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Abstract 

This paper describes the effect of temperature, time, solvent and sonication conditions under air 

and Argon for the preparation of micron and sub-micron sized vermiculite particles in a Rosett-

type reactor. The resulting material were characterized via X-ray powder diffraction (XRDP), 

Field Emission Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared (FTIR) 

Spectroscopy, BET surface area Analysis, chemical analysis (elemental analysis), thermal 

analysis (TGA) and Laser Granulometry. The sonicated vermiculites displayed modified particle 

morphologies and reduced sizes (observed by scanning electron microscopy and laser 

granulometry). Under the conditions used in this work, sub-micron sized particles were obtained 

after 5 h of sonication, whereas longer times promoted aggregation. Laser granulometry data 

revealed also that the smallest particles were obtained at high temperature while it is generally 

accepted that the mechanical effects of ultrasound are optimum at low temperatures. X-ray 

diffraction results indicated a reduction of the crystallite size along the basal direction (001); but 

structural changes were not observed. Sonication at different conditions also leads to the surface 

modification of the vermiculite particles brought out by BET surface measurements and Infrared 

Spectroscopy.  The results indicate clearly that the efficiency of ultrasound irradiation was 

significantly affected by different parameters such as temperature, solvent, type of gas and 

reactor type. 

 

Key words: Na-Vermiculite, ultrasound, sonication, sub-micron particles, temperature effect, 

Argon  



1. Introduction 

 

Vermiculite has been exploited widely over the past 60 years as a valuable insulating, coating, 

lightweight, high thermal resistivity and filler material among its other uses. It has widespread 

industrial and agricultural [1] as well as fundamental workability, which can be tailored with the 

reduction in particle size and or exfoliation [2-3]. Once delaminated and when their particle size 

and thickness are reduced in a controlled manner, they claim important applications such as 

absorbents for adsorbing organic contaminants and heavy metals [3– 8], enhancing mechanical 

and thermal properties of polymeric materials, imparting fire-retardancy and barrier properties 

for composites [9–11], high temperature and thermal insulating properties [12]. Vermiculite has 

been proved to be a nice reinforcement for the preparation of nano-composites [3, 13-15]. 

Vermiculite has a higher surface area to interact with other molecules, as well as a larger 

interlayer space to enable interaction of organic compounds [3, 16-17] 

Different methods have been reported for the delamination and reduction of particle size of 

vermiculite, such as thermal shock [2-4], mechanical [17-18], sonication [18-24], and chemical 

treatment with H2O2 [25]. Sonication is widely reported method for the delamination of 

vermiculite, along the [001] lattice direction, to obtain submicron and micron size particles by 

ultrasonic treatments [19-24]. Ultrasound technology was reported to avoid undesirable side 

effects such as crystal structure damage of Vermiculite as compared to grinding, because the 

large range order is almost unaffected by sonication [18, 24, 26].  

Cavitation basically involves the formation, growth and collapse of small gas bubble in a liquid 

exposed to ultrasound irradiation [27-29]. During the cavitational collapse, the temperature and 

pressure reach thousands of degree of Kelvin and hundreds of atmosphere respectively [27-29]. 



This physical phenomenon is the cause of several effects, ranging from mechanical to chemical, 

according to the incident frequency [27-31]. The Physiochemical effects of cavitation are also 

strongly dependents on the nature of the dissolved gases [31-33] as well as other parameters 

including the liquid properties, (vapor pressure, viscosity), temperature of sonicated solution and 

ultrasonic intensity [27-29, 34]. Bubbles of monoatomic gas such as argon, having smaller heat 

capacity, are known to give much higher temperature upon compression than bubbles of 

diatomic gases such as (O2 and N2) [32,]. The solvent used to perform sonication must also be 

carefully chosen; as solvent viscosity and surface tension are expected to inhibit cavitation: the 

higher the cohesive forces within a liquid, the more difficult is the cavitation [28, 29].  The 

temperature of the sonicated solution also plays a vital role. On one hand, high temperatures can 

help to disrupt solvent-solute interactions, which involve Van der Waals forces, H- bonding and 

dipole interaction, also faster diffusion occurs at higher temperature. But on the second hand, a 

too high temperature can also lead to “vaporous” cavitation where acoustic bubbles can do 

coalescence with natural bubbles of vapor, decreasing the efficiency of the ultrasonic effects [28, 

34].  

Many references [20-24] reported the particle-size reduction of vermiculite dispersions with 

high-intensity sonication. They observed reduction of centimetric vermiculite platelets to 

particles having 15.5 µm average size, after sonication of 10 h in 15 % H2O2 [20]. 

Submicrometric  sized particles were obtained (average size of 0.7 µm) after a sonication period 

of 80 h [24]. References [21] (or [23]) reported that excess of 40 h (or 100 h) of sonication , 

yielded to the aggregation of the micrometric particles for which the crystallinity was retained. 

