallowing, *Earth Planet. Sci. Letters*, 199, 473-482, 2002.
- Dupont-Nivet, G., Butler, R.F., Paleomagnetism indicates no Neogene vertical axis rotations of the northeastern Tibetan Plateau, J. Geophys. Res., 108, 2386, doi:10.1029/2003JB002399, 2003.
- Dupont-Nivet, G., Robinson, D., Butler, R.F., Concentration of crustal displacement along a weak Altyn Tagh fault: Evidence from paleomagnetism of the northern Tibetan Plateau, *Tectonics*, 23, TC1020, doi:10.1029/2002TC001397, 2004.
- Dupont-Nivet, G., Lippert, P.C., van Hinsbergen, D.J.J, Meijers, M.J.M., and Kapp, P., Paleolatitude and age of the Indo-Asia collision: paleomagnetic constraints, *Geophys. J. Int.*, In Press, 2010a.

- from South China, and the Mesozoic hairpin turn of the Eurasian apparent polar wander path, J. Geophys. Res., 96, 4007-4027, 1991.
- Enkin, R.J., Courtillot, V., Xing, L., Zhang, Z., Zhuang, Z., Zhang, J., The stationary Cretaceous paleomagnetic pole of Sichuan (South China Block), *Tectonics*, 10, 547-559, 1991.
- Eroshkin, A.F., Paleomagnetism nizhnemelovih basaltov Severnoy Fergani, IV All-Union Congress on Geomagnetism, Vladimir-Suzdal, 2, 123-124, 1991.
- Fang, D., Chen, H., Jin, G., Guo, Y., Wang, Z., Tan, X., Yin, S., Late Paleozoic and Mesozoic paleomagnetism and tectonic evolution of the Tarim terrane, *Terrane Analysis of China and the Pacific rim (Houston)*, 251-255, 1990.
- Fomin, V.A., Paleomagnetic directions and paleomagnetic pole positions: *Data for the former USSR Issue 8*, Catalogue, VNIGRI Institute, St.Petersburg, Russia (unpublished), 1993.
- Frost, G.M., Coe, R.S., Meng, Z., Peng, Z., Chen, Y., Courtillot, V., Peltzer, G., Tapponnier, P., Avouac, J-P., Preliminary Early Cretaceous paleomagnetic results from the Gansu Corridor, China, *Earth Planet. Sci. Letters*, 129, 217-232, 1995.
- Fujiwara, Y., Hashimoto, S., Ohta, S., A preliminary report on a paleomagnetic stratigraphy in Central Hokkaido, N.E. Japan, J. Fac. Sci. Hokkaido Univ., Ser. IV, 17, 143-152, 1975.
- Funahara, S., Nishiwaki, N., Miki, M., Murata, F., Otofuji, Y., Wang, Y.Z., Paleomagnetic study of Cretaceous rocks from the Yangtze block, central Yunnan, China: implications for the India-Asia collision, *Earth Planet. Sci. Letters*, 113, 77-91, 1992.
- Funahara, S., Nishiwaki, N., Murata, F., Otofuji, Y., Wang, Y.Z., Clockwise rotation of the Red River fault inferred from paleomagnetic study of Cretaceous rocks in the Shan-Thai-Malay block of western Yunnan, China, Earth Planet. Sci. Letters, 117, 29-42, 1993.
- Gautam, P., Multi-component remanent magnetization in the Aulis Volcanics, the lesser Himalaya, Nepal, J. Geomag. Geoelect., 41, 101-117, 1989.
- Gautam, P., Fujiwara, Y., Magnetic polarity stratigraphy of Siwalik Group sediments of Karnail River section in western Nepal, Geophys. J. Int., 142, 812-824, 2000.
- Gilder, S., Courtillot, V., Timing of the North-South China collision from new middle to late Mesozoic paleomagnetic data from the North China Block, J. Geophys. Res., 102, 17713-17727, 1997.
- Gilder, S.A., Coe, R.S., Wu, H., Kuang, G., Zhao, X., Wu, Q., Tang, X., Cretaceous and Tertiary paleomagnetic results from Southeast China and their tectonic implications, Earth Planet. Sci. Letters, 117, 637-652, 1993.
- Gilder, S.A., Leloup, P.H., Courtillot, V., Chen, Y., Coe, R.S., Zhao, X., Xiao, W., Halim, N., Cogné, J.P., Zhu, R., Tectonic evolution of the Tanchen-Lujiang (Tan-Lu) fault via Middle Triassic to Early Cenozoic paleomagnetic data, J. Geophys. Res., 104, 15365-15390, 1999.
- Gilder, S., Chen, Y., Cogne, J.P., Tan, X., Courtillot, V., Sun, D., Li, Y., Paleomagnetism of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks from the western Tarim Basin and implications for inclination shallowing and absolute dating of the M-0 (ISEA?) chron, Earth Planet. Sci. Letters, 206, 587-600, 2003.
- Gorbunov, M.G., Paleomagnetic directions and pole positions: *Data for the USSR Issue 1*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1971.
- Gorshkov, E.S., Gooskova, E.G., Starunov, V,A., Tyuleneva, T.S., Ganhuyach, Z., Khosbayar, P., Paleomagnitnie issledovaniya v Zentralnoy Mongolii, IV All-Union Congress on Geomagnetism, Vladimir-Suzdal. 2, 116-117, 1991.
- Grishin, D.V., Didenko, A.N., Pechersky, D.M., Turmanidze, T.L., Paleomagnitnoe i petromagnitnoe izuchenie stroeniya i razvitiya paleookeanskoy litosferi (na primere izucheniya fanerozoiskikh ofiolitov Azii), Paleomagnetizm i paleogeodinamika territorii SSSR (VNIGRI), 135-149, 1991.
- Gurariy, G.Z., Kropotkin, P.N., Pevzner, M.A., Ro Vu Son, Trubikhin, V.M., Laboratory evaluation of the usefulness of North Korean sedimentary rocks for paleomagnetic purposes, *Izv. Acad. Sci. USSR, Ser. Fizika Zemli*, 128-136, 1966.
- Gurevich, E.L., Surkis, Y.P., Paleomagnetic estimate of the horizontal tectonic movements in the Olyurt-Kamchatka zone, *Fizika Zemli*, 10, 58-69, 1994.
- Gurievich, E.L., Surkis, Y.P., Paleomagnetic directions and paleomagnetic pole positions: *Data for the former* USSR Issue 8, VNIGRI Institute, St.Petersburg, Russia (unpublished), Catalogue, 1993.
- Guzhikov, A.Y., Paleomagnetic directions and paleomagnetic pole positions: *Data for the former USSR Issue* 8, VNIGRI Institute, St.Petersburg, Russia (unpublished), Catalogue, 1993.
- Guzhikov, A.Y., Molostovskii, E.A., Nazarov, Kh., Fomin, V.A., Baraboshkin, E.Y., Kopaevich, L.F., Magnetostratigraphic Data on the Upper Cretaceous of Tuarkyr (Turkmenistan) and Their Implications for the General Paleomagnetic Time Scale, *Izvestiya, Physics of the Solid Earth*, 39, 728-740, 2003.
- Haihong, C., Dobson, J., Heller, F., Jie, H., Paleomagnetic evidence for clockwise rotation of the Simao region since the Cretaceous: a consequence of India-Asia collision, Earth Planet. Sci. Letters, 134, 203-217, 1995.

