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Abstract 

 

Artificial neural network ANN prediction approaches applied to the modeling of soil behavior are 

often solved in the forward direction, by measuring the response of the soil (outputs) to a given set 

of soil inputs. Conversely, one may be interested in the assessment of a given set of soil inputs that 

leads to given (target) soil outputs. This is the inverse of the former problem. In this study, we 

develop and test an inverse artificial neural network model for the prediction of the optimal soil 

treatment to reduce copper ( Cu) toxicity assessed by a given target concentration of Cu in dwarf 

bean leaves (BL) from selected soil inputs.  In this study the inputs are the soil pH, electrical 

conductivity (EC), dissolved organic carbon (DOC) and a given target toxicity value of Cu, 

whereas the output is the best treatment to reduce the given toxicity level. It is shown that the 

proposed method can successfully identify the best soil treatment from the soil properties (inputs). 

Two important challenges for optimal treatment prediction using neural networks are the non-

uniqueness of the solution of the inverse problem and the inaccuracies in the measurement of the 

soil properties (inputs). It is shown that the neural network prediction model proposed can 

overcome both these challenges. It is also shown that the proposed inverse neural network method 
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can potentially be applied with a high level of success to the phytoremediation of contaminated 

soils. Before large-scale application, further validation is needed by performing several 

experiments and investigations including additional factors and their combinations to capture the 

complex soil behavior. 

 

Keywords: Soil contamination, Copper, Amendment optimization, Artificial neural networks 

(ANN), Inverse modeling 

 

1.  Introduction 

 

 Soils contaminated with trace elements have serious consequences for terrestrial 

ecosystems, agricultural production and human health (Adriano, 2001). Trace element 

contamination is considered as a negative effect of industrial activities which must be monitored, 

assessed and managed (Alloway, 1995). For instance several authors have reported that soil 

contamination is accompanied by a loss of biodiversity, land cover and finally a lack of nutrients 

and water (Freitas et al., 2004; Mench and Baize, 2004; Zvereva and Kozlov, 2007). The exposure 

of plants to contaminants causes the same consequences as environmental stress and results in a 

lower biomass and lower vegetation (Zvereva and Kozlov, 2004). According to the international 

organization for standardization, the bioavailability of soil contaminants is defined as the fraction 

of available contaminant in the soil acquired by a target-organism through physiological processes 

(Harmsen, 2007). Consequently, the characterization and prediction of metal phytoavailability in 

soils is a crucial step for assessing the efficiency of soil remediation strategies such as the addition 

of soil amendments including organic matter (compost, farm manure and biosolids), lime or other 

alkaline materials (Oste et al., 2001; Lombi et al., 2003; Bolan et al., 2003; Brown et al. 2003; 

McBride, 1994; Puschenreiter et al., 2005; Ma et al., 2006) which have the capacity  to adsorb, 

complex or (co)precipitate trace elements in the soil.   
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 Various treatments can be suggested or tested experimentally with a view to reducing the 

toxicity of a specific contaminated soil to plants by observing the growth or death of the plants. It 

is therefore of immense practical importance to be able to determine the optimal soil treatment 

with an amendment to a specific soil in order to reduce the soil toxicity which can be controlled 

and measured by metal concentrations in vegetation. It is usual to try to predict the effectiveness 

of these treatments, e.g. by how much the metal concentration will be reduced in plant leaves. One 

can specify a maximum allowable limit value (target) of metal concentration in a specific soil and 

seek to identify the corresponding optimal treatment to reduce the toxicity below the specified 

target. Examples of the areas where such predictive capability is of great value are the monitoring 

and management of industrial sites. Thus it is necessary to develop rapid and accurate prediction 

tools to control and analyze contamination sites and to manage soil use. This requires an extensive 

data bank of soil input-output data. However, measuring these parameters is time-consuming, 

difficult and expensive.  In such cases, there is no clear standard rule for selection of the optimal 

soil treatment and one needs to determine the response of the soil. This is the so called inverse 

problem identification which must be solved to answer the following question: what are the 

controlled inputs (e.g. amendments) that have resulted in this given output (metal concentrations 

in the plant leaves). Recently, several applications based on inverse neural network models 

referred as (ANNi) were developed by several authors to optimize the performance of 

polygeneration systems parameters (Hernández et al., 2013), to control the strategy for absorption 

chillers (Labus et al, 2012), to optimize the operating conditions for compressor performance 

(Cortés et al., 2009), to optimize the operating conditions for heat and mass transfer in foodstuffs 

drying (Hernández, 2009), to predict the chemical oxygen demand removal during the degradation 

of alazine and gesaprim commercial herbicides (El hamzaoui et al., 2011) and to optimize solar-

assisted adsorption refrigeration system (Laidi and Hanini, 2013). 
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The solution of the inverse problem has several practical applications in soil analysis, but 

has not been extensively studied so far, presumably due to the difficulties associated with the 

resolution of the nonlinear inverse problem. Over the last few years ANNs have been widely used 

in the field of soil science for the prediction of soil hydraulic properties (Schaap et al., 1998; 

Minasny et al., 2004), the generation of digital soil maps (McBratney et al., 2003; Behrens et al., 

2005) and the modeling of the behavior of trace metals (Buszewski and Kowalkowski, 2006; 

Anagu et al., 2009 ; Gandhimathi and Meenambal, 2012). In this case, the ANN is trained to find 

these relations using an iterative calibration process. The ANN approach is beneficial compared to 

traditional regression methods if the input-output relationship is complex or unknown (Sarmadian 

and Taghizadeh Mehrjardi, 2008; Schaap and Leij, 1998; Hambli et al., 2006; Hambli, 2009). 

Moreover, ANN can be used as an inverse modeling approach. ANN modeling has been 

previously applied for solving inverse problems in other engineering fields (Jenkins, 1997; Rafiq 

et al., 2001; Hambli et al., 2006), but has.not been previously used in conjunction with soil 

analysis. Inverse ANNs have several advantages compared to other inverse identification 

techniques. First, ANNs are very general. It is proven that ANNs can accurately represent any 

sufficiently smooth nonlinear mapping (Jenkins, 1997; Rafiq et al., 2001). Second, the accuracy of 

the solution is independent of the number of inputs (Jenkins, 1997; Rafiq et al., 2001). This is an 

important point, because accurate prediction of the optimal soil treatment may require a large 

number of soil inputs. Third, ANNs are particularly useful in cases where solving the forward 

problem model is time-consuming (Hambli et al., 2006). 

 In this study, we have developed and tested an inverse artificial neural network (ANN) 

model for the prediction of optimal soil treatment to reduce toxicity assessed by a given target 

concentration of Cu in dwarf bean leaves (BL) from a given set of soil properties (inputs).   

 In order to prepare the training data for the inverse ANN, 16 (4x4) soil samples were 

collected from different soil profiles from a Cu sulfate and Chromated Copper Arsenate (CCA) 
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contaminated site located in south-western France. The measured soil variables were soil pH, soil 

electrical conductivity (EC), dissolved organic carbon (DOC) and the concentration of Cu in BL 

grown in the laboratory on these contaminated soils treated with inorganic and organic 

amendments, with 4 replications for each measurement (4*4 measurements). The inverse ANN 

model was then developed and trained to predict the best soil treatment. The inputs were the soil 

pH, EC, DOC, and a given target toxicity value of Cu, whereas the output is the best treatment to 

reduce the given toxicity level.  