Nguyen et al. [19] reported also the increase in percentage of the larger micrometric particles 

after 5 h of sonication in H2O2 solution but not in aqueous media. Even if all the above cited 



results emphasize the efficiency of ultrasound to decrease the particle size distributions, all 

reactions times remain important making unreasonable the perspective of a scale-up. In this 

present work, we decided to study several of the key parameters of the sonication methodology 

for preparing micron / sub-submicron sized particles of a sodium exchanged vermiculite (Na-

VMT). We used an ultrasonic irradiation of 20 kHz in Rosett and cylindrical reactors, and in 

addition time, temperature, atmosphere conditions and solvent type were explored and 

optimized. The sonicated vermiculites in various conditions were characterized and compared to 

raw materials. 

2. Experimental 

 

2.1 Preparation of Na- VMT 

 

Raw vermiculite (Granutec
®
 E originating from Yuli China and provided by CMMP, France, 

named VMT) was first washed with osmosed water to remove the impurities by flotation, dried 

at 100 
o
C for 12 h and then milled with a coffee mill to obtain about 0.5 mm basal size particles. 

The average chemical composition of half a lattice cell calculated from elemental analysis was 

(Si2.87 Al1.07)(Mg2.67 Fe0.29 Ti0.06)O10(OH)2K0.48Na0.22Ca0.11. A typical procedure for the 

preparation of Na Vermiculite (Na-VMT) was as follows: 30 g of VMT were submitted to 

mechanical stirring for 24 hours with 1 mol. L
-1

 NaCl (1000 mL) at 25 °C and the solid was 

separated by sedimentation. The same procedure of cationic exchange was repeated twice. After 

being exchanged, the Na-VMT was separated by decantation and then washed 10 times with 400 

mL of distilled water to remove the excess of sodium and chloride ions and then dried at 100 
o
C 

for 24 hours. The average chemical composition of half a lattice cell of the exchanged Na-VMT 



calculated from elemental analysis was 

(Si2.87 Al1.07)(Mg2.67 Fe0.29 Ti0.06)O10(OH)2K0.40Na0.49Ca0.01. The potassium cation was almost not 

exchanged by sodium but that the calcium ion was nearly totally exchanged. 

  

2.2 Sonication 

 

An Ultrasonic Processor (Sonics and Materials, 500 W Ultrasonic Processor - VC505) of 

350 W output with a 20 kHz converter fitted with an ultrasonic titanium probe (19 mm- Sonics 

and Materials, amplitude set to 41 mm) was used. The tip of the horn was dipped into a Rosett 

double-jacketed (to control the temperature) cell of 60 mL capacity containing Na-VMT 

suspension prepared in different solvents: osmosed water, hydrogen peroxide (35% H2O2) and 

toluene. This suspension was sonicated for different periods of time and temperatures. In order to 

study the effect of reactor geometry, sonication experiments were also carried out in a 

conventional cylindrical reactor (60 mL capacity) in water. 

The calorimetric method was applied to determinate the acoustic power for Rosett and 

cylindrical reactors. A thermocouple was dipped in the bulk distilled water to record the 

temperature increase due to sonication (for few minutes). The value of the acoustic power 

calculated:  by the calorimetric method from reference [35], was about 58.7 W for both Rosett 

and cylindrical reactors. The Rosett type reactor used in this study, revealed in the 80-90’s but 

forgotten since to the best of our knowledge is a reactor with 4 lateral tubes displaying smaller 

diameters than the body of the reactor. When submitted to the sonic wave, the liquid is pushed in 

these lateral tubes, leading to a turbulent Venturi effect (rapid acceleration of the liquid). These 

turbulences allow the formation of hydrodynamic cavitation bubbles whose are then pushed in 



the field of the ultrasonic probe. The additional energy brought up by the rapid collapse of these 

hydrodynamic bubbles might lead to an additional effect with the collapsing acoustic bubbles. In 

addition, this cell suffered a new modification. The angles and bottom position of the lateral 

tubes were adapted to optimize the passing of the suspended solution in both the body and the 

lateral tubes (Fig. 1). 

 

Fig. 1: Modified Rosett-type Reactor. 

 

Typically 5 wt. % of Na-VMT was suspended in H2O, H2O2 or toluene (Tolu) under different 

atmosphere (air or Argon) and submitted to ultrasound for 1 to 8 h to obtain sonicated samples 

named “S-V-H2O-T-t”, “S-V-H2O2-T-t” and “S-V-Tolu-T-t”, respectively, where T is the 

temperature of sonication and t is the sonication time. Samples sonicated under Argon in water 

were referred to“S-V-Argon-T-t”. For all experiments under argon, the vermiculite suspensions 

were deoxygenized with argon bubbling for 12 h prior to sonication and also during the 

ultrasonic treatment. A cooling circuit was used to maintain the temperature of the reactor 

constant during sonolysis at 25 °C, 30° C, or 90 °C, measured by a thermocouple immersed in 

the suspension. The percentage of mass of suspended Na-VMT to the total mass of suspension 

was varied from 2 wt. % to 30 wt. % to study its effect on the particle size reduction. 

 

2.3 Characterization  

TGA 

The weight loss temperatures of all samples were measured by thermogravimetry (TG) using a 

Pyris Diamond thermal analyzer (Perkin Elmer, USA). The TG measurements were performed 



from room temperature to 1100 
o
C at a heating rate of 10 °C/min, with a 10 minutes stay at 30 °C 

under flowing air at a rate of 50 mL/min.  