- Haile, N.S., Reconnaissance palaeomagnetic results from Sulawesi, Indonesia, and their bearing on palaeogeographic reconstructions, *Tectonophysics*, 46, 77-85, 1978.
- Haile, N.S., Tarling, D.H., Note on reconnaissance palaeomagnetic measurements on Jurassic redbeds from Thailand, *Pacific Geology*, 10, 101-103, 1975.
- Haile, N.S., Khoo, H.P., Palaeomagnetic measurements on Upper Jurassic to Lower Cretaceous sedimentary rocks from Peninsular Malaysia, *Bull. Geol. Soc. Malaysia*, *12*, 75-78, 1980.
- Haile, N.S., McElhinny, M.W., McDougall, I., Palaeomagnetic data and radiometric ages from the Cretaceous of West Kalimantan (Borneo), and their significance in interpreting regional structure, J. Geol. Soc. London, 133, 133-144, 1977.
- Haile, N.S., Beckinsale, R.D., Chakraborty, K.R., Hussein, A.H., Hardjong, T., Palaeomagnetism, geochronology and petrology of the dolerite dykes and basaltic lavas from Kuantan, West Malaysia, *Bull. Geol. Soc. Malaysia*, 16, 71-85, 1983.
- Halim, N., Cogne, J.P., Chen, Y., Atasiei, R., Besse, J., Courtillot, V., Gilder, S., Marcoux, J., Zhao, R.L., New Cretaceous and Early Tertiary paleomagnetic results from Xining-Lanzhou basin, Kunlun and Qiangtang blocks, China: implications on the geodynamic evolution of Asia, J. Geophys. Res., 103, 21025-21045, 1998a.
- Halim, N., Kravchinsky, V., Gilder, S., Cogne, J.P., Alexyutin, M., Courtillot, V., Chen, Y., A palaeomagnetic study from the Mongol-Okhotsk region: rotated Early Cretaceous volcanics and remagnetized Mesozoic sediments, *Earth Planet. Sci. Letters*, 159, 133-145, 1998b.
- Halim, N., Chen, Y., Cogne, J.P., A first palaeomagnetic study of Jurassic formations from the Qaidam basin, northeastern Tibet, China tectonic implications, *Geophys. J. Int.*, 153, 20-26, 2003.
- Hankard, F., Cogne, J.P., Kravchinsky, V.A., Carporzen, L., Bayasgalan, A. and Lkhagvadorj., P., New Tertiary paleomagnetic poles from Mongolia and Siberia at 40, 30, 20 and 13 Ma: clues on the inclination shallowing problem in Central Asia, J. Geophys. Res., 112, B02101, 2007a.
- Hankard, F., Cogne, J.P., Quidelleur, X., Bayasgalan, A., Lkhagvadorj, P., Palaeomagnetism and K-Ar dating of Cretaceous basalts from Mongolia, *Geophys. J. Int.*, 170, 898-909, 2007b.
- Hankard, F., Cogne, J.P., Lagroix, F., Quidelleur, X., Kravchinsky, V.A., Bayasgalan, A., Lkhagvadorj, P., Palaeomagnetic results from Palaeocene basalts from Mongolia reveal no inclination shallowing at 60 Ma in Central Asia, *Geophys. J. Int.*, 172, 87-102, 2008.
- Hasnain, I., Qureshy, M.N., Paleomagnetism and geochemistry of some dikes in Mysore State, India, J. Geophys. Res., 76, 4786-4795, 1971.
- Hayashida, A., Timing of rotational motion of southwest Japan inferred from paleomagnetism of the Setouchi Miocene Series, J. Geomag. Geoelect., 38, 295-310, 1986.
- Hayashida, A., Ito, Y., Paleoposition of Southwest Japan at 16 Ma: implication for paleomagnetism of the Miocene Ichishi Group, *Earth Planet. Sci. Lett.*, 68, 335-342, 1984.
- Hayashida, A., Fukui, T., Torii, M., Paleomagnetism of the Early Miocene Kani Group in southwest Japan and its implication for the opening of the Japan Sea, *Geophys. Res. Lett.*, 18, 1095-1098, 1991.
- Hoshi, H., Matsubara, T., Early Miocene paleomagnetic results from the Ninohe area, NE Japan: implications for arc rotation and intra-arc differential rotations, *Earth Planets Space*, 50, 23-33, 1998.
- Hoshi, H., Yokoyama, M., Paleomagnetism of Miocene dikes in the Shitara basin and the tectonic evolution of central Honshu, Japan, *Earth Planets Space*, 53, 731-739, 2001.
- Hoshi, H., Teranishi, Y., Paleomagnetism of the Ishikoshi Andesite: a Middle Miocene paleomagnetic pole for northeastern Japan and tectonic implications, *Earth Planets Space*, 59, 871-878, 2007.
- Hsu, I., Kienzle, J., Scharon, L., Sun, S.S., Paleomagnetic investigations of Taiwan igneous rocks, *Bull. Geol. Surv. Taiwan*, 17, 27-81, 1966.
- Huang, B.C., Wang, Y.C., Liu, T., Yang, T.S., Li, Y.A., Sun, D.J., Zhu, R.X., Paleomagnetism of Miocene sediments from the Turfan Basin, Northwest China: no significant vertical-axis rotation during Neotectonic compression within the Tian Shan Range, Central Asia, *Tectonophysics*, 384, 1-21, 2004.
- Huang, B.C., Wang, Y.C., Zhu, R., New paleomagnetic and magnetic fabric results for Early Cretaceous rocks from the Turpan intramontane basin, east Tianshan, northwest China, *Science in China (ser.D)*, 47, 540-550, 2004.
- Huang, B., Piper, J.D.A., Wang, Y., He, H., Zhu, R., Paleomagnetic and geochronological constraints on the post-collisional northward convergence of the southwest Tien Shan, NW China, *Tectonophysics*, 409, 107-124, 2005.
- Huang, B., Piper, J.D.A., He, H., Zhang, C, Zhu, R., Paleomagnetic and geochronological study of the Hailaqiola basalts, southern margin of the Altai Mountains, northern Xinjiang: Constraints on neotectonic convergent patterns north of Tibet., J. Geophys. Res., 111, B01101, 2006.

- Huang, B.C., Piper, J.D.A., Zhang, C., Li, Z., Zhu, R., Paleomagnetism of Cretaceous rocks in the Jiodong Peninsula, eastern China: Insight into block rotations and neotectonic deformation in eastern Asia, J. Geophys. Res., 112, B03106, 2007.
- Huang, K., Opdyke, N.D., Paleomagnetism of Jurassic rocks from southwestern Sichuan and the timing of the closure of the Qinling Suture, Tectonophysics, 200, 299-316, 1991.
- Huang, K., Opdyke, N.D., Paleomagnetism of Cretaceous to lower Tertiary rocks from southwestern Sichuan: a revisit, *Earth Planet. Sci. Letters*, 112, 29-40, 1992.
- Huang, K., Opdyke, N.D., Paleomagnetic results from Cretaceous and Jurassic rocks of South and Southwest Yunnan: evidence for large clockwise rotations in the Indochina and Shan-Thai-Malay terranes, *Earth Planet. Sci. Letters*, 117, 507-524, 1993.
- Huang, K., Opdyke, N.D., Li, J., Peng, X., Paleomagnetism of Cretaceous rocks from eastern Qiantang terrane of Tibet, *J. Geophys. Res.*, 97, 1789-1799, 1992.
- Hyodo, H., Niitsuma, N., Tectonic rotation of the Kanto Mountains, related with the opening of the Japan Sea and collision of the Tanzawa Block since Middle Miocene, J. Geomag. Geoelect., 38, 335-348, 1986.
- Ishikawa, N., Tagami, T., Paleomagnetism and fission-track geochronology on the Goto and Tsushima Islands in the Tsushima Strait area: implications for the opening of the Japan Sea, J. Geomag. Geoelect., 43, 229-253, 1991.
- Ito, H., Tokeida, K., An interpretation of paleomagnetic results from Cretaceous granites in South Korea, J. *Geomag. Geoelect.*, 32, 275-284, 1980.
- Itoh, Y., Differential rotation of northeastern part of Southwest Japan: paleomagnetism of Early to Late Miocene rocks from Yatsuo area in Chubu district, *J. Geomag. Geoelect.*, *38*, 325-334, 1986.
- Itoh, Y., Differential rotation of the eastern part of southwest Japan inferred from paleomagnetism of Cretaceous and Neogene rocks, J. Geophys. Res., 93, 3401-3411, 1988.
- Johnson, N.M., Stix, J., Tauxe, L., Cerveny, P.F., Tahirkheli, R.A.K., Paleomagnetic chronology, fluvial processes, and tectonic implications of the Siwalik deposits near Chinji Village, Pakistan, J. Geol., 93, 27-40, 1985.
- Kent, D.V., Xu, G., Huang, K., Zhang, W.Y., Opdyke, N.D., Paleomagnetism of Upper Cretaceous rocks from South China, *Earth Planet. Sci. Letters*, 79, 179-184, 1986.
- Khramov, A.N., Generalized paleomagnetic section for the Mesozoic of the southern Tajikistan, *Materialy 8 konf po postoyan polyu i paleomagn*, 235-238, 1970.
- Khramov, A.N., Paleomagnetic directions and pole positions: *Data for the USSR Issue 2*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1973.
- Khramov, A.N., Paleomagnetic directions and pole positions: *Data for the USSR Issue 5*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1982.
- Kienzle, J., Scharon, L., Paleomagnetic comparison of Cretaceous rocks from South Korea and Late Paleozoic and Mesozoic rocks of Japan, J. Geomag. Geoelect., 18, 413-416, 1966.
- Kikawa, E., Koyama, M., Kinoshita, H., Paleomagnetism of Quaternary Volcanics in the Izu Peninsula and adjacent areas, Japan and its tectonic significance, J. Geomag. Geoelect., 41, 175-201, 1989.
- Kikawa, E., McCabe, R., Han, J., Min, K.D., Lee, D., Han, H.C., Hwang, J.A., Miocene paleomagnetic results from southeastern Korea, *Tectonophysics*, 233, 115-123, 1994.
- Klootwijk, C.T., Palaeomagnetic results on a doleritic sill of Deccan Trap age in the Sonhat Coal Basin, India, *Tectonophysics*, 22, 335-353, 1974.
- Klootwijk, C.T., Palaeomagnetism of the Upper Gondwana Rajmahal Traps, northeast India, Tectonophysics, 12, 449-467, 1971.
- Klootwijk, C.T., Bingham, D.K., The extent of Greater India III. Palaeomagnetic data from the Tibetan sedimentary series, Thakkhola region, Nepal Himalaya, *Earth Planet. Sci. Letters*, 51, 381-405, 1980.
- Klootwijk, C.T., Sharma, M.L., Gergan, J., Tirkey, B., Shah, S.K., Agarwal, V., The extent of Greater India, II. Palaeomagnetic data from the Ladakh intrusives at Kargil, northwestern Himalayas, Earth Planet. Sci. Letters, 44, 47-64, 1979.
- Klootwijk, C.T., Nazirullah, R., De Jong, K.A., Ahmed, H., A paleomagnetic reconnaissance of northeastern Baluchistan, Pakistan, J. Geophys. Res., 86, 289-306, 1981.
- Klootwijk, C.T., Nazirullah, R., De Jong, K., Palaeomagnetic constraints on formation of the Mianwali reentrant, Trans-Indus and western Salt Range, Pakistan, *Earth Planet. Sci. Letters*, 80, 394-414, 1986.
- Klootwijk, C.T., Sharma, M.L., Gergan, J., Shah, S.K., Gupta, B.K., Rotational overthrusting of the northwestern Himalaya: further palaeomagnetic evidence from the Riasi thrust sheet, Jammu foothills, India, *Earth Planet. Sci. Letters*, 80, 375-393, 1986.
- Kodama, K., Ozawa, T., Inoue, K., Maeda, Y., Takeuchi, T., Paleomagnetism and post-Middle Miocene counterclockwise rotation of Tanegashima Island off Kyushu, Japan, J. Geomag. Geoelect., 43, 721-740, 1991.
- Kodama, K., Takeuchi, T., Ozawa, T., Clockwise rotation of Tertiary sedimentary basins in central Hokkaido, northern Japan, *Geology*, 21, 431-434, 1993.

