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Abstract 

Zircons from two samples of the Sugetbrak basalts (SB) yieldweighted mean ages of 

615.24.8Ma and 614.49.1Ma. These ages,interpreted as the eruption age of the SB, providean 

age constraint onthe timing of theSugetbrak Formation in Sugetbrak, northwestern Tarim Block, 

China. These two ages suggest that the igneous activities related to the breakup of the 

Neoproterozoic supercontinent Rodinia lasteduntil614-615 Ma in at least the northwest Tarim 

Block. Geochemicalanalysis indicatesthat the SB wasgenerated in an intra-continental rifting 

environment.Application of the dynamic melting inversion method suggests that the Sugetbrak 

basalts represent 7-12% partial melts. Unlike large-volume tholeiites, these low-degree transitional 

basaltic melts may represent the waning stage of plume volcanism during a long-lasting 

continental breakup. Based on the ages of the SB and its stratigraphic relationship with the 

Yuermeinak diamictite, the Yuermeinakglaciation in the Sugetbrak section of the northwest Tarim 

Block should correlate with theTereekenglaciation in the Qurugtagh area of the northeast Tarim 

Block, the Nantuo glaciation in Yangtze Block, and the Elatinaglaciation in South Australia. 

 

Keywords: Late Neoproterozoic, Tarim Block, Rodinia, SHRIMP U-Pb age, Glaciation 

 

1. Introduction 

Magmatic rocks associated with the Rodiniabreakup may record critical information 

onthe timing and processes of continental breakup, as they can be precisely dated, and 

provide cluesregardingcrustal thickness and mantle sources (Kullerud et al., 2006). 

TheNeoproterozoic breakupof the Rodinia supercontinent has attracted much attention recently 
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(Jefferson, et al., 1989; Li, et al., 1996; Veevers, et al., 1997; Wingate, et al., 1998; Li, 1999, 

Karlstrom, et al., 2000; Veevers, 2000；Li and Powell, 2001;Direen, et al., 2003; Li, et al., 2003; 

2006; Kheraskova, et al., 2010). This event,developed in Australia, East Antarctica, 

Yangtze,andthe Tarim Block,is divided into four stagesin the Tarim Block: 820-800Ma, 

780-760Ma, 740-735Ma and 650-635Ma (Li, et al., 1996; 2001; 2003; 2008; Li, et al., 2010; 

Zhang, et al., 2011; Zhang, et al., 2012). Theages of these magmatic events have been employed to 

constrain the division of the Neoproterozoicice ages (Ross and Villeneuve, 1997; Hoffman and 

Schrag, 2002; Hoffmann, et al., 2004; 2006; Zhou, et al., 2004; Condon, et al., 2005; Zhang, et al., 

2005; Xu et al., 2009; Macdonald, et al., 2010). 

The TarimBlock has Neoproterozoic magmatic records similar to those of the 

YangtzeBlock, and may have been located on the periphery of the proposed 

Rodiniansuperplume (Li Z.X. et al., 1999; Chen et al., 2004; Xu et al., 2005, 2009; Zhang et 

al., 2009; Lu et al., 2008;Shu et al., 2011).Four stages of Neoproterozoic magmatic events 

have been reported in the Tarim Block.The first two (820-800 Ma and 780-760 Ma) stages, 

represented by ultramafic-mafic complexes, adakitic granites, and mafic dykes, are interpreted to 

be a result of the partial melting of thickened lower crust triggered by underplating of a Rodinian 

superplume (Long, et al., 2011; Zhang, et al., 2009; 2011a; 2011b). The third (740-735 Ma) 

stage,consisting of bimodal volcanic rocks andthe fourth (650-635 Ma) stage,composed ofmafic 

dykes, potassic granitoids, peraluminous granite and volcanic rocks, are attributed to rifting in the 

Tarim Block(Xu, et al., 2005; 2009; Zhang et al., 2011; Zhu, et al., 2011). However, the presence 

of 615±15 Ma volcanic rocks in the Mochia-Khutuk areaof thenortheast TarimBlock (Xu, et al., 

2009), and 588-619 Ma detrital zirconsin the Aksu area of the northwest TarimBlock (Zhu, et al., 



4 

 

2011), may indicate that there wasa magmatic event evenyounger than thefourth event.This is 

useful forinvestigatingthe waning stage of the Rodiniasuperplume breakup in the Tarim Block. 

In this paper we report newages of basaltsfrom the NeoproterozoicSugetbrak Formation in 

the Sugetbraksection of the Aksu area, NW TarimBlock, and discuss their tectonic implications for 

the glaciation correlation and intra-continental riftinginthe Late Neoproterozoic. 

 

2. Geological setting 

 

2.1.Neoproterozoic strata in the Aksu area of the northwest Tarim Block 

Neoproterozoic strata occur in the Aksu area of northwest Tarim, the Quruqtagh area of 

northeast Tarim, and the Yecheng area of southwest Tarim.Strata containing volcanicshave been 

found from the Aksu area and the Quruqtagh area (Gao and Zhu, 1984; Xu et al., 2005;Wang et al., 

2010a, Fig. 1B). 