 

Elemental Analysis 

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) analyses of the 

Na-VMT and some sonicated VMT were performed by continuous wavelength coverage from 

167 to 785 nm, using a ICP-OES Thermo Elemental IRIS radial Vista-PRO, at a French 

accredited laboratory (SARM, CRPG, CNRS, Nancy, France).   

 

FTIR 

A Thermo Scientific Nicolet IS10 spectrometer was used for Diffuse Reflectance Infrared 

Fourier Transform (DRIFT) spectroscopic analysis, using a scanning coverage from 4000 to 400 

cm
-1

 with a spectral resolution of 4 cm
-1

, using 64 scans. All samples were kept overnight in an 

oven, at 80 
o
C before analysis. Dried potassium bromide (0.54 g), was mixed with vermiculite 

samples (0.06 g) and grinded to fill the sample holder. A background spectrum of KBr was 

recorded before each analysis. The DRIFT background-subtracted spectra were commuted to 

Kubelka Munk units. The infrared spectra were all normalized to their more intense band (i.e. the 

Si-O band in the region of 1000 cm
-1

). 

 

XRD 

The crystalline structure of the samples was characterized by X-ray diffraction (XRD) 

using a Thermo Electron ARL'XTRA diffractometer in Bragg-Brentano (θ, θ) mode goniometer. 

The device was equipped with a Si (Li) solid detector filtering the CuKα radiation (λCuKα = 



1.5418 Å) of a standard European type X-ray tube (40 kV, 40 mA). The divergence, the incident 

beam scatter, the diffracted beam scatter and the receiving slits were 2.00, 4.00, 0.50 and 0.22 

mm wide, respectively. XRD patterns were collected from 1° to 64°. 

 

FE-SEM 

To characterize the shape and size of the untreated and sonicated samples SEM analyses were 

conducted, using a high resolution Field Emission Scanning Electron Microscope [FE-SEM 

Zeiss Ultra TM55]. A Bruker Silicon Drift EDS Detector coupled with the SEM was used to 

investigate the chemical nature of the samples 

BET 

The N2 adsorption – desorption isotherms were measured using an automatic adsorption 

instrument (ASAP 2000, Micrometrics) at liquid nitrogen temperature (77 K). Prior to 

measurements samples were degassed under vacuum (10
-3

 mbar) at 100 
°
C for 12 h . The specific 

surface area was calculated using the BET (Brunauer – Emmett-Teller) equation by assuming the 

area of nitrogen molecule to be 0.162 nm
2
. 

 

3. Results and discussion 

 

3.1. Chemical compositions 

The main difference in the elemental analysis of the raw samples and the sonicated samples 

(Table 1) is the increase of the amount of Ti after sonication due to the erosion of the Titanium 



probe. Inferred from Table 1, the Ti impurities content in the vermiculites sonicated for 5h in 

water medium is in the range 0.6-1 weight %.  

Recent works [19] have shown that the sonication in H2O2 (35%) of a K-VMT (Table 1), 

containing Ca
2+

, Na
+
, and mainly K

+
 as exchangeable cations (formula : 

(Si2.87 Al1.07)(Mg2.67 Fe0.29 Ti0.06)O10(OH)2K0.6Na0.16Ca0.08), releases preferentially Na
+
 in the 

solution (loss of about 0.7 weight %) rather than K
+
(loss of weight about 0.4 weight %) thanks to 

the delaminating process induced by cavitation and chemical decomposition of H2O2 In parallel, 

the pH of the H2O2 solution increased in order to maintain the electrical neutrality through 

dissolution of OH
-
 anions [4]. This dissolution of the interlayer cations (mainly Na

+
) might affect 

the chemical composition of the sonicated VMT as the interlayer composition was subsequently 

modified. 

In order to estimate from elemental analysis the half lattice cell chemical formula of the 

vermiculites (table 1), the excess of Ti content from the probe erosion was subtracted from the 

whole composition. From the elemental analysis, we have estimated the chemical formula for 

half a lattice cell of vermiculite material, in the hypothesis that the total charge of the cations 

belonging to layers was unchanged after sonication. This hypothesis was checked by the 

comparison of the chemical composition of the layer cations prior and after sonication that gives 

quite similar contents. However, the loss of hydroxyl anions from the layers was not taking into 

account for calculating the lattice cell theoretical formula. Computed by this way, the formulas 

of the two vermiculites sonicated in water at T=25°C or in Argon (i.e. 

(Si2.87 Al1.07)(Mg2.67 Fe0.29 Ti0.06)O10(OH)2K0.40Na0.49Ca0.01), are somewhat very similar to the one 

of Na-VMT. By contrast the computed formula of the vermiculite sonicated in water at T=90°C 

shows higher variation of K
+
, Na

+
 and Ca

2+
 content 



(Si2.87 Al1.07)(Mg2.67 Fe0.29 Ti0.06)O10(OH)2K0.48Na0.37Ca0.03). Table 1 also shows that among the 

exchangeable cations, the Na
+
 cation remained the more labile as its atomic percentage was 

decreased after ultrasound irradiation in water, whatever the conditions. The lixiviation of Na
+
 

cation induced by sonication was improved through rising the solution temperature to 90°C 

along irradiation. 