- Kono, M., Intensity of the Earth's magnetic field in geological time III. Pleistocene and Pliocene data from Japanese volcanic rocks, J. Geomag. Geoelect., 23, 1-&, 1971.
- Kono, M., Kinoshita, H., Aoki, Y., Paleomagnetism of the Deccan Trap Basalts in India, J. Geomag. Geoelect., 24, 49-67, 1972.
- Kovalenko, D.V., Paleomagnetic directions and paleomagnetic pole positions: *Data for the former USSR Issue* 8, VNIGRI Institute, St.Petersburg, Russia (unpublished), Catalogue, 1993.
- Kovalenko, D.V., Paleomagnitnie issledovaniya ostrovoduzhnih komplexov Oluytorskoy zoni o.Karaginskogo i tektonicheskaya interpretaziya rezultatov, *Geotektonika*, 2, 92-101, 1990.
- Kovalenko, D.V., Paleomagnetic directions and paleomagnetic pole positions: *Data for the former USSR Issue* 8, VNIGRI Institute, St.Petersburg, Russia (unpublished), Catalogue, 1993.
- Kovalenko, D.V., Paleomagnitnie issledovaniya ostrovoduzhnih komplexov Oluytorskoy zoni o.Karaginskogo i tektonicheskaya interpretaziya rezultatov, *Geotektonika*, 2, 92-101, 1990.
- Koyama, M., Kitazato, H., Paleomagnetic evidence for Pleistocene clockwise rotation in the Oiso Hills: a possible record of interaction between the Philippine Sea plate and northeast Japan, *Amer. Geophys. Union Geophys. Monogr.*, 50, 249-265, 1989.
- Kravchinsky, V.A., Sorokin, A.A., Courtillot, V., Paleomagnetism of Paleozoic and Mesozoic sediments from the southern margin of Mongol-Okhotsk ocean., J. Geophys. Res., 107(B10), 2253, doi:10.1029/2001JB000672, 2002.
- Kravchinsky, V.A., *Paleomagnetism of the Mongol-Okhutsk fold belt*, Ph.D Thesis, Irkutsk State Technical University, Siberia, 181pp, 1995.
- Kravchinsky, V.A., Cogne, J.-P., Harbert, W.P., Kuzmin, M.I., Evolution of the Mongol–Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol–Okhotsk suture zone, Siberia, *Geophys. J. Int.*, 148, 34-57, 2002.
- Krumsiek, K., Zur bewegung Iranisch-Afghanischen platte (palaomagnetische ergebnisse), *Geol. Rundschau*, 65, 909-929, 1976.
- Kuzmin, M.I., Kravchinsky, V.A., First paleomagnetic data from the Mongolia-Okhotian belt, *Geologia i geofizika*, 37, 54-62, 1996.
- Lee, G., Besse, J., Courtillot, V.E., Montigny, R., Eastern Asia in the Cretaceous: New paleomagnetic data from South Korea and a new look at Chinese and Japanese data, *J. Geophys. Res.*, 92, 3580-3596, 1987.
- Lee, Y.S., Ishikawa, N., Kim, W.K., Paleomagnetism of Tertiary rocks on the Korean Peninsula: tectonic implications for the opening of the East Sea (Sea of Japan), *Tectonophysics*, 304, 131-149, 1999.
- Levashova, N.M., Bazhenov, M.I., Shapiro, M.N., Late Cretaceous paleomagnetism of the East Ranges island arc complex, Kamchatka: implications for for terrane movements and kinematics of the northwest Pacific, *J. Geophys. Res.*, 102, 24843-24857, 1997.
- Levashova, N.H., Shapiro, M.N., Bazhenov, M.L., Late Cretaceous paleomagnetic data from the Median Range of Kamchatka, Russia: tectonic implications, *Earth Planet. Sci. Letters*, *163*, 235-246, 1998.
- Levashova, N.M., Shapiro, M.N., Benianovsky, V.N., Bazhenov, M.L., Paleomagnetism and geochronology of the Late Cretaceous-Paleogene island arc complex of the Kronotsky Peninsula, Kamchatka, Russia: kinematic implications, *Tectonics*, 19, 834-851, 2000.
- Li, Y., Zhang, Z., McWilliams, M.O., Sharpe, R., Zhai, Y., Li, Y., Li, Q., Cox, A., Mesozoic paleomagnetic results of the Tarim Craton: Tertiary relative motion between China and Siberia ?, *Geophys. Res. Lett.*, 15, 217-220, 1988.
- Li, Y., Ali, J.R., Chan, L.S., Lee, C.M., New and revised set of Cretaceous paleomagnetic poles from Hong Kong: implications for the development of southeast China, *J. Asian Earth Sci.*, 24, 481-493, 2005.
- Li, Z.X., Metcalfe, I., Wang, X., Vertical axis block rotations in southwestern China since the Cretaceous: new paleomagnetic results from Hainan Island, *Geophys. Res. Lett.*, 22, 3071-3074, 1995.
- Lin, J.L., *The apparent polar wander paths for the North and South China blocks*, Ph.D Thesis, Univ.California Santa Barbara, 248pp, 1984.
- Lin, J., Watts, D.R., Palaeomagnetic results from the Tibetan Plateau, Phil. Trans. R. Soc. London Ser. A, 327, 239-262, 1988.
- Lin, W., Chen, Y., Faure, M., Wang,Q., Tectonic implications of new Late Cretaceous paleomagnetic constraints from Eastern Liaoning Peninsula, NE China, J. Geophys. Res., 108(B6), 2313, doi:10.1029/2002JB002169, 2003.
- Liu, Y.Y., Morinaga, H., Cretaceous palaeomagnetic results from Hainan Island in south China supporting the extrusion model of Southeast Asia, *Tectonophysics*, 301, 133-144, 1999.
- Liu, Z.F., Zhao, X.X., Wang, C.S., Liu, S., Yi, H.S., Magnetostratigraphy of Tertiary sediments from the Hoh Xil Basin: implications for the Cenozoic tectonic history of the Tibetan Plateau, *Geophys. J. Int.*, 154, 233-252, 2003.
- Ma, X., Yang, Z., Xing, L., The Lower Cretaceous reference pole for North China, and its tectonic implications, Geophys. J. Int., 115, 323-331, 1993.