In the studies of (Hernández, 2009; Cortés et al., 2009;; El hamzaoui et al., 2011; Labus et 

al, 2012; Hernández et al., 2013; Laidi and Hanini, 2013), the authors generated the resulting 

corresponding mathematical equations obtained from the trained direct ANNs representing the 

investigated processes behaviors and used optimization algorithms based on these equations to 

assess the optimal input parameters. In general, optimization involves finding the minimum or/and 

maximum of these n objective functions subjected to some constraints. For example in El 

Hamzaoui et al. (2011) study, the authors proposed an innovative methodology.to calculate the 

optimum operating conditions. In a first step, the explicit mathematical equation was obtained by 

the ANN after training (ANN weights) as an objective function using Matlab code. In a second 

step, the Nelder–Mead simplex method was applied to calculate the optimal (unknown) reaction 

time to obtain a chemical oxygen demand. Current inverse ANN differs from these previous 

works by two features: (i) The aim here was to predict an output as a non-numerical data 

(amendment type) where prediction of a minimum or a maximum response do not apply. And (ii) 

during the training phase, the amendment type was considered as an input which refers to a given 

amendment to reduce Copper toxicity in phytoremediated contaminated soils (Fig. 2). Therefore, 

the current inverse prediction do not requires the generation of the complicated ANN 

mathematical equations obtained from the trained direct ANNs. Two important aspects in the 

estimation of the optimal soil treatment from the measured soil inputs is the non-uniqueness of the 
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solution of the inverse problem and the inaccuracies that may exist in the measurement of the soil 

inputs. The non-uniqueness of inverse solutions is a challenge for any inverse problem algorithm, 

because several solutions exist for the same inverse problem. The convergence of the solution may 

therefore be compromised. The second challenge is the inaccuracies that may exist in the actual 

measurements of soil inputs. The inverse ANN algorithm should be robust enough to be able to 

provide reasonable predictions of optimal soil treatment even when the soil input measurements 

are not perfectly accurate. Both challenges are addressed for the proposed inverse ANN algorithm. 

Results show that the inverse ANN model leads to a rapid and accurate prediction of the optimal 

soil treatment. 

 

2. Material and Methods 

 

From a practical point of view, the following three steps are required for the development 

of the inverse ANN model: 

(i) Performing suitable experiments to measure the effects of selected soil inputs (properties, 

inorganic and organic amendments) on the soil toxicity assessed by concentration of Cu 

in dwarf BL. 

(ii)  Forward training the neural network based on the results of step (i) (mapping inputs to 

outputs).  

(iii)  Inverse ANN prediction (Prediction of the inputs given a target set of outputs). 

 

The present section of the paper is divided into three sub-sections. The first sub-section 

presents the soil experiments. The second sub-section describes the inverse ANN approach and the 

third sub-section deals with the inverse ANN prediction considering the non-unique solutions of the 

inverse problem. 
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2.1. Soil sampling and preparation 

 

16 soil samples (four replicates) were collected from 16 plots (1x3 m) from the BIOGECO 

phytostabilization platform installed on a former wood preservation site located in south-western 

France, Gironde County (44°43’N; 0°30’W), This site has been contaminated with high 

concentrations of Cu. The history of the site and its characteristics are detailed in (Mench and Bes, 

2009; Bes et al., 2010). Long-term aided phytostabilization experiments are established at the site. 

The plant communities cultivated in the zone of the field trial were Agrostis capillaris, Elytrigia 

repens, Rumex acetosella, Portulaca oleracea, Hypericum perforatum, Hypochaeris radicata, 

Euphorbia chamaescyce, Echium vulgare, Agrostis stolonifera, Lotus corniculatus, Cerastium 

glomeratum, and Populus nigra (Bes et al., 2010). Four different amendments were applied on the 

site and carefully mixed in the topsoil (0-0.30 m) with a stainless steel spade with four replicates: 

untreated soil (UNT), 0.2% of dolomite limestone (DL), 5% of compost of poultry manure and 

pine bark (CPM), and a mixture of 0.2% DL along with 5% CPM (DLX CPM). Sixteen soil 

samples were collected from the topsoil of the platform, to a depth of 0.25 m. One kilo of each soil 

was placed in a pot after sieving (2 mm). Four seeds of dwarf beans (Phaseolus vulgaris) were 

sown in all pots and cultivated for 18 days in controlled conditions (16 h light/8 h darkness 

regime). The soil moisture was maintained at around 50% of the field water capacity with 

additions of distilled water after weighing. Then the soil moisture was raised to 80% (11-13 % of 

air-dried soil mass) at the beginning of the germination stage of the seeds. At the end of the 

growing period the plants were harvested, and then the dry weight of BL was determined after 

drying at 70C°. 

 The BL were weighed (35-150 mg) directly into Savillex Polytetrafluoroethylene PTFE 

50mL vessels, 2 ml H2O and 2mL supra-pure 14 M HNO3 were added and the vessels were heated 

open at 65C for 2 hours. Then the caps were closed and the containers were left overnight at 65 C° 
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(12-14 h). After that they were opened, 0.5mL of H2O2 (30%) was added to each sample and left 

at 75 C° open for 3 hours. Then 1.5+/-0.5ml of Fluorhydric Acid HF (48%) was added to each 

sample, caps were closed and left at 100 C° overnight. Containers were opened and kept at 120 C° 

for 4-5 hours evaporating to dryness, taken off heat, 1mL HNO3 + 5ml H2O + 0.1 ml H2O2 were 

added to each, gently warmed up and after cooling down made up to 50 ml. Mineral composition 

in BL was determined by ICP-MS (Varian 810-MS).  

 

2.2. Characterization of soil solution 

 

After harvesting the dwarf beans, the soils was watered with distilled water, and daily 

maintained at 80% of field capacity (11-13% of air-dried soil mass) for 15 days. After 15 days 

three Rhizon soil-moisture samplers (SMS) from Rhizosphere Research Products (Wageningen, 

Holland) were inserted for 24 h with a 45o angle into each potted soil (3x16 soils) to collect (30 

mL) soil pore water from each pot. Then dissolved organic carbon (DOC) was analyzed in the soil 

solution by a Shimadzu© TOC 5000A analyzer. Soil pH and EC were determined in the same soil 

solution by pH meter and the electrical conductivity meter (EC). 

 

2. 3. Neural network method  

 

The ANN architecture is composed of an input layer, a certain number of hidden layers and 

an output layer in forward connections. Each neuron in the input layer represents a single input 

parameter. These values are directly transmitted to the subsequent neurons of the hidden layers. The 

neurons of the last layer represent the ANN outputs (Fig. 1).  

 

Figure 1 
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The output m
iy  of neuron i in a layer m ( 1m ) is calculated by (Jenkins, 1997; Rafiq et al., 

2001; Hambli et al., 2006): 

 m
i

m
i vfy                      (1) 
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where 0
iy  are the model inputs,  

m
iv  are the outputs of the layer m, f is the activation function, L is 

the number of connections to the previous layer, 1m
jiw  corresponds to the weights of each 

connection and m
ib  is the bias, which represents the constant part in the activation function.  