In the Aksu area, the Neoproterozoic strata crops out in southwest Aksu,Wushi and 

Sugetbrak (Fig. 1C).In the sections of southwest Aksu and Wushi, the stratainclude the Aksu 

Group and theoverlying Sugetbrak and Chigebrak Formations. The Aksu Group is composed of 

pelitic, psammitic, and mafic schists.Mafic schistsarecharacterized bygreenschists and blueschists 

that areconsidered to besomeof the oldest high-pressure metamorphic rocks (Liou et al., 1989, 

1990; 1996; Nakajima et al., 1990; Zhang, et al., 1999).A tectonic evolution modelfor the 

Aksublueschist has been proposed(Zhang, et al., 2010; Zhu et al., 2011). There is a clear angular 

unconformity between the Aksu Group and the overlying Sugetbrak Formation in southwestAksu 

and Wushi (Gao, et al., 1985; Turner, 2010; Zhu, et al., 2011). The 400-450 m thick Sugetbrak 
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Formation is composed of red conglomerates, red fluvial sandstones and grey lacustrine 

mudstones with three horizons of basalts.The Chigebrak Formation is characterized by thick 

dolostoneand is overlainunconformably by the Cambrian Yuertus Formation (Gao et al., 1986; 

Turner, 2010; Zhu et al., 2011). 

In the Sugetbraksection,the Neoproterozoic shows a differentsuccessioncomposed 

of,from bottomto top, the Qiaoenbrak, Yuermeinak,Sugetbrak and Chigebrak Formations (Fig. 2A, 

2B). The Qiaoenbrak Formationis composed of epimetamorphicsandstone and siltstoneflysch,with 

a thickness of 1966-2094 m (Gao, et al., 1986). The glacial origin of this formation is debated. For 

example, Gao et al. (1993) suggestedthat it is part of a turbidite sequence. 

Itisunconformablyoverlain by theYuermeinak Formation and is consideredto be marineglacier 

deposits due to the presenceof several interbeddeddiamictites (Gao, et al., 1986). The 

YuermeinakFormation occurs only in the Sugetbrak area, and is characterized bydiamictites up to 

61 m thick,which areinterpreted to becontinental glacier deposits (Gao, et al., 1986).The 

Sugetbrak Formation can be divided into the Lower and Upper members in Sugetbrak(Fig. 2B, 

2C;Gao, et al., 1986; Zhan, et al., 2007). The Lower Sugetbrak Formation(108-461 m)is composed 

ofthin-layered red sandstone, quartz sandstone, siltstone and mudstone with a discontinuous 

horizon of 5-10 m thick basalt in its lower part, followed by 79 m thick volcanic rock above (Fig. 

2C). The Upper Sugetbrak Formationconformably overlies the Lower member and is conformably 

overlain by the Chigebrak Formation. The Upper Sugetbrak Formation comprises 82 m thick red 

and grey thin-layered sandstone and mudstones with interbedded limestones (Fig. 2B, Gao, et al., 

1986). 

 

Fig. 1.(A):Tectonic location of Tarim Block in China;(B):Geological map of Tarim Block, West 
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China; (C): Geological map of the Aksu area 

 

Fig. 2. (A): Geological map of the Sugetbrak sectionand sample positions; (B): theNeoproterozoic 

stratigraphic column inSugetbrak; (C): photos of the Neoproterozoic strata in Sugetbrak  

 

2.2. Sugetbrakbasalt (SB) and samples 

The Sugetbrak basalt (SB) occurs insouthwest Aksu, Wushi andSugetbrakin the Aksu area 

(Fig. 1C) of thenorthwest Tarim block.There are between 2 and 4horizons of thisbasalt inthe 

southwest Askusection, with thicknesses of 15-30 m (Wang, et al., 2010a; Zhu, et al., 2011).Two 

4-5 m thick horizons of the SB are also reported in the Wushi section45 km to the northwest 

(Turner, 2010).In the Sugetbraksection,the SB is much thicker and has repeated occurrencescaused 

byanE-W extending syncline. On the north limb of the syncline,a79 m thick SB occurencecrops 

outat the top of the Lower member of the Sugetbrak Fm. (Fig. 2B, 2C) and shows conformity 

relationships with the underlying sandstone (Fig. 3A), where 7 samples of A group(05822, Y1, Y2, 

Y5, Y6, Y7 and Y8; Fig. 2A)werecollected. Adiscontinuous horizon of 5-10 m thick 

columnar-jointed basalt (Fig. 3B) occurs in the middle of the Lower member of the Sugetbrak 

Fm.(Fig.2B, 2C), showing a conformity relationship with underlying sandstones.On the south 

limb of the syncline, a continuous horizonof the SB,characterized by pillow lava, (Fig. 3D) 

extends for several kilometers(Fig. 3C),andshows aconformity relationship with overlying red 

sandstones (Fig. 3E). Here, 9samples of B group(05823, 830S2, 831S51, 83156, 83158, 83160, 

83161, 83163 and 831S81)werecollected(Fig.2A).These columnar jointed basaltsand pillow lava 

in the SB,combinedwith sedimentary structures, such as large herringbone (Fig. 3A) and 

ripplebedding (Fig. 3F) in the redsandstones, suggest a very shallow continental sedimentary 

environment during the period of SB magmatism.About 4 km southwest ofSugetbrak, two basaltic 
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flows have been reported (Zhang, et al., 2012). 