- Ma, X., Yang, Z., Xing, L., Ren, X., Xu, S., Zhang, J., Cretaceous pole from the Ordos Basin and new view for eastern Chinese late Mesozoic paleomagnetic data, *Terra Abstracts*, *3*, 326, 1991.
- Mammedov, M. Paleomagnetic directions and pole positions: *Data for the USSR Issue 1*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1971.
- Mammedov, M., Nazarov, H., Paleomagnetic directions and pole positions: *Data for the USSR Issue 1*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1971.
- Marante, S., Vella, P., Paleomagnetism of the Khorat Group, Mesozoic, northeast Thailand, J. Southeast Asian Earth Sci., 1, 23-31, 1986.
- McDougall, I., McElhinny, M.W., The Rajmahal Traps of India K-Ar ages and palaeomagnetism, *Earth Planet*. *Sci. Letters*, *9*, 371-378, 1970
- McElhinny, M.W., The northward drift of India An examination of recent palaeomagnetic results, *Nature*, 217, 342-344, 1968.
- McElhinny, M.W., Haile, N.S., Crawford, A.R., Palaeomagnetic evidence shows Malay Peninsula was not a part of Gondwanaland, *Nature*, 252, 641-645, 1974.
- Metelkin, D.V., Gordienko, I.V., Zhao, X., Paleomagnetism of Early Cretaceous volcanic rocks from Transbaikalia: argument for Mesozoic Strike-slip motions in Central Asian structure, *Russian Geology and Geophysics*, 45, 1404-1417, 2004.
- Miki, M., Two-phase opening model for the Okinawa Trough inferred from paleomagnetic study of the Ryukyu arc, J. Geophys. Res., 100, 8169-8184, 1995.
- Miki, M., Furukawa, M., Otofuji, Y., Tsao, S., Huang, T., Palaeomagnetism and K-Ar ages of Neogene rocks of northern Taiwan: tectonics of the arc junction of Ryukyu and Luzon arcs, *Geophys. J. Int.*, 114, 225-233, 1993.
- Minasyan, D.O., Karakhanyan, A.K.O, paleomagnetisme granitsi eotsena i oligotsena na primere razresa u s.Landzhar Y.Armenii, IV All-Union Congress on Geomagnetism. Vladimir-Suzdal. 2, 80-81, 1991.
- Mital, G.S., Verma, R.K., Pullaiah, G., Palaeomagnetic study of Satyavedu Sandstones of Cretaceous age from Andhra Pradesh, India, Pure Appl. Geophys., 81, 177-191, 1970.
- Morinaga, H., Liu, Y., Cretaceous paleomagnetism of the eastern South China Block: establishment of the stable body of SCB, *Earth Planet. Sci. Letters*, 222, 971-988, 2004.
- Mubroto, B., Briden, J.C., McClelland, E., Hall, R., Palaeomagnetism of the Balantok ophiolite, Sulawesi, *Earth Planet. Sci. Letters*, *125*, 193-209, 1994.
- Muratov, D.I., Paleomagnetic directions and pole positions: *Data for the USSR Issue 2*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1973.
- Narumoto, K., Yang, Z., Takemoto, K., Zaman, H., Morinaga, H., Otofuji, Y., Anomalously shallow inclination in middle-northern part of the South China block: palaeomagnetic study of Late Cretaceous red beds from Yichang area, *Geophys. J. Int.*, 164, 290-300, 2006
- Nazarov, H., Paleomagnetic directions and pole positions: *Data for the USSR Issue 1*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1971.
- Nevolina, S.I., Sokarev, A.N., Paleomagnetic directions and pole positions: *Data for the USSR Issue 6*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1986.
- Ojha, T.P., Butler, R.F., Quade, J., DeCelles, P.G., Richards, D., Upreti, B.N., Magnetic polarity stratigraphy of the Neogene Siwalik Group at Khutia Khola, far western Nepal, *Geol. Soc. Amer. Bull.*, 112, 424-434, 2000.
- Otake, H., Tanaka, H., Kono, M., Saito, K., Paleomagnetic study of Pleistocene lavas and dikes of the Zao Volcanic Group, Japan, J. Geomag. Geoelect., 45, 595-612, 1993.
- Otofuji, Y., Sasajima, S., Nishimura, S., Dharma, A., Hehuwat, F., Paleomagnetic evidence for clockwise rotation of the northern arm of Sulawesi, Indonesia, *Earth Planet. Sci. Letters*, 54, 272-280, 1981.
- Otofuji, Y., Sasajima, S., Nishimura, S., Yokoyama, T., Hadiwisastra, S., Hehuwat, F., Paleomagnetic evidence for the paleoposition of Sunda Island, Indonesia, Earth Planet. Sci. Letters, 52, 93-100, 1981.
- Otofuji, Y., Oh, J.Y., Hirajima, T., Min, K.D., Sasajima, S., Paleomagnetism and age determination of Cretaceous rocks from Gyeongsang Basin, Korean Peninsula, Amer. Geophys. Union Geophys. Monogr., 27, 388-396, 1983.
- Otofuji, Y., Ho, K.K., Inokuchi, H., Morinaga, H., Murata, F., Katao, H., Yashkawa, K., A paleomagnetic reconnaissance of Permian to Cretaceous rocks in southern part of Korean Peninsula, *J. Geomag. Geoelect.*, 38, 387-402, 1986.
- Otofuji, Y., Funahara, S., Matsuo, J., Murata, F., Nishiyama, T., Zheng, X., Yaskawa, K., Paleomagnetic study of western Tibet: deformation of a narrow zone along the Indus Zangbo suture between India and Asia, *Earth Planet. Sci. Letters*, 92, 307-316, 1989.
- Otofuji, Y., Inoue, Y., Funahara, S., Murata, F., Zheng, X., Palaeomagnetic study of eastern Tibet deformation of the Three Rivers region, *Geophys. J. Int.*, 103, 85-94, 1990.