 From among activation functions the sigmoid (logistic) function is the most usually 

employed in ANN applications. It is given by (Jenkins, 1997; Rafiq et al., 2001; Hambli et al., 

2006): 

   m
i

m
i v

vf 
exp1

1
                     (3) 

where   is a parameter defining the slope of the function ( 9.0 ). 

 

2.3.1 Training algorithm 

 

The training process in ANNs involves presenting a set of examples (input patterns) with 

known outputs (target output) (Jenkins, 1997; Rafiq et al., 2001; Hambli et al., 2006; Hambli, 

2009). The system adjusts the weights 1m
jiw  of the internal connections to minimize errors 

between the network output and target output. There are several algorithms in an ANN and the 

one which was used here is the Levenberg-Marquardt back-propagation (BP) training algorithm. 

The BP algorithm is an iterative gradient algorithm designed to compute the connection weights 

by minimizing the total mean-square error between the actual output of the multi-layer network 
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and the desired output. The knowledge is represented and stored by the strength (weights) of the 

connections between the neurons.  

In the present work, an in-house ANN program called Neuromod written in Fortran 

(Hambli et al., 2006; Hambli, 2009) was applied. The basic ANN configuration employed in this 

study has one hidden layer with four neurons with a learning rate factor 1.0  and momentum 

coefficient 1.0 . Tests performed for more than one hidden layer and different  and 
parameters showed no significant improvement in the obtained results. The learning rate 

coefficient   and the momentum term   are two user-defined BP algorithm training parameters 

that affect the learning procedure of the ANN. The training is sensitive to the choice of these net 

parameters. The learning rate coefficient employed during the adjustment of weights (1m
jiw ) was 

used to speed up or slow down the learning process. A larger learning coefficient increases the 

weight changes, hence large steps are taken towards the global minimum of error level, while 

smaller learning coefficients increase the number of steps taken to reach the desired error level.  

To prepare the training data for the ANN, different measurements were performed on the 

four different soils subjected to four different treatments (UNT, DL, CPM and DLX CPM). The 

input factors and their minimum/maximum levels are given in Table 1.  

 

Table 1 

 

 

 40 measurements were used for training, 16 samples for testing and 8 samples for 

validation. The testing data were not used for training. The testing data provided cross validation 

during the ANN training for verification of the network prediction accuracy. The validation data 
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were used to measure the predictive capability of the ANN after complete training. In order to 

avoid data saturation, the input and the output variables were normalized between 0 and 1 using:   

 

 minmax

min

ii

iinorm
i xx

xx
x 


                           

(4) 

 

 
where ix  , min

ix , max
ix and norm

ix  denote respectively,  the real input (output) variables value 

i, the minimum input  (output) variable, the maximum input (output) variable and the normalized 

value i. 

The real (de-normalized) value of the ANN was computed using: 

 

  minmaxmin yyyyy normt 
      

(5) 

 

where ty , miny , maxy  and normy  are the real-valued output variable, the minimum and maximum 

values of the real-valued output and the normalized output value from the ANN model 

respectively. 

In the current study, we selected a limited number of independent soil parameters: soil pH, EC, 

soil solution DOC and a given target toxicity value of Cu concentration. The output is the optimal 

amendment to reduce the given toxicity level of Cu. 

 It should be noted that the proposed ANN approach does not take into account all the possible 

factors which may influence soil toxicity. The prediction based on the ANN depends on the input 

pattern. Therefore, adding more inputs would lead to more accurate and reliable results.  

The primary aim here was to illustrate the potential of the inverse neural network method to 

predict optimal soil amendment to reduce its toxicity rather than performing an investigation 

related to the effect of a larger number of soil inputs.  
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2.3.2. Selection of soil factors 

 

 The correlations among soil variables may significantly affect the predictions of soil 

outputs. Care must therefore be taken concerning the selection of soil parameters. Although 

parameter correlations are observed and may be strong in some cases, existing soil analysis 

methods typically adopt the assumption of independent parameters (van der Zee and van 

Riemsdijk, 1987; Andersen and Christensen, 1988; Streck and Richter, 1997; Römkens and 

Salomons, 1998; Tiktak et al., 1998; Schaap and Leij, 1998; Elzinga et al., 1999; Annadurai and 

Lee, 2007; Sarmadian and Taghizadeh Mehrjardi, 2008; Schaap et al., 1998; Minasny et al., 2004; 

McBratney et al., 2003; Behrens et al., 2005; Buszewski and Kowalkowski, 2006; Anagu et al., 

2009 ; Gandhimathi and Meenambal, 2012). 

. In this study, the soil inputs for the ANN model were limited to the three most influential 

independent factors (predictor variables) on the mobility and availability of metals in the soil:  

 Soil pH: Kabata-Pendias and Pendias. (2000) and Jackson and Miller. (2000) reported 

that the addition of amendments to soil increased the soil pH compared to the untreated 

soil, leading to a reduction in the mobility and the availability of metals to plants. 

 DOC: Hsu and Lo. (2000) noted that the addition of amendment to the soil increased the 

DOC soil contents compared to that of untreated soil, which leads to increasing the plant 

mass, reducing the bio availability of metals by forming ligands with the dissolved 

organic matter. 

 EC: Du Laing et al., (2008, 2009) and Hatje et al., (2003) found that an increase in 

conductivity (salinity) led to an increase in the mobility of some metals such as cadmium 

and zinc, thereby increasing the availability and the bioavailability of these metals to the 

plant. 
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 Correlative models such as ANNs are applied to approximate various complex engineering 

problems. Model development starts with the determination of the parameters which have the 

greatest influence on the model results. Sensitivity analyses can be performed to determine: (1) 

which parameters require additional future research; (2) which parameters are insignificant and 

can be eliminated from the final model; (3) which inputs contribute most to output variability; (4) 

which parameters are the most highly correlated with the output, and (5) once the model is in 

production use, what consequence results from changing a given input parameter (Hamby, 1993). 

The model parameters that exert the greatest influence on the model results are identified through 

a sensitivity analysis. In our case, the correlations among soil variables may significantly affect 

the predictions. In such a case, decomposition methods can be used to reduce the prediction 

sensitivity (Jacques et al., 2006). 

 

2.4. Inverse neural network for inverse prediction   

 

 In general, standard ‘forward mapping’ using ANN involves nonlinear mapping from the 

space of the soil inputs to the soil outputs (toxicity). The inverse of forward mapping goes 

backward in time. Given a certain soil target response, the inverse prediction based on ‘backward 

mapping’ determines the set of soil inputs that has resulted in the given soil outputs, thereby 

mapping the space of soil outputs to the space of soil inputs (Fig. 2).  

 

Figure 2 

 It is mathematically proven that a feed forward ANN with at least one hidden layer, n 

hidden neurons, and sigmoid activation functions can approximate any continuous function with 

an integrated squared error regardless of the dimension of the input space (Barron, 1993).  
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2.4.1. Non-uniqueness and robustness of the inverse ANN model 

 

 The non-uniqueness of the solution is an important challenge for all inverse identification 

methods because several solutions exist for the same inverse problem. In the current work, we 

assign a search interval ( tY ) to the given target soil output (toxicity) (tY ) and the inverse ANN 

was designed to automatically identify via iterative loops all the corresponding inputs which 

generate outputs located within the intervaltY . 

