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Introduction
The North Atlantic area is often recognized to have an important 
impact on the European climate. A large part of the winter atmo-
spheric circulation variability in the North Atlantic region is asso-
ciated with the North Atlantic Oscillation (NAO) (Hurrell, 1995) 
which is coupled to the North Atlantic sea surface temperature 
(SST) through latent heat fluxes (Rodwell et al., 1999). The NAO 
influences the underlying ocean and the surrounding continent. 
This major climate oscillation is described with an index defined 
as the difference between the standardized winter sea level pres-
sure (SLP) at the Azores (High) and Iceland (Low) (Appenzeller 
et al., 1998; Hurrell, 1995). The SLP difference drives surface 
winds and winter storms from west to east across the North Atlan-
tic and fluctuates at various timescales (e.g. Appenzeller et al., 
1998; Cook et al., 1998; Hurrell and van Loon, 1997). During 
positive NAO phases (enhanced Azores High and enhanced Ice-
land Low, NAO+), westerly flow is enhanced and moves rela-
tively warm and moist maritime air over much of northwestern 
Europe while enhanced northerly winds over Greenland and 
northeastern Canada result in a drop in temperature over the 
northwestern Atlantic (Hurrell 1995). Opposite patterns of tem-
perature and precipitation are typically observed in western 
Europe during negative phases of the NAO (reduced Azores High 
and reduced Iceland Low, NAO−) and enhanced winter precipita-
tions in the NW Alps (Beniston, 1997; Chapron et al. 2002).

High altitude alpine environments are particularly sensitive to 
climate changes. Several studies have already shown that Euro-
pean alpine glacier mass balance is influenced by NAOw phases 
(e.g. Reichert et al., 2001; Six et al., 2001). Proglacial lacustrine 
sediments are often used to reconstruct paleoclimates and 
paleoenvironments since glacier fluctuations, directly linked to 

winter precipitation and summer temperature, may be recorded in 
detrital sedimentary sequence accumulated in the basin (e.g. 
Chapron et al., 2007; Dahl et al., 2003; Guyard et al., 2007a; Nee-
mann and Niessen, 1994; Nesje, 2009). As bedrock erosion rate 
increases with glacier size and thickness, fluctuations in the 
amount of silt- and clay-sized mineral fraction provide a reliable 
record of glacier activity. Particularly, time series analysis meth-
ods of continuous high-resolution sedimentary records are useful 
tools to decipher decadal to centennial climatic oscillations and to 
identify mechanisms and relationships between different compo-
nents of the climate system (Chapman and Shackleton, 2000; 
Debret et al., 2009; Wanner et al., 2011).

This paper describes clastic supply fluctuations in relation to 
glacial activity from finely laminated sediments retrieved in high 
altitude proglacial Lake Bramant (Grandes Rousses Massif, West-
ern French Alps; Figure 1). We present detrital input periodicities 
and their temporal evolution using continuous wavelet analysis 
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Abstract
Comparison of glacially derived clastic inputs in high altitude proglacial lake Bramant (Western French Alps) with measured North Atlantic Oscillation 
winter (NAOw) index reveals an inverse correlation between ad 1884 and 1968 at the pluridecadal timescale (20–25 years). This reflects periodical 
variations in snow accumulation over Lake Bramant catchment area partly influencing the glacier mass balance in the watershed. Further comparisons with 
reconstructed NAOw index since ad 1500 highlight spatial and temporal variations of the pluridecadal NAOw influence on this alpine climate, especially 
at the end of the ‘Little Ice Age’. In addition, wavelet analysis of continuous proxies of clastic sedimentation over the last 4150 years indicates significant 
pluridecadal variability at frequencies compatible with the NAO (30 years), while periods centered at 60–70 years could also be linked to the North 
Atlantic Ocean–atmosphere internal variability (Atlantic Multidecadal Oscillation (AMO)). The influence of the North Atlantic deep water production on 
the regional alpine climate is also suggested by a significant 550 yr cycle of clastic inputs since 2800 cal. BP. Coupling between the North Atlantic Ocean 
and the atmosphere seems therefore to play a fundamental role on glacier mass balance and climate during the late Holocene in the western Alps.
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and global spectrum in order to examine large-scale climatic 
mechanisms influencing the glacial dynamic and resulting progla-
cial sedimentation over the last 4150 cal. BP.