 

Table 1: Comparison of the elemental analysis and the atomic % of exchangeable cations of K-

VMT and Na-VMT raw and sonicated samples  in water and hydrogen peroxide. 

 

3.2. TGA 

The thermal-gravimetric (TG) analysis curves of Na-VMT and sonicated VMT are presented in 

Fig. 2. The first weight loss between 40 and 110 ºC corresponds to the loss of water physically 

absorbed on the surface of the clay and in the interlayer spacing brought out by two peaks on the 

derivative TG signal (not shown) 

Concerning this first region (40–110°C), the ultrasonically treated VMT in water (S-V-H2O-

90 
o
C- 5h and) showed approximately 5.5 wt. % mass loss and much more than that of the Na-

VMT (4.5 %), ascribed to higher hydration of these sonicated samples that might be explained 

by their higher specific surface areas according to their small sized particles (micron and sub-

micron sized particles). By contrast, in the same region of temperature, the sample S-V-H2O2-

25
o
C-5h displays a lower amount of adsorbed water. As previously reported [25,4] for 

vermiculites treated by H2O2, this could be explained by a partial dehydration of the interlayer 

spacing, due to the insertion-decomposition of hydrogen peroxide in the interlayer spaces. The 

same dehydration was observed for the vermiculites sonicated at 25 
o
C for 5h in pure or 



deoxygenated water (under argon atmosphere) (samples S-V-Argon-25
o
C-5h and S-V-H2O-

25
o
C-5h) possibly because of the loss some hydrated cations Na

+
 released preferentially in the 

solution after exfoliation instead of K
+
 and  Ca

2+
, as brought out by the elemental analysis. 

The second weight loss from 250 ºC to 370 ºC, can be attributed to decomposition of some 

carbonate impurities, present both in sonicated and Na-VMT. The region between 400 and 950 

ºC records a loss of weight with respect to temperature, which is first attributed to structure water 

releasing dehydroxilation and then at temperature higher than 850°C to the collapse of the crystal 

structure octahedral sheet and subsequent transformation around 1000°Cin enstatite crystalline 

phase coexisting with or not with mica-like structure [37] . The emission of water due to the loss 

of hydroxyl anions from the vermiculite layers occurs at temperature higher than 800 °C for the 

raw VMT. While TG signal displays almost no change in the range 400-800°C for raw VMT, 

loss of water is observed continuously in the same range for all the sonicated samples (Fig. 2), as 

previously reported for ground vermiculite [38]. Moreover the derivative TG signal (not shown) 

displays a water loss at 525°C in sonicated samples except for S-V-Toluene-25
o
C-5h. This can 

be related to the chemical modification (slight removal of the OH
-
 anions) due to exfoliation by 

sonication [4]. The layers might have become less stable with increasing temperature due to the 

formation of some atomic defects (such as OH
-
 vacancies) by irradiation treatments, initiating the 

dehydroxylation at low temperature. For  S-V-H2O-25
o
C-5h sample, the weight increase 

observed at about 800°C might be attributed to the oxidation of Ti impurities (in TiO2) 

originating from the probe erosion. 

 

Fig. 2: TGA curves of Na-VMT and sonicated vermiculites in different solvents and 

temperatures. 

 



3.3. Infrared Spectroscopy 

In comparison to the Na-VMT, sonicated samples exhibit quite similar FTIR spectra (Fig. 3). 

The large absorption band at 460 cm
-1 

(Fig. 3) is attributed to the Al-O stretching, while the 

absorption band at 680 cm
-1

 is assigned to the Si-O out of plane bending [39]. The main 

absorption band from 890 cm
-1

 to 1100 cm
-1

 represents the asymmetric stretching and bending 

vibrations of Si-OH network [39]. Silicates generally give two main absorption bands, near 1000 

cm
-1

 (due to Si-O stretching) and near 600 cm
-1

 (due to Si-O bending). Farmer [40] related the 

position and intensity of Si-O vibrational bonds, to the delamination of the clay giving oscillation 

perpendicular to the plates. Similarly Yariv [41, 42] correlated the increase in absorbance and 

shift to the delamination of kaolinite during the grinding with KBr. FTIR spectra reveal that the 

main difference with non sonicated raw sample in our case was the behavior of Si-O band, which 

was shifted to higher wave numbers after sonication treatment (e.g. for S-V-H2O-25
o
C-5h 

sample, the band is shifted from 972 cm
-1

 to 982 cm
-1

). Similar shifts were observed for all 

materials sonicated for same span of time (S-V-H2O2-25
o
C-5h, S-V-Argon -25

o
C-5h, S-V-

Toluene-25
o
C-5h and S-V-H2O-90

o
C-5h). Small shifts in positions (≤ 2cm

-1
) of the same band 

compared to raw Na-VMT were also observed in the infrared spectra recorded for various 

sonication times (not shown). 