 

Fig.3. Photographs of the SB and sedimentary rocks of the Sugetbrak Formation. 

 

2.3. Previous geochronology for the SB 

Seventeen zircons fromthe SB fromsouthwest Aksu have been dated by the LA-ICP-MS 

method and yieldthree ages of 1926±27 Ma, 1432±22 Ma and 807±21 Ma. These ages have been 

interpreted as the ages of Mesoproterozoic metamorphic zircons and Late Neoproterozoicinherited 

magmatic zircons (Wang et al., 2010a). The youngest age in these inherited zircons is 755 Ma, 

suggesting that the SB is younger than 755 Ma (Wang, et al., 2010a). Recently, Zhang et al.(2012) 

reported a LA-ICP-MS U-Pb age of 783.7±2.3 Ma from the SB, about 4km southwest ofSugetbrak, 

and interpretedthis ageas thecrystallization age of the SB.  

3. Analytical procedures 

Twosamples from the SB, 05822 and 05823, wereanalyzedby the SHRIMP U-Pb method for 

age dating. In addition, these twosamples and the 14 other SBsampleswereanalyzedto 

determinetheir major and trace elements compositions.  

Zircons for SHRIMP analyses were separated from samples 05822 and 05823 in the SB 

according to magnetic properties and density, and purified by hand picking. The zircons, together 

with several grains of TEMORA, were cast in an epoxy mount and polished down to half section. 

Cathodoluminescence (CL) imaging was used to guide the SHRIMP analyses. The CL study was 

undertaken on a FEI-XL30SFEG electron microscope at the Department of Electronics, Peking 

University. 
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The SHRIMP U-Pb analyses wereperformed on the Beijing SHRIMPⅡat the 

ChineseAcademy of Geological Sciences, Ministry of Land and Resource of Peoples’ Republic of 

China. The analytical procedures followed the methodology of Williams et al (1987) and 

Compston et al (1992). For the zircon analyses, nine ion species of Zr2O
+
, 

204
Pb

+
, 

207
Pb

+
, 

206
Pb

+
,
 

208
Pb

+
, U

+
, Th

+
, ThO

+
, UO

+
 and background weremeasured on a single electron multiplier by 

cyclicstepping of the magneticfield, recording the mean ion counts of every 7 scans. A primary 

ion beam of c. 4.5 nA, 10 kV O
-2

 and c. 20-25μm spot diameterwas used. Masses were analyzedat 

a mass resolution of c. 5000 (1% peakheight). Interelementfractionation in the ion emission of 

zircon wascorrected relative to the ANU RSES references, using the TEMORA (417 Ma, 
206

Pb*/ 

238
U=0.06683). Errors on individualanalysis are at the1σ levelbased on countingstatistics. The 

reproducibility of TEMORAwasrepeatedlymeasuredat c. 3%. The software of Ludwig SQUID1.0 

and attached ISOPLOT wereused for data processing (Ludwig, 1999 ; 2001). The ages 

werecalculatedusing the decayconstants recommended by IUGS (1977). The weightedmeanages 

werequotedat a 95% confidence level. The initial lead component was corrected using measured 

204
Pb.  

Major element oxides were determined by x-ray fluorescence using glass disks at the 

Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, Peking University. 

Analytical precision as determined on duplicate analyses was generally around 1–5%. For trace 

element analyses, about 50 mg sample powders were dissolved using a HF+HNO3 mixture in a 

Teflon bomb at ~190 °C for 48 h. Trace elements were analyzed using a Finnigan Element 

IIICP-MS at the Center of Modern Analysis, Nanjing University. Analytical precision for trace 

elements was better than 5%. Detailed analytical procedure followedGao et al. (2003). 
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4. U-Pb zircon geochronology 

The measured isotopic ratios and calculated ages for samples 05822 and 05823 are given in 

Table 1 and illustrated on Concordia plots in Fig. 4B. The measured U concentrations for these 

zircon grains vary from 960 to 58 ppm; Th, from 949 to 63 ppm; and Th/U ratios, from 1.59 to 

0.26, which suggests that all zircons belong to a magmatic type. 

Twenty-nine zircons were dated in total, and can be divided into threeage groups (Table 

1).Zircons ofgroup1are~ 150 µm in size,show weakly zoned textures (Fig. 4A, 05823-11-4.1),and 

yield a 
207

Pb/
206

Pb age of 1756±9 Ma (Table 1, 05823-11-4.1), indicatingthe 

Mesoproterozoicmagmatism (Hu, et al., 2000). Most zircons of groups2 and 3 are smaller, ranging 

from 80to30 µm.Theyare euhedral with oscillatoryzoning,indicative of magmatic zircons (Fig. 