Setting
The large majority (81%) of glaciers in the Alps are small (<0.5 
km2) (Zemp, 2006). The St. Sorlin glacier (3 km2) located on the 
northern part of the Grandes Rousses Massif (45°7′N, 6°6′E) 
between 2650 m a.s.l. and 3400 m a.s.l. (Figure 1) is sensitive to 
climate changes (Vincent, 2002) and generally considered as rep-
resentative for the NW alpine region (Six et al., 2001; Vincent, 
2002). In the glacial Bramant valley, Lake Bramant (2448 m 
a.s.l.) is the third and lowermost lake of a chain of high altitude 
small proglacial lakes and drains the Côte Blanc glacier and only 
the western part of the St. Sorlin glacier, because of a glacial dif-
fluence on a bedrock knob (Figure 1). Glacial meltwaters are 
naturally filtered by the upper proglacial lakes (Lake Tournant 
and Lake Blanc), which successively retain the coarser particles. 
Today, the outlet of Lake Blanc constitutes the main tributary of 
Lake Bramant. As such, clastic inputs originating from glacial 
melting are mainly characterized by fine detritic elements ranging 
from fine sand to fine silts (Guyard et al., 2007a).

Sediment cores retrieved from the Lake Bramant deep basin 
contain two dark and organic-rich intervals reflecting lower lake-
level periods from 4150 to 3600 cal. BP and from 3300 to 2850 
cal. BP resulting from reduced glacier activity in the drainage 
basin (Guyard et al., 2007a; Figures 2 and 3). The onset of lighter 
clastic proglacial sediments and higher lake level between 3600–
3300 cal. BP and since 2850 cal. BP indicate periods of higher 
glacier activity associated with an upstream diffluence that acts as 
an on–off switch of glacial meltwater supply into the Bramant 
Valley (Chapron et al., 2008; Guyard et al., 2007a). Sediments are 
finely laminated throughout the sequence (Figure 2). Coarser and 
darker laminations are characterized by lower fine detritic ele-
ment contents and higher organic matter contents. The thick-
nesses of these darker laminations are variable.

Materials and methods
Sedimentological analyses and composite sequences
The piston (BRA03) and gravity (BRA03-1) cores were run 
through an ITRAX core Scanner (Mo tube) at INRS-ETE (Quebec 
city) to detect relative variations of geochemical elements from Al 
to U (e.g. Croudace et al., 2006; Guyard et al., 2011) in order to 

Figure 1.  (a) Location of the study area in Western Europe and spatial Spearman correlation between the NAO atmospheric teleconnection 
pattern (defined by Barnston and Livezey, 1987) and winter precipitations (ad 1951–2006) in the Mediterranean (modified from Roberts et 
al., 2012). The shaded areas are significant at the 95% level (−0.2 to −0.4 at the study area located near 45°N/6°E). (b) General location of the 
Grandes Rousses massif in the western French Alps and (c) details of Lake Bramant catchment area (thick dotted line) in the northern part of the 
massif consisting of a chain of proglacial lakes draining the Côte Blanc glacier and a diffluence of the St. Sorlin glacier in the Bramant valley. Several 
generations of moraines are recognized downstream of the St. Sorlin glacier. (d) Photograph (by Michel Caplain) illustrating the St. Sorlin glacier 
and the proglacial lakes Blanc and Bramant. (e) Lake Bramant bathymetry and location of the coring site in the deep basin of the lake.
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investigate fluctuations of glacially derived clastic inputs. Analy-
ses were performed at a downcore resolution of 300 µm for 
BRA03-1 (corresponding to about 12 data points per year on aver-
age; irradiation during 10 s) and 100 µm for BRA03 (correspond-
ing to about 6 data points per year; irradiation during 1s). We used 
the ratio K/Ti as a proxy for glacial flour since K is generally asso-
ciated with fine detrital clay (Croudace et al., 2006) and Ti fluctua-
tions for global detritic inputs (i.e. not necessarily glacially 
derived). Volumetric magnetic susceptibility was measured at 1 
cm intervals on u-channel samples at the University of Florida.

The age–depth model was previously established and is based 
on the combination of 137Cs, 241Am and radiocarbon dating, varve 
counting, the recognition of historical natural events and on the 
regional or local mining activity records (Carozza et al., 2010; 
Chapron et al., 2008; Guyard et al., 2007a). Cores BRA03-1 and 
BRA03 comprise an ad 1884–1968 and a ~4150–100 cal. BP 
sedimentary record, respectively. The composite sequence for 
short core BRA03-1 (Figure 4) was constructed after removing 
the top of the slump associated with the nearby ad 1881 Allemond 
earthquake and 2cm thick flood deposits dated at ad 1904–1905 
and 1908–1910, likely related to major glacier retreat (Guyard et 
al., 2007a, 2007b). In a similar manner, the composite sequence 
of BRA03 was established after removing the base of the slump 
associated with the 1881 Allemond earthquake and the turbidite 
triggered by the ad 1822 Chautagne earthquake (Figure 2; Guyard 
et al., 2007a, 2007b). Both cores were retrieved at the same coring 
site (Figure 1) and the spectral signal obtained as discussed below 
can therefore be compared.