Bands at 3700, 3666 and 3600 cm
-1

 were observed in the OH region . The band at 3600 cm
-1

 can 

be attributed to the vibration modes of the inner surface hydroxyl groups, present in the plane 

shared between the tetrahedral and octahedral sheets [39, 41]. The other two bands are attributed 

to the coupling of inner surface hydroxyl groups that give a strong Si-OH symmetric stretch at 

3700 cm
-1

 and out of plane vibrations at 3666 cm
-1

 respectively. The band of OH (δ-OH) at 1641 



cm
-1

 and 1636 cm
-1

 (Figure 3b)  are due to the H-O-H adsorbed water bending, previously 

explained by two kinds of water molecule interacting or not with internal layer cation [43].  

 

Fig. 3: FTIR spectra of Na-VMT and vermiculites sonicated in different solvents and 

temperatures. 

 

3.4. X-Ray Diffraction 

Fig. 4 represents the X-ray diffraction patterns of Na-VMT sonicated in different solvents and 

temperatures. XRD is an effective technique to measure the degree of hydratation of Na- VMT. 

In order to better understand the diffractogramm of Na-VMT, we have also prepared two 

exchanged VMT by Ca (Ca-VMT) and K (K-VMT) . The diffractogramm of Ca-VMT (not 

shown) displayed a more intense 002 line at d002=12 Å. The K-exchange of our vermiculite was 

reported to lead to a complete dehydration and the resulting XRD pattern shows only a single 

002 line characterized by a basal distance of about 10 Å [19]. In Fig.4 representing the XRD 

patterns from 2
o
 to 24

o
 (2) of the Na-VMT, mainly all the observed peaks correspond to (00l) 

reflections that were attributed to different structures named (a) to (e). The narrow and more 

intense peak at 14.97 Å (identified as 002a) corresponds to a layer of homoionic Na VMT with 

basal distance of 15 Å intercalated with two water layers [44, 45]. The group of (002) peaks 

between between 13.8 and 9.6 Å may corresponds to vermiculite layers with lower hydration 

ratio. The peak at 10.1 Å (identified as 002e) is attributed to non-hydrated K
+
 homoionic layers 

resulting from the non-complete exchange of raw VMT with Na
+
. The peak at about 12.1

 
Å 

(identified as 002c) is attributed to residual Ca
2+

 homionic vermiculite layers (with only one 

layer of intercalated water) which are much more hydrated than potassic layers but less than Na-



exchanged layers. Peaks at about 12.7 Å (identified as 002b) and 11.3 Å (002d) may correspond 

to interstratified Na/Ca and Ca/K layers respectively. 

A slight broadening of the 001 reflections as well as the disappearance of maxima was observed 

in all the sonicated material diffractograms (Fig. 4) which might be due to the delamination of 

vermiculite sheets together with particle size reduction induced by sonication. After sonication, 

XRD patterns were quite similar, where only broadening of the line and intensity changes were 

observed, indicating that crystallite structure was not distorted with sonication. Average 

dimension of the crystallite measured of the sonicated material (along the c-axis) using the 

Scherrer formula (002a at 5.9
o
) were in the range of 35 to 50 nm compare to 55 nm for the raw 

Na-VMT. The smallest crystallite sizes were observed in case of sonication for 5h in H2O2 (35 

nm) and in H2O at 90 
o
C (40 nm). In all the sonicated samples, whatever the solvent, the 002a 

line belonging to the homoionic Na
+
 layers was less intense compared to the XRD signal of 

pristine Na-VMT. This lower intensity can be attributed to the presence of higher amount of less 

hydrated layers (identified in the second group of 00l lines referred to 002 b to e) in these 

sonicated materials. This is in agreement with the chemical analysis (part 3.1) showing a 

decrease in the Na
+
 content after sonication. 

 

Fig 4: Evolution of XRD patterns (normalized to the 010 line) for Na-VMT as well as sonicated 

Na-VMTs in different solvents and temperature. 

 

3.5. Particle Size distribution 



Fig. 5(a) shows the particle size distribution of Na exchanged and sonicated VMTs at various 

sonication times in aqueous media in the Rosett reactor. Raw Na-VMT exhibited a broad particle 

size distribution (between 100 and 1000 μm) where the mean particle size was 100 μm, having a 

single maxima. Fig. 5a shows an effective decrease in particle size as the sonication time 

increases.  However, beyond 5h of ultrasonic treatment, the particle size distribution increases 

again. The sample sonicated for 5 h possesses subsequently the smallest particle size (average 

size in the range 2-8 μm), where particle sizes below 1 μm were even observed. This might be 

due to an agglomeration of particles similarly to what was reported in hydrogen peroxide [19, 

21]. In addition, Rosett reactor appears to be more efficient for reduction of particle size than the 

cylindrical reactor because of additional hydrodynamic cavitation (Fig. 5(b)).  