4A).
206

Pb/
238

U ages of twenty-fourzircons ofgroup 2 range from 676 to 864 Ma, and form several 

intervals of 676-691Ma (n=3), 707-743Ma (n=5), 751-790Ma (n=7) and 806-864Ma (n=9, Table 

1). These ages represent inherited zircon ages andreflect multiple magmatic episodesrelated 

toRodinia breakup inthe Late Neoproterozoic(Zhang, et al., 2011b; Zhu et al., 2011b; Wang, et al., 

2010a).Interestingly, there are four zircons in group 3 that yield 
206

Pb/
238

U ages from 617 to 612 

Ma (05822-1-7.1, 05822-1A-5.1, 05823-11-2.1 and 05823-11-5.1), which give twoconcordia ages 

of 615.2±4.8 Ma (Fig. 4B) for sample 05822 and 614.4±9.1 Ma (Fig. 4C) for sample 

05823.Because these 4 youngest zircons areeuhedral and thesmallestin size, their concordia ages 

of 614-615Maare interpreted as the eruption age of the SB, although we cannot completely rule 

out the possibility that the ~615 Ma zircons may represent the youngest inherited zircons. In the 

case of youngest zircon inheritance, the eruption age of the Sugetbrak basalts would be slightly 
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younger than ~615 Ma. 

Table 1. Zircon U-Pb isotopic data 

Fig. 4. Cathodoluminescence images and Zircon concordia plots 

 

5. Geochemistry 

Major and trace elements of the SB are listed in Table 2.They are characterized by high TiO2 

contents (2.2-4.0%). Their Al2O3 ranges from 13.9% to 17.7%. Total alkali content ranges from 

2.9% to 5.4%, with Na2O>K2O. Theirhigh LOI contents, ranging from 2.7% to 8.7%, indicate 

alterations. Na2O and K2O were probably mobile during alterations, and thus cannot be employed 

for rock classifications using the total alkali vs. silica diagram.  

Table 2. Major and trace elements of the SB 

Petrologically, it is useful to determine whether the rocks are alkali basalts or tholeiites. Here 

we use immobiletrace elements such as Nb and Y to further evaluate their alkali character. These 

samples have Nb/Y ratios ranging mostly from 0.58 to 0.68. In the Zr/TiO2 – Nb/Y diagram 

(Winchester and Floyd, 1977), they plot on the boundary line between sub-alkaline basalts and 

alkali basalts (Fig. 7A). In the Nb/Y –Zr/(P2O5*10000) diagram, they also plot near the boundary 

line between alkali basalts and tholeiitic basalts (Fig. 7B). We thus regard them as transitional 

basalts.  

Fig. 5. A: Zr/TiO2 – Nb/Y diagram (Winchester and Floyd, 1977) 

B: Nb/Y – Zr/(P2O5*10000) diagram (Floyd and Winchester, 1975) 

All samples are enriched in light rare earth elements (LREEs, Fig. 6A). They lack negative 

Eu anomalies, indicating that plagioclase is not a fractionatingphase.In the Spider diagram (Fig. 
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6B), they display positive anomalies in Ba and Pb and negative anomalies in Rb and Sr. They do 

not shownegative Nb anomalies.  

Fig. 6.A: REE diagram; B: Spider diagram 

  

 

6. Discussion 

6.1 Petrogenesis and tectonic settings 

6.1.1Within-plate environments 

Ti, Zr, Y and Nb are immobile trace elements during zeolite to greenschistfacies 

metamorphism, and may be useful for the determination of tectonic environments of basaltic rocks 

(Pearce and Cann, 1973; Winchester and Floyd, 1975). In the Ti-Zr-Y diagram (Pearce and Cann, 

1973), the lavas plot in the “within-plate” basalt field (Fig. 7A). In the Nb-Zr-Y diagram 

(Meschede, 1986), the samples plot on the boundary line between fields AII and C, indicating an 

intraplate tectonic setting (Fig. 7B). Theboundary line is the transition between intraplate alkali 

basalts and intraplatetholeiites.Both Ti-Zr-Y and Nb-Zr-Y diagrams suggest a within-plate 

environment, ruling out the possibility of a volcanic arc or ocean-ridge environment.The lack of 

any negative Nb anomaly in the spider diagram also argues against the island arc or continental 

arc environment.Therefore, the SBare intra-continental transitional basalts.Our inference of a 

within-plate (intra-continental) tectonic setting for the SB is largely consistent with the work by 

Zhang et al. (2012).  