- Otofuji, Y., Itaya, T., Matsuda, T., Rapid rotation of southwest Japan palaeomagnetism and K-Ar ages of Miocene volcanic rocks of southwest Japan, *Geophys. J. Int.*, 105, 397-405, 1991.
- Otofuji, Y., Kadoi, J., Funahara, S., Murate, F., Zheng, X., Paleomagnetic study of the Eocene Quxu pluton of the Gangdese Belt: crustal deformation along the Indus-Zangbo suture zone in southern Tibet, *Earth Planet. Sci. Letters*, 107, 369-379, 1991.
- Otofuji, Y., Kambara, A., Matsuda, T., Nohda, S., Counterclockwise rotation of northeast Japan: paleomagnetic evidence for regional extent and timing of rotation, *Earth Planet. Sci. Lett.*, *121*, 503-518, 1994.
- Otofuji, Y., Matsuda, T., Itaya, T., Shibata, T., Matsumoto, M., Yamanoto, T., Morimoto, C., Kulinich, R.G., Zimin, P.S., Matunin, A.P., Sakhno, V.G., Kimara, K., Late Cretaceous to early Paleogene paleomagnetic results from Sikhote Alin, far eastern Russia: implications for the deformation of East Asia, *Earth Planet*. *Sci. Letters*, 130, 95-108, 1995.
- Otofuji, Y., Nishizawa, Y., Tamai, M., Mtsuda, T., Paleomagnetic and chronological study of Miocene welded tuffs in the northern part of Central Japan: tectonic implications for the latest stage of arc formation of Japan, *Tectonophysics*, 283, 263-278, 1997.
- Otofuji, Y., Liu, Y., Yokoyama, M., Tamai, M., Yin, J., Tectonic deformation of the southwestern part of the Yangtze craton inferred from paleomagnetism, Earth Planet. Sci. Letters, 156, 47-60, 1998.
- Otofuji, Y., Matsuda, T., Enami, R., Uno, K., Nishihama, K., Halim, N., Su, L., Zaman, H., Kulinich, R.G., Zimin, P.S., Matunin, A.P., Sakhno, V.G., Late Cretaceous palaeomagnetic results from Sikhote Alin, far eastern Russia: tectonic implications for the eastern margin of the Mongolia Block, *Geophys. J. Int.*, 152, 202-214, 2003.
- Otofuji, Y., Miura, D., Takaba, K., Takemoto, K., Narumoto, K., Zaman, H., Inokchi, H., Kulinich, R.G., Zimin, P.S., Sakhno, V., Counter-clockwise rotation of the eastern part of the Mongolia block: Early Cretaceous palaeomagnetic results from Bikin, Far Eastern Russia, *Geophys. J. Int.*, 164, 15-24, 2006.
- Otofuji, Y., Mu, C.L., Tanaka, K., Miura, D., Inokuchi, H., Kamei, R., Tamai, M., Takemoto, K., Zaman, H., Yokoyama, M., Spatial gap between Lhasa and Qiangtang blocks inferred from Middle Jurassic to Cretaceous paleomagnetic data, *Earth Planet. Sci. Letters*, 262, 581-593, 2007.
- Pal, P.C., Bhimasankaram, V.L.S., Palaeomagnetism of the Deccan Trap flows of Jalna, India, *Earth Planet. Sci. Letters*, 11, 109-112, 1971.
- Pal, P.C., Bindu Madhav, U., Bhimasankaram, V.L.S., Early Tertiary geomagnetic polarity reversals in India, *Nature Phys.Sci.*, 230, 133-135, 1971.
- Pan, Y., Hill, M.J., Zhu, R., Paleomagnetic and paleointensity study of an Oligocene Miocene lava sequence from the Hannuoba Basalts in northern China, *Phys. Earth Planet. Int.*, 151, 21-35, 2005.
- Park, Y.E., Doh, S.J., Ryu, I.C., Suk, D., A synthesis of Cretaceous palaeomagnetic data from South Korea: tectonic implications in East Asia., *Geophys. J. Int.*, 162, 709-724, 2005.
- Patil, S.K., Rao, D.R.K., Palaeomagnetic and rock magnetic studies on the dykes of Goa, west coast of Indian Precambrian Shield, *Phys. Earth Planet. Int.*, 133, 111-125, 2002.
- Patzelt, A., Li, H., Wang, J., Appel, E., Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet: evidence for the extent of the northern margin of India prior to the collision with Eurasia, *Tectonophysics*, 259, 259-284, 1996.
- Paul, D.K., Ray, A., Das, B., Patil, S.K., Biswas, S.K., Petrology, geochemistry and paleomagnetism of the earliest magmatic rocks of Deccan Volcanic Province, Kutch, Nortwest India, *Lithos*, 102, 237-259, 2008.
- Pavlov, V.E., Paleomagnetic directions and paleomagnetic pole positions: *Data for the former USSR Issue 8*, VNIGRI Institute, St.Petersburg, Russia (unpublished), Catalogue, 1993.
- Pechersky, D.M., Paleomagnetic studies of Mesozoic deposits of the northeast of the USSR, *Izv. Acad. Sci.* USSR Ser. Fizika Zemli , 69-83, 1970.
- Pechersky, D.M., Paleomagnetic directions and pole positions: *Data for the USSR Issues 2 and 3*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1973.
- Pechersky, D.M., Shapiro, M.N., Paleomagnetism of the Upper Cretaceous and Paleogenic volcanic series of the Eastern Kamchatka: evidence of the absolute shifts of the ancient subduction zones, *Fizika Zemli*, 2, 31-55, 1996.
- Pechersky, D.M., Levashova, N.H., Shapiro, M.N., Bazhenov, M.L., Sharanova, Z.V., Palaeomagnetism of Palaeogene volcani series of Kamchatsky Mys Peninsula, East Kamchatka the motion of an active island arc, *Tectonophysics*, 273, 219-237, 1997.
- Pechersky, D.M., Shapiro, M.N., Sharanova, Z.V., Palaeomagnetic study of the Eastern Kamchatka Cretaceous-Paleocene island arc: new evidence concerning palaeosubduction zone aboslute motion, *Geophys. J. Int.*, 130, 606-622, 1997.
- Piper, J.D.A., Jiasheng, Z., Palaeomagnetism, rock magnetism and magnetic fabric in Precambrian metamorphic terranes of the Huabei Shield, China, J. Asian Earth Sci., 17, 395-419, 1999.
- Pogarskaya, I.A., Nazarov, H., Goncharov, G.I., Paleomagnetic directions and pole positions: *Data for the USSR* - *Issue 5*, Soviet Geophysical Committee: World Data Center-B (Moscow) , Catalogue, 1982.

P P P R R R

- Poornachundra Rao, G.V.S., Mallikharjuna Rao, J., Palaeomagnetism of the Rajmahal Traps of India: implication to the reversal in the Cretaceous Normal Superchron, J. Geomag. Geoelect., 48, 993-1000, 1996.
- Pospelova, G.A., Paleomagnetic directions and pole positions: *Data for the USSR Issue 1*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1971.
- Pospelova, G.A. et al., Paleomagnetic directions and pole positions: *Data for the USSR Issue 1*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1971.
- Pospelova, G.A., Larionova, G.Y., Anuchin, A.V., Paleomagnetic investigations of Jurassic and Lower Cretaceous sedimentary rocks of Siberia, *Internat. Geol. Rev.*, 10, 1108-1118, 1968.
- Pozzi, J.P., Feinberg, H., Paleomagnetism in the Tajikistan: continental shortening of European margin in the Pamirs during Indian Eurasian collision, *Earth Planet. Sci. Letters*, 103, 365-378, 1991.
- Pozzi, J.P., Westphal, M., Zhou, Y.X., Xing, L.S., Chen, X.Y., Position of the Lhasa block, South Tibet, during the Late Cretaceous, *Nature*, 297, 319-321, 1982.
- Pozzi, J.P., Westphal, M., Girardeau, J., Besse, J., Zhou, Y.X., Chen, X.Y., Xing, L.S., Paleomagnetism of the Xigaze ophiolite and flysch (Yarlung Zangbo suture zone, southern Tibet): latitude and direction of spreading, *Earth Planet. Sci. Letters*, 70, 383-394, 1984.
- Prasad, J.N., Patil, S.K., Saraf, P.D., Venkateshwarlu, M., Rao, D.R.K., Palaeomagnetism of dyke swarms from the Deccan Volcanic Province of India, *J. Geomag. Geoelect.*, 48, 977-991, 1996.
- Pruner, P., Palaeomagnetism and palaeogeography of Mongolia in the Cretaceous, Permian and Carboniferous preliminary data, *Tectonophysics*, 139, 155-167, 1987.
- Pruner, P., Palaeomagnetism and palaeogeography of Mongolia from the Carboniferous to the Cretaceous final report, *Phys. Earth Planet. Int.*, 70, 169-177, 1992.
- Radhakrishna, T., Dallmeyer, R.D., Joseph, M., Palaeomagnetism and 36Ar/40Ar vs 39Ar/40Ar isotope correlation ages of dyke swarms in central Kerala, India: tectonic implications, *Earth Planet. Sci. Letters*, 121, 213-226, 1994.
- Radhakrishnamurty, C., Remanent magnetism of igneous rocks in the Gondwana formations of India, D.Sc thesis, Andra University, India, (?)pp, 1963.
- Rao, G.S.V.P., Bhalla, M.S., Palaeomagnetism of Dhar traps and drift of the subcontinent during Deccan volcanism, *Geophys. J. R. Astron. Soc.*, 65, 155-164, 1981.
- Rochette, P., Scaillet, B., Guillot, S., Le Fort, P., Pecher, A., Magnetic properties of the High Himalayan leucogranites: structural impliactions, *Earth Planet. Sci. Letters*, 126, 217-234, 1994.
- Rodionov, V.P., Neustroev, A.P., Lvov, M.Y., Paleomagnetic directions and paleomagnetic pole positions: *Data for the former USSR Issue 8*, VNIGRI Institute, St.Petersburg, Russia (unpublished), Catalogue, 1993.
- Sakai, H., Funaki, M., Sato, T., Takagami, Y., Sakai, H., Hirooka, K., Paleomagnetic study of Rajmahal trap in India - discussion of geomagnetic dipole moment and reconstruction of Gondwanaland, *Proc. NIRP Symp. Antarct. Geosci.*, 10, 68-78, 1997.
- Sasajima, S., Nishimura, S., Hirooka, K., Otofuji, Y., Van Leeuwen, T., Hehuwat, F., Paleomagnetic studies combined with fission-track datings on the western arc of Sulawesi, east Indonesia, Tectonophysics, 64, 163-172, 1980.
- Sato, K., Liu, Y., Wang, Y., Yokoyama, M., Yoshioka, S., Yang, Z., Otofuji, Y., Paleomagnetic study of Cretaceous rocks from Pu'er, western Yunnann China: Evidence of internal deformation of the Indochina block, *Earth Planet. Sci. Letters*, 258, 1-15, 2007.
- Sato, K., Liu, Y., Zhu, Z., Yang, Z., Otofuji, Y., Paleomagnetic study of middle Cretaceous rocks from Yunlong, western Yunnan, China: evidence of southward displacement of Indochina, *Earth Planet. Sci. Letters*, 165, 1-15, 1999.
- Sato, K., Liu, Y., Zhu, Z., Yang, Z., Otofuji, Y., Tertiary paleomagnetic data from northwestern Yunnan, China: further evidence for large clockwise rotation of the Indochina block and its tectonic implications, *Earth Planet. Sci. Letters*, 185, 185-198, 2001.
- Savostin, L.A., Kheyfets, A.M., Paleomagnetic directions and pole positions: *Data for the USSR Issue 7*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1989.
- Savostin, L.A., Pavlov, V.E., Safonov, V.G., Bondarenko, G.E., Otlozheniya nizhney i sredney yuri na zapade Omolonskogo massiva (Severo-Vostok Rossii): usloviya obrazovaniya i paleomagnetism, *Dokl. Acad. Sci. USSR*, 333, 481-486, 1993.
- Schmidtke, E.A., Fuller, M.D., Haston, R.B., Paleomagnetic data from Sarawak, Malaysian Borneo, and the Late Mesozoic and Cenozoic tectonics of Sundaland, *Tectonics*, 9, 123-140, 1990.
- Shen, Z., Chen, H., Fang, D., Ding, J., Zhang, S., Huang, Z., Li, M., Paleomagnetic results of the Cretaceous marine sediments in Tongyouluke, southwest Tarim, *Science in China (ser.D)*, 48, 406-416, 2005.
- Sun, Z., Yang, Z., Ma, X., Zhao, Y., Paleomagnetic result of the Lower-Cretaceous from Luanping basin, Hebei Province and its tectonic implications, *Science in China (ser.D)*, *41*, 43-50, 1998.