 A second challenge is that the measurements of soil inputs and corresponding outputs are 

not noise-free. It is therefore important that the inverse ANN model be robust enough to handle 

the noise that will exist in actual soil measurements. In the current work, to ensure the robustness 

of the inverse ANN, the trained ANN was tested using noisy output data in the form: 

  /,0 tt
n

t YfYY           (6)
 

where n
tY denote respectively the noisy output ,  /,0 tYf  is the standard Gaussian distribution 

function (mean value:
 

0
 
and standard deviation:

 
 /tY ). The signal to noise ratio is 

represented by /tY .  

 

3. Results and Discussion 

 

 The inverse ANN was trained with 5.105 epochs. The training performance was assessed 

by the root mean square error (RMSE). At the end of the training phase, the RMSE convergence 

value was 1.E-5. The inverse ANN was then tested without considering the noisy dataset: 

(i) First, the direct ANN was applied to 300 testing combinations of soil inputs to predict the 

optimal soil amendments (considered as the reference values by the direct ANN prediction).  

(ii) Then, the inverse ANN was applied to predict the optimal soil amendment related to these 300 

testing combinations.  
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(iii) The results generated by the inverse ANN in step (ii) were compared to the direct ANN 

results of step (i)  

 

Figure 3 shows the variation of the inverse predicted optimal amendments versus the reference 

ones. The integers 1, 2, 3 and 4 refer to UNT, CPM, DL and DLX CPM soil amendments 

respectively. 

 

Figure 3 

 

 It was found that the ANN is sensitive to noise and gives inaccurate output predictions 

when the input dataset is slightly noisy. It can be noticed that the simulations generated solutions 

composed of mixed amendments as optimal treatment (non-integer values in the curve denote 

mixed amendments). For example 1.5 represents a 50% mix of 1 (UNT) and 2 (CPM). In previous 

studies, numerous amendments have been incorporated into soils polluted with metal (metalloids) 

to immobilize pollutants. These amendments include individual additions of amendments (Walker 

et al., 2004; Schwab et al., 2007; Derome, 2009; González-Alcaraz et al., 2011; Melamed et al., 

2003; Brown et al., 2005; Ford, 2002; Trivedi and Axe, 2001; Hartley and Lepp, 2008; Gupta and 

Sharma., 2002; Garau et al., 2011; Brown et al., 2003; Torri and  Lavado, 2008) and combinations 

of different amendments including organic and liming materials (Alvarenga et al.,2008; Farrell 

and Jones, 2010; Bes and Mench, 2008), iron oxides and lime (Warren and  Alloway, 2003) and 

compost and iron oxide (Gadepalle et al., 2008). 

 In order to reduce the sensitivity of the inverse ANN to noise, the training algorithm was 

modified by introducing noise to the training and validation datasets (Eq. 6) with signal to noise 

ratios between 100 and 5 (Fig. 4). It was found that when ANNs are trained using noisy datasets, 

they are very robust and work well even when the input and output values are noisy. As depicted 
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in Fig. 4, the accuracy of the inverse ANN prediction decreases when the signal to noise ratio ( ) 

decreases (lower R² value). However, the reduction in accuracy with the increase in noise is 

gradual and simply reflects the lower quality of the measurement data. This result indicates that 

the inverse ANN model was able to predict accurately the optimal soil treatment corresponding to 

a target value of Cu concentration in the BL. 

Figure 4 

 

 Because of the noise (uncertainty) concerning the input measurements which can be 

characterized by a given set of scattered input data with a measured statistical distribution (mainly 

a mean and standard deviation), robust processing of scattered data methods is needed to predict 

reliable responses. Using the inverse ANN model developed, this can be performed based on a 

three-stage analysis:  

(i) Perform simple input-output predictions on the scattered data set to obtain initial measures 

of output variations. This evaluation does not account for statistical noise. 

 (ii) Generate stochastic data based on the mean value and the standard deviation and perform a 

stochastic prediction. 

(iii) Estimate the sensitivity of the stochastic results of (ii) in relation to the results of (i) and 

assess the impact of the input sensitivities on the response.  

 In this way, a confidence interval can be estimated related to the data noise. Note that 

enhanced data smoothing procedures can be applied in order to identify general trends by 

removing the background noise of random variability often present in raw data and to increase the 

prediction accuracy (Velleman, 1980; Kafadar, 1994). There are a number of smoothing 

algorithms including histograms, nearest-neighbor, kernel and regression smooths. The selection 

of a suitable procedure depends mainly on its robustness to treat the scatter, its speed and its 

interpretation.  
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 In order to test the capability of the trained inverse ANN to predict the optimal treatment, 

the model was run for different combinations of soil inputs. The input parameters were soil pH, 

soil EC and DOC inputs and target Cu concentration. For each input factor, four values in the 

interval of its min and max value were applied here to capture the non linear soil response (Table 

2).  

256 ( 4444  ) full factorial combinations of the inputs were computed with the trained 

inverse ANN with a total computation time of about 2 seconds.  

 

Table 2 

 

Figure 5 shows the predicted optimal treatment for soil corresponding to a target value of 

Cu concentration in BL of 150 mg.kg-1. The non-uniqueness of the solution related to the effects 

of soil pH and DOC can be observed corresponding to the target Cu concentration indicated by the 

vertical dashed line ( 50 ). 

 

Figure 5 

 

The results show the dependence between the soil properties (selected inputs in the current 

case) and the optimal treatment of the soil to reduce the Cu plant toxicity (case of 150 mg.kg-1). 

One can see in the (UNT, CPM, DLX CPM)  soils that increasing the soil pH leads to a lower 

concentration of Cu in the bean leaves at the same level of (DOC), while the opposite effect can 

be observed in the soil treated with (DL).  

It can be seen that the acidity and the level of DOC in the untreated soil significantly affect 

the Cu concentration in the bean leaves compared to the untreated soils. Predicted results show 

that the addition of CPM, DL and DLX CPM amendments to the soil decrease the effect of the 
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soil pH on the concentrations of Cu in the bean leaves whatever the quantity of DOC in the soil 

solution. 

The plots on Fig. 5 show that the best amendment for decreasing the concentration of Cu in 

the bean leaves under the effect of the selected input factors (pH, DOC, and EC) and for a given 

target value of Cu in the BL (150 mg.kg-1) is the CPM which generated a significant reduction in 

Cu concentrations in the BL compared to the other treatments. CPM reduced the concentrations of 

Cu in the BL to less than 200 mg.kg-1, followed by the soil treated with DL (concentrations of 

about 270 mg.kg-1), then the soil treated with the DLX CPM (concentrations of almost                       

285 mg.kg1), while the Cu concentrations in the UNT soil reached a maximum value of about 300 

mg.kg-1 for a soil pH of 7 and less than 150 mg.kg-1 for a soil pH of 7.3. This result suggests that 

soil pH must be assessed accurately for the optimal monitoring of soil Cu toxicity. 

 Our predicted results agree with the results of Harter and Naidu (1995) who explained this 

observation by the capacity of CPM in the soil to retain soil metals.  