 

Fig. 7. A: Ti-Zr-Y diagram (Pearce and Cann, 1973);  
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B: Nb-Zr-Y diagram (Meschede, 1986) 

 

6.1.2. Low-degree small-volume melts 

The high Ti contents in all samples reflect low degree partial melts. We have used the 

dynamic melting inversion (DMI) method (Zou and Zindler, 1996; Zou, 1998; Zou et al., 2000) to 

estimate the degrees of partial melting more quantitatively. The DMI method uses variations of 

between-magma concentration ratios for two incompatible elements with different partition 

coefficients, and does not require assumptions about mantle rock concentrations or ratios. Two 

immobile trace elements are selected with different partition coefficients, Nb and Zr. Note that 

Nbis more incompatible than Zr. The concentration ratios between a low-degree melt sample 

(sample 831S41) and a high-degree melt sample (sample 83161) are 1.51 (=24.63/16.27) for Nb 

and 1.31 (=200/152) for Zr. Samples 831S41 and 83161 are selected because sample 831S41 has 

the highest incompatible element concentrations (representing the lowest degree of partial melting) 

while sample 83161 has the lowest incompatible element concentrations (indicative of the highest 

degree of melting) in B Group. The degree of partial melting calculated using DMI by solving a 

system of simultaneous non-linear equations is 7.4% for sample 831S41,and 10.9% for sample 

83161, using bulk partition coefficients of 0.01 for Nb and 0.04 for Zr. If we still select sample 

831S41 as a low-degree melt, but select another sample such as 83160 as a high-degree melt 

(another sample with low incompatible element concentrations in B Group), then the 

low-degree/high-degree concentration ratios are 1.52 (=24.63/16.27) for Nband 1.33 (=200/150) 

forZr, and the partial melting degrees using DMI are 7.9% for sample 831S41 and 11.8% for 

sample 83160. Thus, these transitional basalts were produced at 7-12%mantle partial melting. 
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Note that in the calculations we use concentration ratios instead of elemental abundances, because 

concentration ratios are insensitive to subsequent fractional crystallizations. 

Unlike large-volume tholeiitesproduced in the main stage of plume volcanism, these 

low-degree, small-volume melts might represent melts formed at the onset stage or the waning 

stage of a plume during continental breakup. We prefer to considerwaning stage of plume 

volcanism for the creation of the SB because of its younger age, while Zhang et al. (2012) prefer 

the onset stage of plume volcanism, owing to the different age results for the SB (784 Ma in 

Zhang et al. (2012) vs. 614-615 Ma from this study). As mentioned above, we regard the 784 Ma 

age as the age for inherited zircons (see discussion in section 6.2). 

 

6.2. Implications for the rift succession of the Sugetbrak Formation and Neoproterozoic igneous 

activities 

Because the studied samples were collected in the horizons of the SB between the Lower 

and Upper Sugetbrak members, the new age representsthe boundary age between the upper and 

lower members, further providing a time constraint on the timing oftheSugetbrak Formation in the 

Sugetbrak section. Recently, the Sugetbrak Formation in the southwestAksu and Wushi areas has 

been interpreted as fluvial and lacustrine faciessediments (Turner, 2010; Wang et al., 2010a). 

Combinedwith several horizons of basalts that record episodic volcanism, these sedimentary 

faciesarethoughtto indicate the development of a Neoproterozoic rift system in the Aksu area 

(Turner, 2010; Wang et al., 2010a).Hence, our new age represents the development age of this rift 

system in the northwest Tarim Block. 

Though four phases of Neoproterozoic igneous activities (820-800Ma, 780-760Ma, 
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740-735Ma and 650-635Ma) have been recognized in the TarimBlock(Zhang et al., 2011), ournew 

age(615 Ma) is even younger,and may represent thelast stage of the Neoproterozoic rifting relating 

to thebreakup of the Rodinia Supercontinent in the northwest Tarim Block. It has been noticed that 

there aresimultaneousvolcanic rocks in the Qurugtagh area of thenortheast Tarim Block, where an 

age of 6156 Ma from andesitic lava has been reported (Xu et al., 2009). These data suggest that 

the igneous activities related to the breakup of the Neoproterozoic Rodinia supercontinent 

lasteduntil at least 615 Ma. 

Six detrital zircon ages from the red sandstone of the Sugetbrak Formationin 

southwestAksurange from 619 to 588 Ma and give a weighted average age of 602±13 Ma (Zhu, et 

al., 2011), which isyounger thanthe ageof the SB from Sugetbrak. The age difference 

betweentheseplaces might be due to the fact that the Neoproterozoic succession in southwest 

Aksuis incomplete, which has been indicated by the lacunas of the Qiaoenbrak and Yuermeinak 

Formations, and of thebottom part ofthe Lower Sugetbrak Formation (Fig. 8). Turner (2010) 

pointedout that small, isolated depocentres and pre-existing topography might causelocal variety 

of basal conglomerates in the Aksu area. Therefore,the age of 602±13 Ma might represent the 

maximal depositional age of the Upper member of theSugetbrak Formation (Fig. 9). Obviously, 

the direct evidence for the age of the Sugetbrak Formation depends on the eruption age of the SB 

in the southwest Aksu section. According to available geochronological data in the southwest 

Aksu and Sugetbraksections, a revised correlation of the Neoproterozoic strata between southwest 

Aksu, Wushi and Sugetbraksections is proposed in Fig. 8.  