Wavelet analysis
The clastic sedimentary records were investigated using the con-
tinuous wavelet transformation, which is a useful method to ana-
lyze complex non-stationary time series (Torrence and Compo, 

1998; Witt and Schumann, 2005). In this study, the Morlet wave-
let (a Gaussian-modulated sine wave) was used for the continuous 
wavelet transform. The region of the wavelet spectrum in which 
edge effects becomes significant is known as the cone of influ-
ence (COI), defined as the e-folding time for the autocorrelation 
of wavelet power at each scale. The wavelet power spectral den-
sity was calculated for each parameter following Torrence and 
Compo (1998) and the interval of 95% confidence is marked by 
black thin contours. We used red noise background spectrum 
(increasing power with decreasing frequency) to determine the 
significant levels of the global wavelet power spectrum. Raw data 
of clastic fluctuations (reflected by K/Ti and Ti variations) was 
first transformed in temporal data and then resampled every year 
by linear interpolation. A low pass filter was applied to the annual 
data to attenuate the very high frequencies before performing sta-
tistical analyses on lower frequencies (e.g. Boucher et al., 2011; 
Chapron et al., 2002; Six et al., 2001). The power of these lower 
frequencies already present in the raw data was thus increased by 
the filtering process owing to the attenuation of the high frequen-
cies (e.g. noise). For short timescales (e.g. the instrumental 
period), a low pass filter (5- to 11-year running mean) was applied 
to reduce the ‘noise’ of small-scale and transient meteorological 
phenomena not related to large-scale climate variability. For lon-
ger timescales, centennial cycles of clastic fluctuations were 
determined after low pass filtering (100-year running mean) in 
order to study their long-term variations. To focus on pluridecadal 
periodicities, we removed the long-term variation by subtracting 
the 100- years smoothed time series from the annual data follow-
ing Chapron et al. (2002). Once again, a low pass filter (5- to 
11-year running mean) was then applied to attenuate the influence 
of the high frequencies on the signal. All data were normalized to 
the standard deviation.

Cross wavelet transforms (Grinsted et al., 2004) were also 
constructed to examine the variability of the relationship between 

Figure 2.  General simplified lithostratigraphy of the core BRA03 and clastic fluctuations (Ti and K/Ti) since 4150 cal. BP. MS: volumetric 
magnetic susceptibility. The age–depth relationship is detailed in Guyard et al. (2007a). The dark grey highlights periods of local or regional 
mining activity. The thin dotted line illustrates a major sedimentological change at ad 800 (see text for details).
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the NAO and clastic fluctuations since ad 1500. The analysis of 
the covariance of the two time series and the 95% confidence 
level follow the work of Torrence and Compo (1998). The Morlet 
wavelet cross-spectra permit to depict the features common to the 
climatic indices and NAO index and to highlight temporal varia-
tions in their relationship. If the coherence between two series is 
high, the arrows in the coherence spectrum (Figures 4 and 5) 
show the phase between the time series: arrows at horizontal right 
(left) indicate that both time series are in phase (anti-phase) and 
imply a linear relationship. As the influence of the NAO on gla-
cier fluctuations is most pronounced during winter (e.g. Nesje et 
al., 2000), only the winter NAO index (NAOw) (December–Feb-
ruary) is considered here for comparison. Furthermore, since the 

NAO and climate indices as well as the glacier fluctuations are 
highly variable on the annual timescale (e.g. Six et al., 2001), the 
records were smoothed (5- to 11-year running mean) to remove 
the annual variability.