The bioavailability of Cu in the soil is considered as the part of the metal which is found free in 

the solution, i.e. not complexed with organic species nor adsorbed to the soil solid fractions 

(Zhang et al., 2001). The binding of the metal to the organic fraction depends on the total number 

of both strong and weak binding sites, which is related to the number of functional groups. The 

total acidity e.g. the number of carboxylic acid and phenol hydroxyl groups is often used as a 

measurement of binding capacity (Gerke, 1994). Sauvé et al. (2000) reported that the availability 

of soil metals to the plants depends on two factors: (i) the presence of several sorbents in the soil 

such as organic matter, and (ii) the physico–chemical parameters such as pH and ionic strength. 

Kabata-Pendias and Pendias (1992), Lexmond (1980), McBride (1989), Tyler and Olsson (2001) 

reported that the bioavailability and toxicity of Cu in the soil is increased in acidic soil relative to 

calcareous soil. This increase is due to the increase in the concentration of Cu+2 (free Copper) in 

the soil solution which generally presents the available form of Cu to the living organisms in the 
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soil (plants, microorganisms). The increase in the soil pH leads to an increase in the binding of Cu 

to the soil constituents (McLaren and Crawford, 1973) and therefore decreases the mobility and 

availability of soil Cu. Brown et al. (2003) found that the addition of organic amendments to the 

soil such as compost, farmyard manure and biosolid compost reduced the availability of trace 

metals in soils due to the high content of organic matter, P and Fe. Balasoiu et al. (2001) reported 

that the organic matter of soils can bind significant amounts of Cu by forming an OM-bound Cu 

fraction which represents about 96% of the total Cu in CCA-contaminated soil.  

Figure 6 shows the predicted optimal treatments for the soil in the form of a ternary 

(triangular) plot corresponding to different target values of Cu concentration in BL and soil pH, 

EC and DOC interactions  ( 50 ). The ternary diagram is a graph that shows the response of 

three combined variables (pH, EC and DOC) as a position in an equilateral triangle. Such 

diagrams can be used for graphical classification and interpretation of soil responses. The 

advantage of using a ternary plot for depicting compositions is that the three variables can be 

conveniently plotted in a two-dimensional graph. Every point on a ternary plot represents a 

different composition of the three components. It can be used for soil treatment classification 

schemes. 

Figure 6 

The ternary diagram indicates that the UNT soil is the best treatment to reduce toxicity 

below the target Cu value of 150 mg.kg-1 corresponding to a soil pH greater than 7.3 combined 

with  soil EC greater than 140 µS.cm-1 (red crosses) (Fig. 6-a) independent of the DOC value. For 

lower values of soil EC and of pH (7.1), only the CPM treatment is able to reduce the toxicity 

(black circles) (note the empty region in Fig. 6-a).  

When the target Cu value is increased to 200 mg.kg-1 (Fig. 6- b), the inverse ANN 

predicted the same results but with a larger region in the plot, indicating that the UNT is the most 

suitable to reduce toxicity for a soil pH higher than 7.2. The CPM treatment is able to reduce the 

http://www.sciencedirect.com/science/article/pii/S0956053X07000165#bib6


  

20 

 

toxicity (black circles)  whatever the values of pH, EC and DOC. Note that DL and DLX CPM are 

unable to reduce the target Cu toxicity below 200 mg.kg-1 whatever the values of pH, EC and 

DOC. 

 For a target Cu value of 250 mg.kg-1 (Fig. 6-c), the predicted results reveal that the UNT 

soil domain remains unchanged (saturation), indicating that UNT soil is unable to reduce the 

toxicity outside the range (pH<7.2 and EC<140 µS.cm-1). The CPM treatment is able to reduce the 

toxicity (black circles) whatever the values of pH, EC and DOC. It can also be seen that the DL 

treatment (blue triangles) is able to reduce the toxicity below a Cu value of 250 mg.kg-1 in the 

range of (DOC<35 mg.l-1 and EC>140 µS.cm-1). Finally, for a larger target value of Cu (300 

mg.kg-1) (Fig. 6-d), all four treatments are able to sreduce the toxicity except in the case of UNT 

soil for EC<140 µS.cm-1. 

 The ternary diagram shows that among the four treatments, CPM leads to the best results 

(covering the largest region in the plots). Nevertheless, the other treatments can be considered as 

optimal choices for particular cases depending on the combinations of the pH, EC and DOC 

values. 

 

 

4. Conclusions 

 

The current study demonstrated that inverse ANN can be used as a reliable and rapid tool 

to optimize the selection of the optimal amendment for a given soil characteristics. The inverse 

ANN was proven recently to be efficient tool to optimize several processes (Hernández, 2009; 

Cortés et al., 2009;; El hamzaoui et al., 2011; Labus et al, 2012; Hernández et al., 2013; Laidi and 

Hanini, 2013). Nevertheless, applications of such ANN based optimization procedure are still 

lacking in the field of soil/plant problems.  
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In general, several models have been developed to predict the relationship between soil 

input parameters and design performance of ANNs. Generally, two methods are used to develop 

prediction models: conventional mathematical methods and ANN. It has been reported that ANNs 

provided superior predictive performance when compared with conventional mathematical 

methods including multiple linear regression (MLR models) (van der Zee and van Riemsdijk, 

1987; Andersen and Christensen, 1988; Streck and Richter, 1997; Römkens and Salomons, 1998; 

Tiktak et al., 1998; Schaap and Leij, 1998; Elzinga et al., 1999; Annadurai and Lee, 2007; 

Sarmadian and Taghizadeh Mehrjardi, 2008). In addition, when MLR methods are used, the 

relationships between soil inputs and design outputs have to be stated a priori in the regression 

models. In many situations in soil engineering, the input-output relationships are highly complex 

and are poorly understood. The lack of physical understanding and of a powerful general tool for 

mathematical modeling leads to either simplifying the problem or incorporating several 

assumptions into the mathematical models. Consequently, many mathematical models fail to 

simulate the complex behavior of most soil engineering problems. In contrast, ANNs are based on 

the data alone where such relationships do not need to be formulated beforehand (Schaap et al., 

1998; Minasny et al., 2004; McBratney et al., 2003; Behrens et al., 2005; Buszewski and 

Kowalkowski, 2006; Anagu et al., 2009; Gandhimathi and Meenambal, 2012).  Moreover, ANNs 

can be used at research level as a method to determine the most important parameters in a design 

that could then be used to formulate a mechanistic model and to determine where future research 

efforts should be targetted. The results of ANN testing (prediction) allow for the investigation of 

the soil factors’ interactions. This methodology could therefore be effectively used to study the 

importance of individual, cumulative and interactive effects of the selected soil inputs in the 

phytoremediation of contaminated soil measured by metal concentrations in vegetation. The effect 

of several soil treatments and their combinations can also be investigated. For example, the 

proposed inverse ANN model generated solutions composed of mixed amendments as the optimal 
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treatment (Fig. 3) which is in agreement with previous studies where the authors applied 

individual combinations of different amendments (Alvarenga et al.,2008; Farrell and Jones, 2010; 

Warren and  Alloway, 2003; Gadepalle et al., 2008; Bes and Mench, 2008). The present study 

showed that a plausible innovative low-cost strategy for the optimal remediation of contaminated 

soils in situ could be performed using such inverse ANN approaches. 