- Sun, Z., Yang, Z., Pei, J., Yang, T., Wang, X, New Early Cretaceous paleomagnetic data from volcanic and red beds of the eastern Qaidam Block and its implications for tectonics of Central Asia, *Earth Planet. Sci. Letters*, 243, 268-281, 2006.
- Sun, Z., Yang, Z., Pei, J., Yu, Q., New Late Cretaceous and Paleogene paleomagnetic results frome south China and their geodynamic implications, J. Geophys. Res., 111, B03101, 2006.
- Takemoto, K., Halim, N., Otofuji, Y., Van Tri, T., Van De, L., Hada, S., New paleomagnetic constraints on the extrusion of Indochina: Late Cretaceous results from the Song Da terrane, Northern Vietnam, *Earth Planet*. *Sci. Letters*, 229, 273-285, 2005.
- Takahashi, M., Nomura, S., Paleomagnetism of the Chichibu quartz diorite constraints on the time of lateral bending of the Kanto syntaxis, *J. Geomag. Geoelect.*, *41*, 479-489, 1989.
- Takahashi, M., Watanabe, Y., Paleomagnetism of the Miocene igneous rocks in the Uchiyama area, central Japan, J. Geomag. Geoelect., 45, 89-101, 1993.
- Takeuchi, T., Kodama, K., Ozawa, T., Paleomagnetic evidence for block rotations in central Hokkaido-south Sakalain, northeast Asia, *Earth Planet. Sci. Letters*, 169, 7-21, 1999.
- Tamai, M., Liu, Y., Lu, L.Z., Yokoyama, M., Halim, N., Zaman, H., Otofuji, Y., Palaeomagnetic evidence for southward displacement of the Chuan Dian fragment of the Yangtze Block, *Geophys. J. Int.*, 158, 297-309, 2004.
- Tan, X., Gilder, S., Kodama, K.P., Jiang, W., Zhang, H., Xu, H., and Zhou, D, New paleomagnetic results from the Lhasa block: Revised estimation of latitude shortening across Tibet and implications for dating the India-Asia collision, *Earth Planet. Sci. Lett.*, 293, 396-404, 2010.
- Tanaka, H., Tsunakawa, H., Yamagishi, H., Kimura, G., Paleomagnetism of the Shakotan Peninsula, West Hokkaido, Japan, J. Geomag. Geoelect., 43, 277-294, 1991.
- Thomas, J.C., Perroud, H., Cobbold, P.R., Bazhenov, M.L., Burtman, V.S., Chauvin, A., Sadybakasov, E., A paleomagnetic study of Tertiary formation from the Kyrgyz Tien Shan and its implications, *J. Geophys. Res.*, 98, 9571-9589, 1993.
- Thomas, J.C., Chauvin, A., Gapais, D., Bazhenov, M.L., Perroud, H., Cobbold, P.R., Burtman, V.S., Paleomagnetic evidence for Cenozoic block rotations in the Tadjik depression (Central Asia), *J. Geophys. Res.*, 99, 15141-15160, 1994.
- Tosha, T., Hamano, Y., Paleomagnetic study of the dike swarm in the Oga Peninsula, northeast Honshu Island, J. Geomag. Geoelect., 38, 349-360, 1986.
- Tosha, T., Hamano, Y., Paleomagnetism of Tertiary rocks from the Oga Peninsula and rotation of northeast Japan, *Tectonics*, 7, 653-662, 1988.
- Tsapenko, M.N., Paleomagnetic directions and pole positions: *Data for the USSR Issue 2*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1973.
- Tsunakawa, H., Hamano, Y., Paleomagnetic study of the Ashitaka Dike Swarm in central Japan, J. Geomag. Geoelect., 40, 221-226, 1988.
- Tsunakawa, H., Heki, K., Amano, K., Paleomagnetism of the Shimokura Dike Swarm in northeast Japan, J. Geomag. Geoelect., 37, 979-985, 1985.
- Uno, K., Otofuji, Y., Matsuda, T., Kuniko, Y., Enami, R., Kulinich, R.G., Zimin, P.S., Matunin, A.P., Sukkno, V.G., Late Cretaceous paleomagnetic results from northeast Asian continental margin: the Sikhote Alin mountain range, eastern Russia, *Geophys. Res. Lett.*, 26, 553-556, 1999.
- van Hinsbergen, D.J.J., Straathof, G.B., Kuiper, K.F., Cunningham, W.D., Wijbrans, J., No vertical axis rotations during Neogene transpressional orogeny in the NE Gobi Altai: Coinciding Mongolian and Eurasian early Cretaceous apparent polar wander paths, *Geophys. J. Int.*, 175, 105-128, 2008.
- Vandamme, D., Courtillot, V., Besse, J., Montigny, R., Paleomagnetism and age determinations of the Deccan traps (India): Results of a Nagpur-Bombay traverse, and review of earlier work, *Rev. Geophys.*, 29, 159-190, 1991.
- Verma, R.K., Pullaiah, G., Paleomagnetism of Tirupati sandstones from Godavary Valley, India, *Earth Planet*. *Sci. Letters*, 2, 310-316, 1967.
- Verma, R.K., Pullaiah, G., Paleomagnetic study of a vertical sequence of Deccan Traps near Jabalpur, *Bull. Volcanologique*, 35, 750-765, 1971.
- Verma, R.K., Mital, G.S., Paleomagnetic study of a vertical sequence of traps from Mount Pavagarh, Gujrat, India, *Phys. Earth Planet. Int.*, 8, 63-74, 1974.
- Verma, R.K., Pullaiah, G., Anjaneyulu, G.R., Mallik, P.K., Paleomagnetic study of Deccan Traps from Jabalpur to Amarkantah, Central India, J. Geomag. Geoelect., 25, 437-446, 1973.
- Wang, B., Yang, Z., Late Cretaceous paleomagnetic results from southeastern China, and their geological implication, Earth Planet. Sci. Letters, 258, 315-333, 2007.
- Wensink, H., A note on the paleomagnetism of the Lower Siwaliks near Choa Saiden Shah, Potwar Plateau, West Pakistan, *Pakistan J. Sci. Ind. Res.*, 15, 89-91, 1972.
- Wensink, H., Newer paleomagnetic results of the Deccan Traps, India, Tectonophysics, 17, 41-59, 1973.