Recently, Zhang et al (2012) reported a LA-ICP-MS U-Pb zircon age of 783.7±2.3 Ma from 

the SB about 4 km southwest ofSugetbrak, and interpreted it as a crystallization age of the SB. We 
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regard 784 Ma as the age for inherited zircons instead of the crystallization age for the SB, 

because the zircons from Zhang et al. (2012) are large crystals (most zircons > 80 µm), similar to 

group 2 zircons of this study and the inherited zircons of Wang et al. (2010a). In addition, Zhu et 

al. (2011) have reported several detrital zircon ages ranging from 619 to 588 Ma from the red 

sandstone of the Upper member of the Sugetbrak Formation, which implies that it is impossible 

for the Lower member of this formation to be 784 Ma old. Geologically, if this age of 784 Ma is 

correct, then the underlying Yuermeinak glacier deposits would be older than 784 Ma. However, 

no Neoproterozoic ice age older than 784 Ma has been reported in the world (Hoffman and Schrag, 

2002; Xu, et al., 2009; Macdonald, et al., 2010). 

 

Fig. 8. Correlation of the Neoproterozoic strata between southwest Aksu, Wushi and 

Sugetbrak areas 

 

6.3. Implications for thecorrelation of the Yuermeinak glaciation  

Ages, distribution, and correlationsof the Neoproterozoic glaciations around the worldare 

still controversial(Kaufman et al., 1997; Hoffman et al., 1998; Kennedy et al.,1998; Hoffman and 

Schrag, 2002; Jiang et al., 2003). Two glaciations (Sturtian and Marinoan, Young, 1995; Kennedy 

et al., 1998), three glaciations (Sturtian, Marinoan and post-Marinoan, Knoll, 2000, Xiao et al., 

2004; Halverson, 2006; McCay et al., 2006)orfourglaciations (Kaigas, Sturtian,Marinoan or 

Elatina and Gaskiers, Hoffman and Schrag, 2002; Hoffmann et al., 2004;Macdonald et al., 

2010)have been proposed.On the other hand, four glaciations have been reported in the northeast 

Tarim Block, including Bayisi (730 Ma), Altungol, Tereeken (725-615 Ma) and Hankalchough 
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(615-542 Ma) glaciations (Kou et al., 2008; Xu et al., 2008; Xu et al., 2009). However, the age of 

the Yuermeinakglaciation in the northwestTarim Block,and its correlation,werepreviously 

unknown. 

According to the Neoproterozoic succession in theSugetbraksection(Fig. 9), the Lower 

member of Sugetbrak Formation containing the SBconformably overlies the Yuermeinak 

Formationdiamictite.Because there is only about400 m of continental sedimentary succession 

between the SB and Yuermeinak Formation, the occurrence of the Yuermeinak glaciation is not 

much earlier than 614-615 Ma. This is similartothe Tereeken glaciation in the Quruqtagh area of 

the northeast Tarim Block, where there is only the ZhamoketiFormation turbidite between the 

Tereekendiamictite and volcanic layerwith an age of 615±6 Ma (Xu et al., 2009).It is 

thereforereasonableto correlatethe Yuermeinake glaciationwith the Tereeken glaciation in the 

Quruqtagh area.Based on aTIMS U-Pb age of 635.2±0.6 Ma for the Nantuo glaciation (Condon et 

al., 2005) and an age of 615±6 Ma for the volcanic rocks above the Tereeke glaciation,previous 

studies havesuggested that the Tereekenglaciation can be correlated with the Nantuoglaciation in 

the Yangtze Blockand the Elatina glaciation in Australia (Xu et al., 2009). If this is correct,then the 

Yuermeinak glaciation should also correlate with them (Fig. 10). 

 

Fig. 10Correlation of the Neoproterozoicglaciations 

 

7. 8. Conclusion 

This study reached the following conclusions: 

(1)Small euhedralzircons from two samples of the Sugetbrak basalts (SB) of the Sugetbrak 

Formationyieldweighted mean ages of 615.24.8Ma and 614.49.1Ma.These ages are interpreted 
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as the eruption age of the SB, thereby providing an age constraint on the timing oftheSugetbrak 

Formation in Sugetbrak, northwestTarim Block. These two ages suggest that the igneous activities 

related to the breakup of the Neoproterozoic Rodinia supercontinent lasteduntil at least614-615 

Ma in the northwest Tarim Block.  

(2)Geochemicalanalysis indicatesthat the SB was generated in an intra-continental rifting 

environment.Application of the dynamic melting inversionmethod suggests thatthe degree of 

partial melting of the SB ranges from 7% to 12%. Unlike large-volume tholeiites, these 

low-degree transitional basaltic melts may represent the waning stage of plume volcanism during 

a long-lasting continental breakup.  