 The effects of noise on the performance of the ANN were also investigated. Noise was 

introduced to the training data points and the inverse ANN was trained using noisy inputs. It was 

observed that the proposed modification in the training algorithm makes the ANN very robust 

against noisy density measurements.  It was shown that the ANN works reasonably well even 

when both non-uniqueness and noise are taken into account. 

 Despite their good performance in many situations, ANNs suffer from a number of 

limitations. First, they are not able to explain the physical relationships between the input-output 

data. Second, there are no general guidelines which can help in the design of the ANN architecture 

for a given problem.    

 The primary aim of the current study was to illustrate the potential of the inverse neural 

network method as an alternative to traditional mathematical models to predict the optimal soil 

amendment to reduce soil toxicity. The inverse problem (going from the target Cu level and soil 

properties to the best amendment for reducing soil toxicity) has not a unique solution. The inverse 

ANN developed was specially designed for the prediction of non-unique optimal soil treatments. 

The ANN method can potentially be applied with a high level of success in the phytoremediation 

of contaminated soils. Before its large-scale application, however, further investigations are 

needed by performing: (i) experimental validation based on several experiments including 

additional factors to capture complex soil behavior, (ii) a sensitivity analysis to check the 

reliability of the inverse ANN and (iii) enhanced data smoothing procedures in order to identify 
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general trends by removing the background noise of random variability often present in raw data 

and to increase the prediction accuracy. 

 

Acknowledgments 

 

Author thank Mrs Audrey Dufour (Cetrahe, University of Orléans, France) for the analysis of major 

cations and anions in the soil pore water and Dr Stanislas Strekopytov (Natural History Museum, London, 

UK) for the digestion of plants and subsequent mineral analysis. The authors are grateful to Prof. Mench M. 

for providing the soil samples and to ADEME, Department of Urban Browfields and Polluted Sites, 

Angers, France and the European Commission under the Seventh Framework Program for Research (FP7-

KBBE-266124, GREENLAND) for financial support of the BIOGECO phytoremediation platform. 

 

References  

Adriano, D.C., 2001. Trace elements in terrestrial environments; Biochemistry. bioavailability and 

risks of metals. Springer-Verlag. New York. 

Alloway, B.J., 1995. Heavy metals in soils. Chapman and Hall. London. 368p. 

Alvarenga, P., Palma P., Goncalves A.P., Fernandes R.M., de Varennes A., Vallini G., Duarte E., 

Cunha-Queda A.C., 2008. Evaluation of tests to assess the quality of mine contaminated 

soils. Environmental Geochemistry and Health 30 95–99. 

Anagu, I., Ingwersen J., Utermann, J., Streck T., 2009. Estimation of heavy metal sorption in 

German soils using artificial neural networks Geoderma, 152 104–112. 

Andersen, P.R., Christensen, T.H., 1988. Distribution coefficients of Cd, Co, Ni and Zn in soils. 

Journal of Soil Science. 39, 15-22. 

http://www.sciencedirect.com/science/journal/00167061


  

24 

 

Annadurai, G., Lee, J.F., 2007. Application of artificial neural network model for the development 

of optimized complex medium for phenol degradation using seudomonas pictorum (NICM 

2074)", Biodegradation.18:383–392. 

Balasoiu, C.F., Zagury, G.J., Deschênes, L., 2001. Partitioning and speciation of chromium. 

Copper. and arsenic in CCA-contaminated soils: influence of soil composition. The Science 

of the Total Environment. 280 (1–3). pp. 239–255. 

Barron, A.R., 1993. Universal approximation bounds for superpositions of a sigmoidal function. 

IEEE Transactions on Information Theory 39: 930-945. 

Behrens, T., Förster, H., Scholten, T., Steinrüken, U., Spies, E., Goldschmitt, M., 2005. Digital 

soil mapping using artificial neural networks. Journal of Plant Nutrition and Soil 

Science.168, 21-33. 

Bes, C.M., Mench, M., 2008. Remediation of copper-contaminated top soils from a wood 

treatment  facility using in situ stabilization. Environnemental Pollution;156:1128–38. 

Bes, C.M., Mench, M., Aulen, M., Gaste, H., Taberly, J., 2010. Spatial variation of plant 

communities and shoot Cu concentrations of plant species at a timber treatment site. Plant 

Soil; 330:267–80. 

Bolan, N.S., Adriano, D.C., Natesan, R., Koo, B.J., 2003.  Effects of organic amendments on the 

reduction and phytoavailability of chromate in mineral soil. Journal of Environmental 

Quality 32. 120-128. 

Brown, S., Christensen B., Lombi E., McLaughlin M., McGrath S., Colpaert J., Vangronsveld J., 

2005. An inter-laboratory study to test the ability of amendments to reduce the availability 

of Cd, Pb and Zn in situ. Environnemental Pollution. 138 34-45. 

Brown, S.L., Henry, C.L., Chaney, R., Compton, H., DeVolder, P.S., 2003. Using municipal 

biosolids in combination with other residuals to restore metal-contaminated mining areas. 

Journal of  Plant and Soil. 249 , 203–215. 



  

25 

 

Buszewski, B., Kowalkowski, T., 2006. A new model of heavy metal transport in the soil using 

non-linear artificial neural networks. Journal of Environmental Engineering and Science. 23 

(4), 589-595. 

Cortés, O., Urquiza, G., Hernández, J.A., 2009. Optimization of operating conditions for 

compressor performance by means of neural network inverse, Applied Energy 86, 2487–

2493. 

Derome, J., 2009. Detoxification and amelioration of heavy metal contaminated forest soils by 

means of liming and fertilization. Environnemental Pollution. 107, 79–88. 

Du Laing, G., De Vos, R., Vandecasteele, B., Lesage, E., Tack, F.M.G., Verloo, M.G., 2008. 

Effect of salinity on heavy metal mobility and availability in intertidal sediments of the 

Scheldt estuary. Estuarine, Coastal and Shelf Science, 77, 589–602. 

Du Laing, G., Van de Moortel, A., Moors, W., De Grauwe, P., Meers, E., Tack, F., Verloo, M., 

2009. Factors affecting metal concentrations in reed plants (Phragmites australis) of 

intertidal marshes in the Scheldt estuary. Ecological Engineering. 35, 310318. 

El Hamzaoui, Y., Hernández, J.A., Silva-Martínez, S., Bassam, A., Álvarez, A., Lizama-Bahena, 

C., 2011. Optimal performance of COD removal during aqueous treatment of alazine and 

gesaprim commercial herbicides by direct and inverse neural network, Desalination 277, 

325–337. 

Elzinga, E.J., Van Grinsven, J.J.M., Swartjes, F.A., 1999. General purpose Freundlich isotherms 

for cadmium, copper and zinc in soils. European Journal of Soil Science. 50, 139-149. 

Farrell, M., Jones, D.L., 2010. Use of composts in the remediation of heavy metal contaminated 

soil. Journal of Hazardous Materials. 175 575-582. 

Ford, R.G., 2002. Rates of hydrous ferric oxide crystallization and the influence on coprecipitated 

arsenate. Environmental Science & Technology. 36 2459-2463. 