Results and discussion
Glacier fluctuations
The increase of the ratio K/Ti observed between 1650 and 1350 
bc (Figure 3) reflects higher erosion resulting from stronger gla-
cier activity in the catchment. This is in agreement with a wetter 
and colder period documented by a high lake-level period between 
1600 and 1200 bc in west-central Europe (e.g. Holzhauser et al., 

Figure 3.  Comparison between proglacial Lake Bramant clastic sedimentation and the Great Aletsch glacier fluctuations. Modified after 
Holzhauser et al. (2005). Light and dark grey intervals highlight the glacial advance periods correlated with higher K/Ti and Ti inputs, respectively. 
The red dashed line marks the sedimentation change c. ad 800. The glacial activity fluctuations from ad 800 are reflected by Ti variations.  
The yellow zones illustrate higher clastic inputs in Lake Bramant that are correlated with clastic fluctuations in Lake Le Bourget record  
(Debret et al., 2010). LIA: ‘Little Ice Age’. K/Ti and Ti anomalies were smoothed by a 30-year running mean (colour figure available online).
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Figure 4.  NAO winter index (Hurrell, 1995) and Ti fluctuations between ad 1888 and 1965. Both curves are normalized and smoothed by a 
5-year running mean to reveal a common signal between both variables by reducing the annual to pluriannual ‘noise’. The lower panel illustrates 
the results of cross wavelet analysis results which reveal a significant anti-phase relationship between both time series on multidecadal 
timescales (20–25 years) (sampling period: 1 year). The lighter area denotes the COI and black contours represent the 95% confidence level 
based on a red-noise background. When the coherence between the two series is high, arrows at horizontal left (right) in the coherence 
spectrum indicate that both time series are in anti-phase (phase) (colour figure available online).

Figure 5.  Reconstructed NAO winter index (DJF) (Luterbacher et al., 2002) and Ti fluctuations between ad 1500 and 1850. Both curves are 
normalized and smoothed by a 11-year running mean. The lower panel illustrates the results of cross wavelet analysis which reveal a significant and 
variable relationship between both time series on multidecadal timescales (20–25 years) (sampling period: 1 year). The lighter area denotes the COI 
and black contours represent the 95% confidence level based on a red-noise background. When the coherence between the two series is high, the 
arrows at horizontal left (right) in the coherence spectrum indicate that both time series are in anti-phase (phase) (colour figure available online).

2005). The increase of the K/Ti ratio observed between 900–450 
bc and ad 350–550 (Figure 3) is also interpreted as an increase in 
glacial activity and glacial erosion. These two periods correspond 
to late-Holocene cold events described in Wanner et al. (2011) 
and are relatively synchronous to glacial advances in the Swiss 

Alps (Holzhauser et al., 2005) (Figure 3). Indeed, probably 
because of its small size, St. Sorlin glacier may respond to cli-
matic forcing slightly before more continental European glaciers, 
such as the much larger Aletsch glacier (Deroin and Condom, 
2007; Holzhauser et al., 2005). The increase of clastic inputs 
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observed around bc 150 is also consistent with clastic fluctuations 
in the Lake Le Bourget record, indicating enhanced Rhone River 
flooding activity in large alpine valleys (Chapron et al., 2005; 
Debret et al., 2010).

From ~ ad 800, a major lithological change in the sedimenta-
tion is reflected by slightly darker sediments, a drop in magnetic 
susceptibility values and a decreasing trend of K/Ti content 
(Figures 2 and 3), as well as by a rise of measured gamma den-
sity values and by less sorted and slightly coarser silty sediments 
(Guyard et al., 2007a). This mineralogical and/or grain size 
change is probably associated with a sedimentary source variation 
and could result from sedimentary filling of the uppermost pro-
glacial and shallow Lake Tournant (Figure 1) following the 
regional alpine glacier advance (e.g. Holzhauser et al., 2005) and 
the associated late-Holocene cold event (Wanner et al., 2011). 
This is consistent with a similar change in the sedimentary infill 
observed in Lake Tournant at the end of the LIA (Shaw et al., 
1958). As a result, the glacial activity fluctuations from ad 800 
become better recorded in Lake Bramant by Ti variations which 
probably reflect coarser grain size and indicate glacial advance 
between ad 800 and 900, around ad 1200 and since ad 1350 
(Figure 3). These periods are synchronous with glacial advances 
in the Swiss Alps (Holzhauser et al., 2005; Figure 3), with higher 
lake level periods in Western Europe (Magny, 2004) and with 
clastic fluctuations in Lake Le Bourget record (Chapron et al., 
2002, 2005; Debret et al., 2010).