- Wensink, H. Paleomagnetism of rocks from Sumba: tectonic implications since the Late Cretaceous, J. Sth. East Asia Earth Sci., 9, 51-65, 1994.
- Wensink, H., Klootwijk, C.T., Paleomagnetism of the Deccan Traps in the Western Ghats, near Poona, India, *Tectonophysics*, 11, 175-190, 1971.
- Wensink, H., Hartosukohardjo, S., Kool, K., Paleomagnetism of the Nakfunu Formation of Early Cretaceous age, Western Timor, Indonesia, *Geol. Mijnb.*, 66, 89-99, 1987.
- Wensink, H., van Bergen, M.J., The tectonic emplacement of Sumba in the Sunda-Banda Arc: paleomagnetic and geochemical evidence from the early Miocene Jawila Volcanics, *Tectonophysics*, 250, 15-30, 1995.
- Westphal, M., Pozzi, J.P., Zhou, Y.X., Xing, L.S., Chen, X.Y., Palaeomagnetic data about southern Tibet (Xizang) - 1. The Cretaceous formations of the Lhasa block, *Geophys. J. Roy. Astron. Soc.*, 73, 507-521, 1983.
- Yamazaki, T., Paleomagnetism of Miocene sedimentary rocks around Matsushima Bay, northeast Japan and its implication for the time of the rotation of northeast Japan, J. Geomag. Geoelect., 41, 533-548, 1989.
- Yan, M., VanderVoo, R., Fang, X.M., Parés, J.M., Rea, D.K., Paleomagnetic evidence for a mid-Miocene clockwise rotation of about 25° of the Guide Basin area in NE Tibet., *Earth Planet. Sci. Lett.*, 241, 234-247, 2006.
- Yang, Z., Besse, J., Paleomagnetic study of Permian and Mesozoic sedimentary rocks from Northern Thailand supports the extrusion model for Indochina, *Earth Planet. Sci. Letters*, 117, 525-552, 1993.
- Yang, Z., Courtillot, V., Besse, J., Ma, X., Xing, L., Xu, S., Zhang, J., Jurassic paleomagnetic constraints on the collision of the North and South China blocks, *Geophys. Res. Lett.*, 19, 577-580, 1992.
- Yang, Z., Yin, J., Sun, Z., Otofuji, Y., Sato, K., Discrepant Cretaceous paleomagnetic poles between Eastern China and Indochina: a consequence of the extrusion of Indochina, *Tectonophysics*, 334, 101-113, 2001.
- Yeroshkin, A.F., Paleomagnetic directions and pole positions: *Data for the USSR Issue 5*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1982.
- Yeroshkin, A.F., Paleomagnetic directions and pole positions: *Data for the USSR Issue 2*, Soviet Geophysical Committee: World Data Center-B (Moscow), Catalogue, 1973.
- Yokoyama, M., Liu, Y., Halim, N., Otofuji, Y., Paleomagnetic study of Upper Jurassic rocks from the Sichuan basin: tectonic aspects for the North China Block, *Earth Planet. Sci. Letters*, 193, 273-285, 2001.
- Yokoyama, M., Liu, Y., Otofuji, Y., Yang, Z., New Late Jurassic palaeomagnetic data from the northern Sichuan basib: implications for the deformation of the Yangtze craton, *Geophys. J. Int.*, 139, 795-805, 1999.
- Yoshioka, S., Liu, Y.Y., Sato, K., Inokuchi, H., Su, L., Zaman, H., Otofuji, Y., Paleomagnetic evidence for post-Cretaceous internal deformation of the Chuan Dian Fragment in the Yangtze block: a consequence of indentation of India into Asia, *Tectonophysics*, 376, 61-74, 2003.
- Zaman, H., Torii, M., Palaeomagnetic study of Cretaceous red beds from the eastern Hinukush ranges, northern Pakistan: palaeoreconstruction of the Kohistan-Karakoram composite unit before the India-Asia collision, *Geophys. J. Int.*, 136, 719-738, 1999.
- Zhao, X., A paleomagnetic study of Phanerozoic rocks from eastern China, Ph.D Thesis, Univ. California Santa Cruz, (?)pp, 1987.
- Zhao, X., Coe, R.S., Zhou, Y., Wu,H., Wang, J., New paleomagnetic results from northern China: collision and suturing with Siberia and Kazakhstan, *Tectonophysics*, 181, 43-81, 1990.
- Zhao, X., Coe, R., Zhou, Y., Hu, S., Wu, H., Kuang, G., Dong, Z., Wang, J., Tertiary paleomagnetism of North and South China and a reappraisal of late Mesozoic paleomagnetic data from Eurasia: implications for the Cenozoic tectonic history of Asia, *Tectonophysics*, 235, 181-203, 1994.
- Zhao, X., Coe, R.S., Chang, K.H., Park, S.O., Omarzai, S.K., Zhu, R., Zhou, Y., Gilder, S., Zheng, Z., Clockwise rotations recorded in Early Cretaceous rocks of South Korea: implications for tectonic affinity between the Korean Peninula and North China, *Geophys. J. Int.*, 139, 447-463, 1999.
- Zhei, Y., Seguin, M.K., Zhou, Y., Dong, J., Zheng, Y., New paleomagnetic data from the Huanan Block, China, and Cretaceous tectonics in eastern China, *Phys. Earth Planet. Interiors*, 73, 163-188, 1992.
- Zheng, Z., Kono, M., Tsunakawa, H., Kimura, G., Wei, Q., Zhu, X., Hao, T., The apparent polar wander path for the North China Block since the Jurassic, *Geophys. J. Int.*, 104, 29-40, 1991.
- Zhitkov, A.N., Kravchinsky, V.A., Konstantinov, K.M., Paleomagnetic study of the geodynamic basement of the eastern part of the USSR (east of the Yenesei River), Sci. Rpt. Paleomag. Lab. Vost Sib NIIGGIMS, (?)pp, 1994.
- Zhu, R., Yang, Z., Wu, H., Ma, X., Huang, B., Meng, Z., Fang, D., Paleomagnetic constraints on the tectonic history of the major blocks of China during the Phanerozoic, *Science in China (ser. D)*, 41, 1-19, 1998.
- Zhu, R., Lo, C.H., Shi, R., Shi, G., Pan, Y., Shao, J., Palaeointensities determined from the middle Cretaceous basalt in Liaoning Province, northeastern China, *Phys. Earth Planet. Interiors*, 142, 49-59, 2004.
- Zhu, R., Lo, C.H., Shi, R., Pan, Y., Shi, G., Shao, J., Is there a precursor to the Cretaceous normal superchron? New paleointensity and age determination from Liaoning province, northeastern China, *Phys. Earth Planet*. *Interiors*, 147, 117-126, 2004.

- Zhu, Z., Morinaga, H., Gui, R., Xu, S., Liu, Y., Paleomagnetic constraints on the extent of the stable body of the South China Block since the Cretaceous: New data from the Yuanma Basin, China., *Earth Planet. Sci. Letters*, 248, 533-544, 2006.
- Zhu, X., Liu, C., Ye, S., Lin, J., Remanence of red beds from Linzhou, Xizang and the northward movement of the Indian plate, *Scientia Geologica Sinica*, xx, 44-51, 1977.
- Zhu, Z., Hao, T., Zhao, H., Paleomagnetic study on the tectonic evolution of Pan-Xi block and adjacent area during YinZhi-Yanshan period (in Chinese), *Acta Geophysica Sinica*, *31*, 420-431, 1988.
- Zhuang, Z., Tian, D., Ma, X., Ren, X., Jiang, X., Xu, S., A paleomagnetic study along the Yuan-Tianquan Cretaceous-Eogene section in the Sichuan Basin (in Chinese), *Geophys. Geochem. Expl.*, 12, 224-228, 1988.

Block ID	Block Name	Age span	N igneous r.	N sediments	N total	Totals by Ar	ea
SIB	Siberia	19.5-153.5	9	18	27		
AMU	Amuria	12.7-168.5	27	2	29		
NCB	North China	0.5-168.5	14	21	35		
KOR	Korea	0.5-173.0	14	15	29	Stable	
SCB	South China	0.5-173.0	6	54	60	Eastern blocks:	180
JAP	Japan	0.5-19.5	25	15	40	Japan:	40
BUR	Malaysia-Burma	22.5-153.5	4	6	10		
SIM	Simao	14.0-168.5	0	18	18		
KHO	Khorat	5.5-173.0	2	11	13	Southeast Asia:	41
LH	Lhasa	2.5-168.5	9	14	23		
QI	Qiangtang	1.0-159.5	0	12	12		
KUN	Kunlun	10.0-123.0	0	3	3		
QA	Qaidam	2.2-172.5	1	30	31	Tibet:	69
JUN	Jungar	0.5-123.0	1	4	5		
TAR	Tarim	8.9-168.5	2	27	29		
MEA	Iran, Tadjikistan, etc	11.0-168.5	1	46	47		
KAZ	Kazakhstan	1,0-133,0	3	31	34	Central Asia:	115
IND	India	1.0-168.5	41	47	88	India:	88
		Total	159	374	533		533

Table A2: Synthesis of the total number of 0-175 Ma selected data.