  

26 

 

Freitas, H., Prasad, M. N. V., Pratas, J., 2004. Plant community tolerant to trace elements growing 

on the degraded soils of Sao Domingos mine in the south east of Portugal: environmental 

implications. Environment International., 30, 65-72. 

Gadepalle, V.P., Ouki S.K., Herwijnen R.V., Hutchings, T., 2008. Effects of amended compost on 

mobility and uptake of arsenic by rye grass in contaminated soil, Chemosphere 72 1056-

1061. 

Gandhimathi, A., Meenambal, T., 2012.  Analysis of Heavy Metal for Soil in Coimbatore by using 

ANN Model, European Journal of Scientific Research, Vol.68 No.4, pp. 462-474. 

Garau, G., Silvetti M., Deiana S., Deiana P., Castaldi, P., 2011. Long-term influence of red mud 

on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic 

soil. Journal of Hazardous Materials. 185 1241-1248. 

Gerke, J., 1994. Aluminium complexation by humic substances and aluminium species in the soil 

solution. Geoderma. 63:165–175. 

González-Alcaraz, M.N., Conesa H.M, Tercero M.C, Schulinb R., Álvarez-Rogel J., Egea C., 

2011. The combined use of liming and Sarcocornia fruticosa development for 

phytomanagement of salt marsh soils polluted by mine wastes. Journal 

of Hazardous Materials. 186 805-813. 

Gupta, V.K., Sharma S., 2002. Removal of cadmium and zinc from aqueous solutions using red 

mud. Environmental Science & Technology. 36 3612–3617. 

Hambli, R., 2009. Statistical damage analysis of extrusion processes using finite element method 

and neural networks simulation. Finite Elements in Anal and Design. (45), 10, 640-649. 

Hambli, R., Chamekh, A., Bel Hadj Salah, H., 2006. Real-time deformation of structure using 

finite element and neural networks in virtual reality applications. Finite Elements in 

Analysis and Design, 42, Issue: 11, pp: 985-991. 



  

27 

 

Hamby, D.M., 1993. A Probabilistic Estimation of Atmospheric tritium Dose. Health Physicians. 

65, 33--40. 

Harmsen, J., 2007. Measuring bioavailability: from a scientific approach to standard methods. 

Journal of Environmental Quality. 36, 1420– 1428. 

Harter, R.D., Naidu, R., 1995. Role of metal–organic cCPMplexation in metal sorption by soils. 

Advances in Agronomy. 55. 219–263. 

Hartley, W., Lepp, N.W., 2008. Remediation of arsenic contaminated soils by iron-oxide 

application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake, 

Science of total Environment. 390 35-44. 

Hatje, V., Payne, T.E., Hill, D.M., McOrist, G., Birch, G.F., Szymczak, R., 2003. Kinetics of trace 

element uptake and release by particles in estuarine waters: effects of pH, salinity, and 

particle loading. Environment International, 29 , pp. 619–629. 

Hernández, J.A., 2009. Optimum operating conditions for heat and mass transfer in foodstuffs 

drying by means of neural network inverse, Food Control 20, 435–438. 

Hernández, J.A., Colorado, D., Cortés-Aburto, O., El Hamzaoui, Y., Velazquez, V., Alonso, B., 

2013. Inverse neural network for optimal performance in polygeneration systems, Applied 

Thermal Engineering 50, 1399-1406. 

Hsu. J.H., Lo, S.L., 2000. Characterisation and extractability of copper. manganese. and zinc in 

swine manure composts. Journal of Environmental industry. Environmental Pollution. 101. 

43–48. 

Jackson, B.P., Miller, W.P., 2000. Soil solution chemistry of a fly ash-. poultry litter-. and sewage 

sludge-amended soil. Journal of Environmental Quality. 29 (2). pp. 430–436 

Jacques, J., Lavergne, C., Devictor, N., 2006. Sensitivity analysis in presence of model uncertainty 

and correlated inputs. Reliability Engineering & System Safety 91,1126–1134. 



  

28 

 

Jenkins, W. M., 1997. An introduction to neural computing for the structural engineer, Journal of 

Structural Engineering, 75 3, 38-41. 

Kabata-Pendias, A.,  Pendias, H., 1992. Trace elements in soils andplants. 2nd ed. CRC Press, Inc, 

Boca Raton, Florida, pp. 365. 

Kabata-Pendias, A., Pendias, H., 2000. Trace Elements is Soils and Plants. CRC Press, Boca 

Raton, Florida, USA. 

Kafadar, K., 1994. Choosing among two-dimensional smoothers in practice', Computational 

Statistics and Data Analysis, 18, 419}439.  

Labus, J., Hernández, J.A., Bruno, J.C., Coronas, A., 2012. Inverse neural network based control 

strategy for absorption chillers, Renewable Energy 39, 471-482. 

Laidi, M. and Hanini, S., 2013. Optimal solar COP prediction of a solar-assisted adsorption 

refrigeration system working with activated carbon/methanol as working pairs using direct 

and inverse artificial neural network, International Journal of  Refregeration, 36, 247 -257. 

Lexmond, M., 1980. The effect of soil pH on copper toxicity to forage maize grown under field 

conditions. Netherlands Journal of Agricultural Science. 28, 164–184. 

Lombi, E., Hamon, R.E., McGrath, S.P., McLaughlin, M.J., 2003. Lability of Cd, Cu, and Zn in 

polluted soils treated with lime, beringite, and red mud and identification of a non labile 

colloidal fraction of metals using isotopic techniques. Environmental Science and 

Technology.37 (5), 979-984. 

Ma, Y., Lombi, E., Oliver, I., Nolan, A., McLaughlin, M., 2006. Long-term aging of copper added 

to soils. Environmental Science and Technology 40, 6310–6317. 

McBratney, A.B., Mendoca Santos, M.L., Minasny, B., 2003. On digital soil mapping. Geoderma 

117, 3-52. 

McBride, M. B., 1989. Reactions controlling heavy metal solubility in soils. Advances in Soil 

Sciences. 10, 156. 



  

29 

 

McBride, M.B., 1994. Environmental Chemistry of Soils. Oxford University Press, New York, 

NY. 

McLaren, R. G., Crawford, D. V., 1973. Studies on soil copper. II. The specific adsorption of 

copper by soils. Journal of soil science. 24, 443– 452. 

Melamed, R., Cao X., Chen, M., Ma, L.Q., 2003. Field assessment of lead immobilization in a 

contaminated soil after phosphate application. Science of the Total Environment. 305 117-

127. 

Mench,  M., Bes, C., 2009. Assessment of ecotoxicity of topsoils from a wood treatment site. 

Pedosphere;19:143–55. 

Mench, M.,  Baize, D., 2004. Contamination des sols et de nos aliments d’origine végétale par les 

éléments en traces. Cour. Environ. INRA (in French). 52: 31–56. 

Minasny, B., Hopmans, J.W., Harter, T., Eching, S.O., Tuli, A., Denton, M.A., 2004. Neural 

networks prediction of soil hydraulic functions for alluvial soils using multistep outflow 

data. Soil Science Society of America Journal. 68, 417—429. 