Fig. 5(b) compares the distribution of particle size after sonication in different solvents (Toluene, 

H2O2 or water using Argon environment) sonicated for a span of 5 h each. Better cavitation 

phenomenon is observed at lower vapor pressure of the solvent. This is due to the fact that 

solvents having higher vapor pressure at operating temperature reduce the implosion energy of 

the bubbles as these are occupied with solvents vapors upon cavitation [28]. Toluene is more 

volatile than water so that it was less efficient for size reduction. In case of H2O2, its high water 

solubility, low volatility and thermal decomposition is known to lead to the formation of O2 and 

vapor which penetrates into the interlayer leading to the exfoliation of vermiculite [3, 19,25]. It is 

also known that the sonolytic degradation can lead to the formation of highly reactive and 

oxidative OH
o 

radicals but the production remains rather low at low frequency compared to high 

frequency [28, 29, 31]. Two modes were observed in the size distribution, whatever the used 

solvents. After Argon sonication two maxima distribution were observed where particles are 

distributed between 0.2 and 1 μm and between 1 and 10 μm, respectively, with mechanical 



effects of sonication more pronounced in deoxygenated water than in other solvents. In fact, the 

nature of the gas in the cavitation bubble is known to have a dramatic effect on the cavitational 

collapse [32]. Some of their properties like solubility, thermal conductivity and heat capacity 

ratio, affect the sonochemical reaction [28, 32]. Particularly, the CP/Cv ratio of the gas in the 

cavitational bubble affects the temperature produced by the adiabatic compression, and 

monoatomic gases having high ratio of heat capacity give the highest temperature during the 

collapsing phase. Similarly the higher the thermal conductivity of the gas, the lower will be the 

temperature produced during the collapse. According to the hot spot theory [27-29, 32] the 

sonication should be more energetic under argon due to its lower thermal conductivity. Fig. 5(c) 

shows the effect of temperature (30 
o
C or 90 

o
C) on the particle size distribution through 

sonication in water, for 3 different span of time, i.e. 1, 3 and 5 h respectively. It is clear that by 

increasing both the temperature and span of time, particles size is reduced dramatically. In case 

of S-5-H2O-90
o
C two very sharp distribution modes between 0.1 and 0.3 m and 1 and 3 m 

were observed. This might be attributed to the water vapors going into the interlayer of 

vermiculite as temperature 90 
o
C is nearer to the boiling point and yielding to exfoliation. 

Cavitation bubbles as well as evaporation bubbles might lead to the exfoliation of the clay layers. 

As vermiculite is a bidimensional material, water evaporation bubbles formed into the lamellar 

space might promote the exfoliation of clays. Also higher temperature helps in disrupting strong 

solute matrix interactions and accelerating the diffusion rates.  

Fig. 5(d) shows the effect of varying Na-VMT mass (i.e. from 2 to 30 wt. % suspension) in water 

suspensions against the particle size distribution for 5 h of sonication. For suspension at less than 

10 wt. solid % , the size distributions remain very similar  



 A slight increase in particle size with increasing amount of vermiculite, was found for wt. solid 

% suspensions higher than 10% explained by the enhanced the suspension viscosity hindering 

the cavitation effect, but the size variations are in the range 1-3 m suggesting the interest in 

scaling-up using 30% suspensions.  

 

 

Fig. 5: Particle size distributions (percentage of particle volume as a function of particle size): (a) 

: for various sonication times (sonication in water in Rosett reactor T = 25 °C, 5 wt. % Na-VMT 

in suspension); (b) : for different solvents in rosett reactor (all solvents) and in cylindrical one in 

case of water solvent. (sonication time = 5h, T = 25 
o
C, 5 wt. % Na-VMT suspension); (c) : as a 

function of temperature and different span of time (sonication in water, 5 wt. % Na-VMT suspension) ; 

(d) : for various Na-VMT weight % in suspension (5h sonication in water at 25°C). 

 

3.6. SEM 

Several SEM micrographs of the untreated and sonicated Na-VMT are shown in Fig. 6. Fig. 6(a) 

shows the SEM micrograph of the raw Na-VMT, with a homogenous distribution of platelets 

having size ranging between 10 to 100 µm as brought out by the laser granulometry 

characterization. In comparison to Fig. 6(a), all sonicated samples reveal an exfoliated 

morphology, attributed to the mechanical effect of ultrasound, resulting in the separation of the 

VMT layers and the formation of submicron size particles. The Fig. 6(b) (i.e. S-V-H2O-25
°
C-5h) 

reveals size reduction and breaking of the VMT sheets with round edges, and a heterogeneous 

distribution in terms of particle size which consist of both micron-sized particles and platelets of 

several tenths of microns size,, in agreement with laser granulometry (Fig. 5c section 3.5). The 

fig. 6(c) (i.e. S-V-H2O2-25
0
C-5h) reveals a heterogeneous population, with woolen like structure, 



resulting from the intercalation of H2O2, followed by the production of molecular oxygen by 

decomposition, together with the strong mechanical effect of sonication (Fig. 5(b)). In Fig. 6d (S-

V-H2O-90°C-5h) particles distribution is heterogeneous, either with population of sub-micron or 

micron sized particles, in agreement with granulometric repartition (Fig. 5(c) section 3.5). 

Exfoliated VMT platelets of very thin size, few in number, very well separated from each other 

and even flakes with curved morphology can be clearly observed, which could be attributed to 

the highest degree of exfoliation achieved due to the sonication at high temperature. Indeed, at 

high temperature cavitation bubbles together with the boiling vapors result in an extraordinary 

exfoliation, as previously described (section 3.5). The lengths of the smallest exfoliated VMT 

flakes measured directly from the SEM micrographs are ~ 170 nm. This result indicates that high 

temperature based sonication produced finest particle sizes together with high exfoliated 

morphology as compared to other systems. These observations are consistent with the laser 

granulometry results. 