Block ID	Block Name	N igneous r.	N sediments	N total	Total by A	Areas
SIB	Siberia	9	12	21		
AMU	Amuria	24	0	24		
NCB	North China	14	12	26		
KOR	Korea	14	12	26	Stable	
SCB	South China	5	44	49	Eastern blocks:	146
JAP	Japan	25	15	40	Japan:	40
BUR	Malaysia-Burma	4	5	9		
SIM	Simao	0	15	15		
КНО	Khorat	2	6	8	Southeast Asia:	32
LH	Lhasa	6	17	23		
QI	Qiangtang	0	11	11		
KUN	Kunlun	0	3	3		
QA	Qaidam	1	28	29	Tibet:	66
JUN	Jungar	1	4	5		
TAR	Tarim	2	24	26		
MEA	Iran, Tadjikistan, (1	43	44		
KAZ	Kazakhstan	3	32	35	Central Asia:	110
IND	India(*)	3	25	28	India:	28
	Total	114	308	422		422

Table A3: Number of 0-140 Ma data used in construction of anomaly maps (Fig.3, 9 and 13).

*India: data older than 50 Ma have been discarded

anomary maps (Fig.5, 7 and 15).					
Age	n igneous r.	n sediments	All		
0-50Ma	53	129	182		
50-140 Ma	61	179	240		
All	114	308	422		

Table A4: Distribution of 0-140 Ma rocktypes used in construction of anomaly maps (Fig.3, 9 and 13).

Block ID	Block Name	N igneous rocks	N sediments	N total
SIB	Siberia	9	12	21
AMU	Amuria	24	0	24
NCB	North China	14	12	26
KOR	Korea	14	12	26
SCB	South China	5	44	49
	Total	66	80	146

Table A5: Number of 0-140 Ma data used in East Asia APWP construction.

Terrane/Age (Ma)	Abr.(*)	Lat (°)	Euler poles Lon (°)	Angle (°)
Afghanistan 0 20 40 50 60 90	AFG	0.000 -25.428 -39.351 -37.292 -31.280 -30.172	0.000 212.059 211.706 219.591 222.887 228.950	0.000 10.391 13.192 29.416 33.158 39.868
Africa 0 20 40 50 60 90	AFR	0.000 -34.651 -29.633 -38.166 -34.244 -36.743	0.000 142.765 161.420 161.092 163.389 165.828	0.000 2.391 5.776 10.091 11.216 18.533
Amuria 0 20 40 50 60 90	ΑΜυ	0.000 -20.100 -21.856 -21.264 -73.299 -52.405	0.000 186.277 188.510 194.338 323.704 153.776	0.000 6.620 8.594 6.839 -2.106 -1.696
Arabia 0 20 40 50 60 90	ARB	0.000 36.620 32.141 35.255 33.166 35.163	0.000 7.116 6.304 348.074 354.794 354.128	0.000 -7.203 -13.581 -13.530 -16.135 -23.912
Australia 0 20 40 50 60 90	AUS	0.000 21.742 17.441 25.195 7.042 29.598	0.000 28.203 49.441 40.464 57.035 50.962	0.000 -13.119 -24.884 -28.673 -19.361 -35.668
Borneo 0 20 40	BOR	0.000 65.537 55.431	0.000 322.419 299.885	0.000 -3.834 -8.570

Table A7: Euler poles of finite rotations of various blocks / terranes shown in Fig. 14, in a West Europe fixed reference frame

50 60 90		4.317 -6.752 -7.229	272.672 265.947 266.749	-33.198 -35.172 -38.021
Central Europe 0 20 40 50 60 90	CUR	0.000 -21.890 -31.981 -5.406 -68.476 -80.263	0.000 225.408 212.974 226.459 308.548 190.906	0.000 2.160 3.222 1.492 -1.209 -1.144
East Eurasia 0 20 40 50 60 90	SIB	0.000 -15.532 -25.829 -14.498 75.797 75.811	0.000 188.922 191.113 190.138 147.514 54.256	0.000 6.480 8.220 5.892 2.421 2.302
Greenland 0 20 40 50 60 90	GRO	0.000 49.668 25.460 37.282 60.713 60.286	0.000 124.035 137.469 131.752 113.310 110.981	0.000 3.110 6.083 8.831 13.254 14.631
Greater India 0 40 50 60 90	GTI	0.000 26.651 30.477 16.567 23.168	0.000 37.552 25.329 22.050 13.031	0.000 -26.707 -32.395 -48.437 -71.107
Iberia 0 20 40 50 60 90	IBR	0.000 -35.504 -31.188 -13.839 -39.753 -28.741	0.000 175.614 180.295 194.299 174.559 169.242	0.000 5.623 2.220 0.573 5.391 1.881
India 0 20 40 50 60 90	IND	0.000 26.696 26.865 30.760 16.432 23.162	0.000 36.356 34.279 24.755 24.085 13.006	0.000 -12.479 -25.545 -32.178 -49.196 -71.068
Indochina 0	INC	0.000	0.000	0.000

20 40 50 60 90		29.208 76.954 9.979 -4.718 -4.503	285.939 92.810 261.353 252.154 248.908	-5.856 -8.901 -20.493 -24.811 -23.335
Iran 0 20 40 50 60	IRN	0.000 -23.630 -26.832 -0.831 29.354	0.000 220.464 212.535 224.634 220.668	0.000 2.934 2.472 1.138 1.012
Japan 0 20 40 50 60 90	JAP	0.000 72.456 82.958 46.964 8.856 8.930	0.000 214.598 209.877 258.230 215.526 200.921	0.000 -6.960 -8.468 -4.786 -7.676 -8.821
Jungar 0 20 40 50 60 90	JUN	0.000 11.050 -18.070 -8.254 64.570 65.527	0.000 161.344 177.757 183.753 109.804 82.932	0.000 6.640 7.835 5.928 4.154 3.965
Kunlun 0 20 40 50 60 90	KUN	0.000 -42.452 -46.142 -55.488 -51.707 -47.035	0.000 205.098 224.218 133.251 109.435 103.669	0.000 8.029 17.466 15.207 12.241 11.108
Lhasa 0 20 40 50 60 90	LH	0.000 38.425 33.818 44.788 24.971 28.287	0.000 31.486 44.582 336.460 324.306 333.016	0.000 -9.514 -28.412 -19.070 -16.898 -15.880
North America 0 20 40 50 60 90	ΝΑΜ	0.000 15.274 63.802 62.850 55.122 75.532	0.000 110.596 151.039 138.844 138.416 148.576	0.000 1.962 10.356 11.600 12.951 22.993

North China 0 20 40 50 60 90 Qaidam 0	NCB QA	0.000 -24.422 -23.958 -26.271 -72.649 -67.823 0.000	0.000 198.537 188.919 203.744 323.934 281.650 0.000	0.000 6.505 8.115 6.769 -1.891 -3.368 0.000
20 40 50 60 90		-18.319 -24.052 -21.805 -39.398 -45.615	201.700 180.398 176.785 297.290 281.045	6.316 8.276 7.703 -6.382 -4.955
Qiangtang 0 20 40 50 60 90	QI	0.000 -38.521 -43.171 -44.941 -37.519 -37.543	0.000 205.796 228.872 124.614 117.567 116.393	0.000 8.456 21.904 15.890 14.972 13.754
Shan-Tay 0 20 40 50 60 90	ST	0.000 44.225 41.293 -3.663 -14.328 -13.170	0.000 88.905 98.785 276.344 271.166 269.813	0.000 -7.846 -16.764 -37.779 -44.203 -40.007
South China 0 20 40 50 60 90	SCB	0.000 -27.691 -27.076 -26.952 -70.040 -70.034	0.000 213.903 197.631 208.680 292.633 145.036	0.000 6.993 8.481 6.981 -2.799 -1.992
Tarim 0 20 40 50 60 90	TAR	0.000 -25.232 -25.031 -12.847 -44.351 -43.761	0.000 207.731 194.412 178.342 290.571 280.724	0.000 7.256 8.249 6.913 -7.190 -5.184
Turkey 0 20 40 50	TUR	0.000 -15.585 -21.510 -27.512	0.000 204.061 204.314 24.679	0.000 5.012 5.115 -2.010

60 90		-15.053 -34.395	9.864 148.352	-2.114 11.179
West Europe	EUR			
0		0.000	0.000	0.000
20		-78.667	161.834	0.000
40		-33.294	238.894	0.001
50		-78.360	160.330	0.000
60		-74.813	151.931	0.000
90		44.334	207.270	0.000

(*) Abridged names

Figure A: International Bathymetric Chart of the Arctic Ocean (IBCAO) of Jakobsson et al. (2008) with toponymy, as cited in text. Topographic heights are given in the bar scale.