Oste, L.A., Dolfing, J., Ma,W.C., Lexmond, T.M., 2001. Effect of beringite on cadmium and zinc 

uptake by plants and earthworms: more than a liming effect. Environmental Toxicology and 

Chemistry. 20 (6), 1339–1345. 

Puschenreiter, M., Horak, O., Friesl, W., Hartl, W., 2005. Low cost agricultural measures to 

reduce heavy metal transfer into the food chain – a review. Plant and Soil Environment . 51 

(1), 1–11. 

Rafiq, M. Y., Bugmann, G., Easterbrook D. J., 2001. Neural network design for engineering 

applications. Computers and Structures, Vol. 79, (17), 1541-1552. 

Römkens, P.F.A.M., Salomons, W., 1998. Cd, Cu and Zn solubility in arable and forest soils: 

consequences of land use changes for metal mobility and risk assessment. Soil Science. 163, 

859-871. 



  

30 

 

Sarmadian, F., Taghizadeh Mehrjardi, R., 2008. Modeling of Some Soil Properties Using 

Artificial Neural Network and Multivariate Regression in Gorgan Province, North of Iran. 

Global Journal of Environmental Research 2 (1): 30-35.  

Sauve´, S., Hendershot, W., Allen H. E., 2000. Solid–solution partitioning of metals in 

contaminated soils: dependence on pH, total metal burden, and organic matter. 

Environmental Science & Technology. 34, 1125–1131. 

Schaap, M.G., F.J. Leij., 1998. Using neural networks to predict soil water retention and soil 

hydraulic conductivity. Soil and Tillage Research, 47: 37-42. 

Schaap, M.G., Leij, F.J., van Genuchten, M.T., 1998. Neural networks analysis for hierarchical 

prediction of soil hydraulic properties. Soil Science Society of America Journal. 62, 84-855. 

Schwab, P., Zhu D., Banks M.K., 2007. Heavy metal leaching from mine tailings as affected by 

organic amendments. Bioresource Technology. 98, 2935–2941. 

Streck, T., Richter, J., 1997. Heavy metal displacement in a sandy soil at the field scale: I. 

Measurements and parameterization of sorption. Journal of Environmental Quality. 26, 49-

56. 

Tiktak, A., Alkemade, J.R.M., Van Grinsven, J.J.M., Makaske, G.B., 1998. Modeling cadmium 

accumulation at a regional scale in the Netherlands. Nutrient Cycling in Agroecosystems. 50, 

209-222. 

Torri S.I., Lavado R.S., 2008. Dynamics of Cd, Cu and Pb added to soil through different kinds of 

sewage sludge, Waste Management. 28, 21–832. 

Trivedi, P., Axe L., 2001. Predicting divalent metal sorption to hydrous Al, Fe, and Mn oxides. 

Environmental Science & Technology. 35, 1779–1784. 

Tyler, G., Olsson, T., 2001. Concentrations of 60 elements in the soil solution as related to the soil 

acidity. European Journal of Soil Science. 52, 151–165. 



  

31 

 

van der Zee, S.E.A.T.M., van Riemsdijk,W.H., 1987. Transport of reactive solute in spatially 

variable soil systems. Water Resources Research. 23, 2059-2069. 

Velleman, P. F., 1980. Definition and comparison of robust nonlinear data smoothing algorithms'. 

Journal of the American Statistical Association, 75, 609-615.  

Walker, D.J., Clemente R., Bernal M.P., 2004, Contrasting effects of manure and compost on soil 

pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated 

by pyritic mine waste, Chemosphere 57, 215–224. 

Warren, G.P., Alloway B.J., 2003. Reduction of arsenic uptake by lettuce with ferrous sulfate 

applied to contaminated soil. Journal of Environmental Quality. 32, 767–772. 

Zhang, H., Zhao, F.J., Sun, B., Davison, W., McGrath, S., 2001. A new method to measure 

effective solution concentration predicts copper availability to plants. Environmental 

Science & Technology. 35. pp. 2602–2607. 

Zvereva, E. L.,  Kozlov, M. V., 2007.  Facilitation of bilberry by mountain birch in habitat 

severely disturbed by pollution: Importance of sheltering. Environmental and Experimental 

Botany. 60,170-176.  

Zvereva, E. L., M. V. Kozlov., 2004. Facilitative effects of top-canopy plants on four dwarf shrub 

species in habitats severely disturbed by pollution. Journal of Ecology 92:288-296. 

 

 

 

 

 

 

 

 

 

 

 

 



  

32 

 

 

 

 

 

 

 

 

 

The figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Direct neural network architecture for standard forward modeling composed of 4 inputs, 

two hidden layers and one output layer. 
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Figure 2. Inverse ANN model for backward modeling composed of 4 inputs, two hidden layers 

and one output layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cu concentration in the 

bean leaves (mg.kg
-1

)        

Output 
pH 

Best soil Treatment 

EC (µS.cm
-1

) Inputs 

DOC (mg.l
-1

) 

 



  

34 

 

 

 

 

 

 

 

 
Figure 3. Inverse ANN prediction versus actual soil inputs obtained by an Inverse ANN trained 
using noise-free training data. Results were obtained for 300 testing combinations of soil inputs. 

Outputs 1, 2, 3 and 4 refer to UNT, CPM, DL and DLX CPM soil amendments respectively. 
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Figure 4. Inverse NN prediction versus actual soil inputs obtained by an ANN trained using noisy 
training data with decreasing levels of noise. Results were obtained for 300 testing combinations 

of soil inputs. Outputs 1, 2, 3 and 4 refer to UNT, CPM, DL and DLX CPM soil amendments 
respectively. 
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Figure 5. Predicted optimal treatment for soil corresponding to a target value of Cu concentration 
in BL of 150 mg.kg-1. Non-uniqueness of the solution related to the effects of soil pH and DOC 

can be observed corresponding to the target Cu concentration indicated by the vertical dashed line 
( 50 ). For illustration, the EC was fixed at µS.cm-1. 
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   (a) Target Cu=150 mg.kg-1                                            (b) Target Cu=200 mg.kg-1 

 

   
       (c) Target Cu=250 mg.kg-1                                            (d) Target Cu=300 mg.kg-1 
 

Figure 6. Ternary diagram to classify the predicted optimal treatments for soil corresponding to 
different target values of Cu concentration in BL: Effects of soil pH, EC and DOC interactions. 
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The tables 

 

 

 

 

 

 

 

 

 
Inputs             Level             Min value                 Max value 

Soil treatment 4 #1 #4 

pH 4 6.97 7.55 

EC (µS.cm-1) 4 111 208 

DOC (mg.l-1) 4 26.75 42.724 

Output 
Cu concentration in the bean leaves (mg.kg-1) 

 
Table 1. Selected inputs and output for ANN training. 
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Inputs min max Level 1 Level 
2 

Level 3 Level 4 

Target Cu 
concentration (mg.kg-1) 

10 500 100 200 300 400 

pH 6.97 7.55 7.0 7.1 7.2 7.3 

EC (µS.cm-1) 111 208 120 140 160 180 

DOC (mg.l-1) 26.75 42.724 28 32 35 40 

 
Table 2. Selected four inputs for the inverse ANN prediction. Full factorial combinations generate 

256                ( 4444  ) data set. 
 

 

 

 

 

 

 

 

 

 