Fig. 6(e) reveals the SEM micrograph of S-V-Toluene-25
o
C-5; in which are observed round 

shape agglomerates of small particles with an irregular symmetry resulting from the fracture of 

the vermiculite layers. In case of toluene, only slight exfoliation was observed, in the absence of 

chemical exfoliation and intercalation of toluene, so that very thick sheets were obtained 

compared to other solvent. S-V-Argon-25
o
C SEM image (Figure 6(f)) includes again an 

heterogeneous distribution, as in accordance with the granulometry data, formed of dense 

particles, which seems to be due to colonization of the smaller particles. This could be attributed 

to the effectiveness of sonication under monoatomic gases, as previously discussed (part 3.6) 

giving ~ 345 nm length flakes. 

 



Fig. 6: Scanning Electron Micrographs of (a) Na- VMT, (b) S-V-H2O at 25
o
C, (c) S-V-H2O at 

90
o
C, (d) S-V-H2O/Argon at 25

o
C (e) S-V-H2O2 at 25

o
C and (f) S-V-Toluene at 25

o
C 

 

3.6. BET Specific surface Area 

Table 2 shows the BET specific surface areas for all VMT samples for different spans of time in 

different solvents and temperature. The sonication leads to a gradual increase in specific surface 

area as after 1 h of sonication the surface area increases from 3.6 m
2
/g to 15.4 m

2
/g, and keep on 

increasing until 8h of sonication reaching 34.3 m
2
/g. Also; the nature of the solvent on the 

specific surface area and particle size was confirmed. In comparison to toluene, H2O2 and H2O 

solvents are better giving the highest surface area for the same conditions of sonication (time, 

temperature and power). S-V-H2O-90°C-5h sample presents the highest BET specific surface 

area for particles prepared for the same irradiation time, in agreement with its highly exfoliated 

aspect observed by SEM (Fig. 6-c) and its smallest particle size brought out using laser 

granulometry. 

 

Table 2: BET specific surface area measured as a function of sonication time and temperature 

 

Conclusion 

This study has shown the effectiveness of the rosett reactor for the preparation of micron sized 

Na-VMT particles by sonication at 20 KHz. Laser Granulometry distribution reveals in sonicated 

Na-VMT suspensions, the presence of two modes of particle size, one with average micron sized 

particles and another in the sub-micron range. Particle size analysis establishes the effectiveness 

of sonication for particle size reduction explained by mechanical shock of cavitation bubble 



implosion.  The sonication promoted also the preferential dissolution of the Na
+
 exchangeable 

cations due to the delamination and further separation of the clay mineral layers. The 

delamination was monitored by the choice of the sonication conditions: solvent nature, and 

temperature. 

XRD results of the sonicated Na-VMT show only slight broadening of the 001 reflection was. 

The average crystallite size measured using Scherrer formula was in the range of 35 to 50 nm. 

FT-IR spectra reveal that the Si-O bond is shifted to higher wave number, after sonication 

treatment. The time length of 5 h sonication was found to give in water media, the reduced 

particle size, beyond which an increase in particle size was observed due to reagglomeration. The 

sonication in water yielded to mainly micrometric particles. 

The use of deoxygenated water using argon has improved the cavitation as samples sonicated 

under this monoatomic gas recorded a size distribution with important submicrometric additional 

mode between 0.2 to 1 µm and 1 µm to 10 µm, emphasizing that the mechanical effect was more 

pronounced here as compare to other solvent. 

The most striking effect was observed for sonication at higher temperature, as particle size was 

dramatically reduced by increasing the temperature and span of time. In this case, the distribution 

mode between 0.1 µm and 0.3 µm is more intense compared to second micrometric mode (1 µm 

to 3 µm). This could be attributed to the improved exfoliation and delamination brought about by 

cavitation as well as natural evaporation bubbles of the chosen solvents at this temperature.  

SEM reveals a more or less exfoliated morphology, with heterogeneous distribution in terms of 

particle size for all sonicated samples (exfoliated flake average ~ 170 nm), showing the 

effectiveness of ultrasound. For samples sonicated at 90°C in water, SEM observed VMT 

platelets were especially exfoliated with very thin size. Thus, the efficiency of sonication at 90°C 



in water yield to improved exfoliation, attributed to the effect of boiling vapors accompanying 

cavitation bubbles at this temperature. 
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Figure Captions 

 

Fig. 1: Modified Rosett-type Reactor. 

 

Fig. 2: TGA curves of Na-VMT and sonicated vermiculites in different solvents and 

temperatures. 

 

Fig. 3: FTIR spectra of Na-VMT and vermiculites sonicated in different solvents and 

temperatures. 

 

Fig 4: Evolution of XRD patterns (normalized to the 010 line) for Na-VMT as well as 

sonicated Na-VMTs in different solvents and temperature. 

 

Fig. 5: Particle size distributions (percentage of particle volume as a function of particle size): 

(a) : for various sonication times (sonication in water in Rosett reactor T = 25 °C, 5 wt. % Na-

VMT in suspension); (b) : for different solvents in rosett reactor (all solvents) and in 

cylindrical one in case of water solvent. (sonication time = 5h, T = 25 
o
C, 5 wt. % Na-VMT 

suspension); (c) : as a function of temperature and different span of time (sonication in water, 

5 wt. % Na-VMT suspension) ; (d) : for various Na-VMT weight % in suspension (5h 

sonication in water at 25°C). 