(3)Based on the new ages of the SB and its relationship with the Yuermeinak diamictite, the 

Yuermeinakglaciation in Sugetbrak of the northwest Tarim Block should correlate with 

theTereekenglaciation in the Qurugtagh area of the northeast Tarim Block, the Nantuo glaciation 

in theYangtze Block and the Elatinaglaciation in Australia. 
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Figure Captions 

 

Fig. 1. (A): Tectonic location of the Tarim Block in China; (B): Geological map of the Tarim 

Block, WestChina, showing the distribution of Neoproterozoic and the study area. Legend—PH: 

Phanerozoicrocks; NP: Neoproterozoic rocks; MP: Mesoproterozoic rocks; PP: Palaeoproterozoic 

rocks; AR: 

Archaean rocks; NPG: early Neoproterozoic granitoids; F: faults; IF: inferred Faults; Tillite: 

Neoproterozoic tillite; Q: Quaternary desert and sedimentary deposits (modified after Lu, et al., 

2008); (C): Geological map of the Aksu area (modified after Gao, et al., 1985; Turner, 2010). 

 

Fig. 2. (A): Geological map of the Sugetbrak area and sample positions (modified after BGMRED 

ofXinjiang, 1993); (B): the Neoproterozoic stratigraphic column of the Sugetbrak area; (C): 

Photographof the Neoproterozoic succession in the Sugetbrak area.Notice the positions of SB 

sample 05822. 
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Fig.3. Photographs of the SB and sedimentary rocks of the Sugetbrak Formation. (A): 

largeherringbone and conformity relationships between the SB and underlying sandstone; 

(B):columnar joints of the SB; (C): Continuous distribution of the SB on the south limb of a 

syncline; (D): pillow lava in the SB; (E): conformity relationship between the SB and overlying 

red sandstones;(F): ripple bedding in red sandstone of the Lower member of the Sugetbrak Fm. 

 

Fig. 4. A: Cathodoluminescence images of zircons from the SB.Notice the zircons can be 

dividedinto 3 groups according to their sizes; B: Concordia plot of zircons from sample 05822 of 

the SB; 

C: Concordia plot of zircons from sample 05823 of the SB. 

 

Fig.5. A: Zr/TiO2 – Nb/Y diagram (Winchester and Floyd, 1977); B: Nb/Y – 

Zr/(P2O5*10000)diagram (Floyd and Winchester, 1975) 

 

Fig. 6. A: REE diagram of the SB; B: Trace element spider diagram of the SB. 

 

Fig. 7. A: Ti-Zr-Y diagram (Pearce and Cann, 1973); B: Nb-Zr-Y diagram (Meschede, 1986) 

 

Fig. 8. Correlation of the Neoproterozoic between the southwest Aksu, Wushi and Sugetbrak 

sections in the northwest Tarim Block. 

 

Fig. 9. Correlation of Neoproterozoic glaciations between the northeast Tarim, northwest Tarim 

and Yangtze Blocks. Data from: Yin et al., 2003; Hoffmann et al., 2004; Zhou et al., 2004; Chu et 

al., 2005; Condon et al., 2005; Zhang et al., 2005; Kendall et al., 2006; Xu et al., 2009. 



Table 1.SHRIMP zircon U-Pb data for the Sugetbrak basalts in Sugetbrak area, northwest Tarim Block