 

Fig. 6: Scanning Electron Micrographs of (a) Na- VMT, (b) S-V-H2O at 25
o
C, (c) S-V-H2O at 

90
o
C, (d) S-V-H2O/Argon at 25

o
C (e) S-V-H2O2 at 25

o
C and (f) S-V-Toluene at 25

o
C. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Modified Rosett-type Reactor. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Fig. 2: TGA curves of Na-VMT and sonicated vermiculites in different solvents and 

temperatures. 
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Fig. 3: FTIR spectra of Na-VMT and vermiculites sonicated in different solvents and 

temperatures. 
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Fig 4: Evolution of XRD patterns (normalized to the 010 line) for Na-VMT as well as 

sonicated Na-VMTs in different solvents and temperature. 
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Fig. 5: Particle size distributions (percentage of particle volume as a function of particle size): 

(a) : for various sonication times (sonication in water in Rosett reactor T = 25 °C, 5 wt. % Na-

VMT in suspension); (b) : for different solvents in rosett reactor (all solvents) and in 

cylindrical one in case of water solvent. (sonication time = 5h, T = 25 oC, 5 wt. % Na-VMT 

suspension); (c) : as a function of temperature and different span of time (sonication in water, 

5 wt. % Na-VMT suspension) ; (d) : for various Na-VMT weight % in suspension (5h 

sonication in water at 25°C). 

 

 

 

 

 

 

 

 

 

 

 

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 V
o

lu
m

e
 P

e
rc

e
n

ta
g

e
 (

%
)

 Particle size in (µm)

5 h 30%

5 h 20%

5 h 10%

5 h 5%

 

 

 

 

5 h 2%5%

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

5 h at 90°C

5 h at 30°C

3 h at 90°C

3 h at 30°C

1 h at 90°C V
o

lu
m

e
 P

e
rc

e
n

ta
g

e
 (

%
)

 Particle size in (µm)

 

 

 

 

1 h at 30°C5%

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

S-V-H
2
O-25°C- 5h   

       (Cylinder)

S-V-H
2
O

2
-25°C- 5h

S-V-Argon-25°C- 5h

S-V-H
2
O-25°C- 5h

S-V-Tolu-25°C- 5h

 Particle size in (µm)
 V

o
lu

m
e
 P

e
rc

e
n

ta
g

e
 (

%
)

 
 

 

 

5%

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 V
o

lu
m

e
 P

e
rc

e
n

ta
g

e
 (

%
)

 Particle size in (µm)

 

 

Na- VMT

1 h

3 h

5 h

8 h

5%

(a) (b) 

(c) (d) 



 

 

 

 

 
 

 

Fig. 6: Scanning Electron Micrographs of (a) Na- VMT, (b) S-V-H2O at 25
o
C, (c) S-V-H2O at 

90
o
C, (d) S-V-H2O/Argon at 25

o
C (e) S-V-H2O2 at 25

o
C and (f) S-V-Toluene at 25

o
C. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Comparison of the elemental analysis and the atomic % of exchangeable cations of 

K-VMT and Na-VMT raw and sonicated samples  in water and hydrogen peroxide. 

Samples % 

SiO2 

% 

Al2O3 

% 

Fe2O3 

% 

MgO 

% 

CaO 

% 

Na2O 

% 

K2O 

% 

TiO2 

Atomic % of 

exchangeable 

cations 

Ca
2+

 K
+
 Na

+
 

K-VMT
+
 39.78 12.61 6.52 24.12 0.89 1.07 5.92 1.45 9 71 20 

K-VMT 

sonicated 5h 

in H2O2
+
 

37.52 12.05 5.98 22.93 0.95 0.61 4.91 1.89 12 74 14 

Na-VMT 39.08 12.25 6.16 23.82 0.11 3.25 4.07 1.13 1 45 54 

S-V- H2O-

25°C-5h 38.09 11.69 5.95 22.73 0.19 2.88 4.16 2.25 2 48 50 

S-V- H2O-

90°C-5h 
37.98 11.79 5.37 23.10 0.37 2.33 4.62 1.20 4 55 42 

S-V- H2O-

Argon-5h 
37.22 11.68 5.76 22.62 0.18 2.86 4.21 2.71 2 48 50 

+
 Samples from reference [19] (Nguyen et al) 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: BET specific surface area measured as a function of sonication time and temperature 

Sample 

name 

Na-

VMT 

S-V-H2O-

25
o
C-1h 

S-V-H2O-

25
o
C-3h 

S-V-H2O-

25
o
C-5h 

S-V-Tolu-

25
o
C-5h 

S-V-Argon-

25
o
C-5h 

S-V-H2O2-

25
o
C-5h 

S-V-H2O-

90
o
C-5h 

S-V-H2O-

25
o
C-8h 

BET 

Surface 

Area 

(m²/g) 

3.6  15.4  27.8  30.9  7.7  29.2  25 31.5  34.3  

 

 