 Spot U(ppm) Th(ppm)
232

Th/
238

U 206
Pbc

206
Pb*

05822-1-1.1 246 147 0.62 0.13  28.9 825.4 ± 8.9 849

05822-1-2.1 287 179 0.64 0.30  33.0 808.0 ± 8.4 808

05822-1-3.1 355 412 1.20 0.16  37.3 743.4 ± 7.6 737

05822-1-4.1 451 209 0.48 0.14  49.6 774.6 ± 7.9 771

05822-1-5.1 180 205 1.17 0.26  18.4 722.2 ± 8.1 671

05822-1-6.1 159 146 0.95 0.27  17.5 776.1 ± 8.8 779

05822-1-7.1 240 164 0.71 0.63  20.9 617.3 ± 6.8 641

05822-1-8.1 58 63 1.13 0.85   6.10 744  ±11  797

05822-1-9.1 960 536 0.58 2.44 104   750.8 ± 7.3 774

05822-1-10.1 171 132 0.80 0.25  19.5 804.2 ± 8.8 825

05822-1-11.1 517 425 0.85 0.75  64.0 861.9 ± 8.7 808

05822-12.1 63 67 1.11 0.36   6.96 780  ±10  639

05822-13.1 155 104 0.69 16.79  18.6 707  ±16  590

05822-1A-1.1 72 83 1.19 0.30   7.57 743.3 ±7.5 833

05822-1A-2.1 284 83 0.30 0.06  32.5 805.9 ±4.2 820

05822-1A-3.1 71 82 1.19 0.67   7.78 773.0 ±8.0 703

05822-1A-4.1 87 89 1.06 1.57   9.48 758.9 ±7.6 712

05822-1A-5.1 442 111 0.26 0.13  38.0 614.9 ±2.6 671

05822-1A-6.1 361 416 1.19 0.24  40.6 790.4 ±3.7 816

05822-1A-7.1 832 305 0.38 0.51 103   863.6 ±3.2 841

05823-11-1.1 233 151 0.67 0.48  27.3   821.2 ± 9.5   760  

05823-11-2.1 1102 816 0.77 0.69  95.7   616.6 ± 6.6   694  

05823-11-3.1 568 741 1.35 0.32  54.1   676.2 ± 7.5   657  

05823-11-4.1 415 200 0.50 0.12 110  1,735  ±17  1,755.6

05823-11-5.1 623 949 1.58 0.22  53.4   612.3 ± 6.5   663  

05823-11-6.1 762 558 0.76 0.37  73.7   685.6 ± 7.3   689  

05823-11-7.1 140 216 1.59 0.92  16.9   839  ±11    698  

05823-11-8.1 588 261 0.46 0.20  57.3   691.4 ± 7.3   778  

05823-11-9.1 461 184 0.41 0.15  52.8   806.8 ± 8.8   801  

Errors are 1-sigma; Pbc and Pb
*
 indicate the common and radiogenic portions, respectively.

Error in Standard calibration was 0.20%( not included in above errors but required when comparing data from different mounts).

(1) Common Pb corrected using measured 
204

Pb. (2) Common Pb corrected by assuming 206Pb/238U-207Pb/235U age-concordance.

(3) Common Pb corrected by assuming 
206

Pb/
238

U-
208

Pb/
232

Th age-concordance.

206
Pb/

238
U Age

207
Pb/

206
Pb Age

Table



Table 2 Major and trace element abundances for the Sugetbrak basalts in Sugetbrak area, west Tarim Block

Sample 831S41 831S51 830S2 83156 83158 83160 83161 83163

SiO2 44.35 43.45 45.40 44.38 45.47 45.44 46.81 44.37

TiO2 4.002 3.494 3.763 3.124 2.865 2.215 2.216 2.489

Al2O3 13.91 14.91 13.92 14.9 15.32 16.95 16.73 17.73

MgO 4.52 5.11 5.3 5.88 5.33 5.29 5.19 6.44

Fe2O3 16.47 13.76 16.46 16.34 15.38 13.22 13.5 12.52

MnO 0.241 0.643 0.251 0.236 0.2 0.131 0.125 0.16

CaO 8.00 8.21 8.00 5.45 7.30 7.18 5.98 4.84

K2O 0.28 0.62 0.66 1.23 1.18 1.41 1.67 0.59

Na2O 4.01 3.16 2.93 3.3 2.48 3.36 3.59 3.75

P2O5 0.66 0.598 0.635 0.481 0.457 0.452 0.462 0.468

LOI 3.57 6.06 2.72 4.8 4.07 4.45 3.83 6.9

Total 100.01 100.02 100.04 100.13 100.05 100.09 100.11 100.26

Ti 24519 21911 23322 19024 17451 13702 13690 15193

Rb 6.56 12.68 10.31 17.23 17.42 22.93 29.61 8.86

Sr 718 474 474 342 383 464 442 335

Y 37.2 33.2 35.2 33.9 33.3 26.3 26.9 27.6

Zr 200 183 192 190 188 150 152 158

Nb 24.63 22.58 23.23 21.49 21.07 16.24 16.27 17.64

Cs 0.16 0.41 0.28 0.15 0.07 0.11 0.12 0.30

Ba 121 292 444 831 889 696 705 327

Hf 4.79 4.38 4.80 4.55 4.47 3.71 3.68 3.87

Ta 1.60 1.42 1.54 1.38 1.35 1.03 1.02 1.11

Pb 4.02 14.93 4.01 1.70 2.67 3.46 3.58 6.64

Th 2.99 2.72 2.81 2.16 2.11 1.75 1.77 1.83

U 0.68 0.66 0.62 1.27 0.54 0.41 0.40 0.45

Table2 （continued）

Sample 831S41 831S51 830S2 83156 83158 83160 83161 83163

La 37.42 33.39 34.29 28.31 26.41 26.43 26.29 26.38

Ce 74.41 67.07 68.73 55.70 52.86 51.41 51.42 51.79

Pr 9.22 8.53 8.81 7.31 7.17 6.65 6.60 6.84

Nd 39.80 36.03 36.61 32.03 30.63 27.98 28.56 29.78

Sm 8.08 7.36 7.65 6.66 6.59 5.80 5.80 6.17

Eu 2.66 2.46 2.52 2.32 2.30 2.21 2.15 2.40

Gd 8.62 7.95 8.27 7.32 7.09 6.04 6.28 6.41

Tb 1.10 1.00 1.06 0.98 0.93 0.80 0.78 0.81

Dy 7.01 6.40 6.65 6.37 6.02 4.99 5.15 5.17

Ho 1.44 1.30 1.36 1.30 1.24 1.04 1.03 1.06

Er 3.74 3.45 3.63 3.31 3.37 2.77 2.76 2.86

Tm 0.51 0.46 0.48 0.46 0.45 0.36 0.36 0.38

Yb 2.81 2.68 2.76 2.69 2.68 2.11 2.19 2.19

Lu 0.44 0.42 0.43 0.45 0.42 0.33 0.34 0.34

Table
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