The LIA was dated south of the Massif between ad 1350 and 
1880 and resulted in the lowering of glacial equilibrium line alti-
tude (ELA) in the western French Alps and intense flooding in the 
alpine valleys (Chapron et al., 2007; Vincent et al., 2005). Maxi-
mum Ti inputs around ad 1350, between ad 1580 and 1620 and ad 
1820–1850 (Figure 3) are consistent with LIA maximum glacial 
expansion in the Alps (e.g. Nussbaumer et al., 2007). Significant 
glacial fluctuations also occurred during the 18th century and are 
indicated by darker sediments with lower Ti contents, suggesting 
an elevation of the ELA in the drainage basin (reduced glacier 
activity). This period is also reflected by more organic sediments 
in proglacial Lake Blanc Huez, located in the southern part of the 
Massif (Chapron et al., 2007).

Impact of the NAO on Lake Bramant recent 
sedimentation
Direct correlation between the NAOw index measured since 1880 
(Hurrell, 1995) and glacial clastic inputs over Lake Bramant 
watershed is weak, reflecting the relatively low relationship 
between alpine glacier mass balance and NAO fluctuations at the 
annual timescale (see also Imhof et al., 2012; Marzeion and Nesje, 
2012; Six et al., 2001). Nevertheless, by reducing this annual 
‘noise’ (running mean), the comparison of the time series revealed 
an anticorrelation between the glacial meltwater supply (reflected 
by Ti fluctuations) and the measured NAOw index at decadal tim-
escales (Figure 4). This inverse relationship thus suggests oscilla-
tions in snow precipitation and accumulation during late autumn 
and winter over Lake Bramant catchment area influencing the St.  
Sorlin and Côte Blanc glacier mass balances and erosive processes 
over the catchment at decadal timescales (enhanced precipitation 
and snow accumulation during NAO− phases). In addition, the 
cross wavelet analysis confirms a relatively strong anti-phase rela-
tionship between both time series at the multidecadal timescales 
(20–25 years), while multiannual variability appears to be less cor-
related to the NAO (Figure 4). This reflects the complexity of gla-
cial systems and dynamics. Moreover, the 20–25 year periodicity 
is consistent with fluctuations of the NAOw index at decadal tim-
escales (e.g. Cook et al., 1998; Rogers, 1984).

NAO+ phases are generally correlated with anomalously low 
precipitation and higher than average temperatures during the 

winter in southern and much of Central Europe, including the 
Alps (Beniston and Jungo, 2002; Wanner et al., 1997), while 
heavier-than-average precipitations are observed over northern 
Europe and Scandinavia (Hurrell and van Loon, 1997; Selten et 
al., 1999). These conditions result in reduced winter accumulation 
and lower mass balance (ELA elevation) of European alpine gla-
ciers and thus, after a certain delay, to their retreat (Nesje et al., 
2000; Reichert et al., 2001; Six et al., 2001). Six et al. (2001) 
found that the annual NAO index explains at best 36% of the St. 
Sorlin annual mass balance variance (r = −0.6) while Reichert et 
al. (2001) found an inverse relationship between decadal varia-
tions in the NAOw index and the Rhone Glacier (Switzerland) 
mass balance (r = −0.64) using a modeling approach.

On the other hand, the NAO influence on mass balance of 
Scandinavian glaciers is positive and more pronounced than in 
the alpine region (Imhof et al., 2012; Six et al., 2001), probably 
because the dynamic of Scandinavian maritime glaciers are 
mostly driven by winter precipitations originating from the North 
Atlantic area, while the alpine glaciers are more sensitive to sum-
mer temperature (which is less influenced by NAO) (Reichert et 
al., 2001; Steiner et al., 2008). During the 20th century, glacier 
fluctuations observed in the alpine region are essentially con-
trolled by mean summer temperature (Vincent, 2002). Further-
more, as the Alps are situated in the transition zone between 
northern Europe and southern Europe, the NAO influence on 
European alpine climate is more complex and sometimes equivo-
cal (Casty et al., 2005; Scherrer et al., 2004).

Impact of the NAO during the LIA
Further comparison between clastic inputs and reconstructed 
NAOw index (Luterbacher et al., 2002) highlights a negative cor-
relation between AD 1500 and 1650 similar to that during the 
20th century followed by a positive correlation between ad 1650 
and 1850. This could indicate that the multidecadal NAO influ-
ence (20–25 years) was not constant during the LIA, as also 
shown by the cross wavelet results (Figure 5). These results may 
thus reflect the non-stationarity and non-linearity characteristics 
of large-scale phenomena on alpine glacier mass balance and 
climate.

The glacier variations in the European alpine area are asyn-
chronous with the glacial fluctuations in Scandinavia partly 
because of the multidecadal trends in the north–south dipole 
NAO pattern (e.g. Imhof et al., 2012; Nesje and Dahl, 2003). The 
negative and weaker correlation (compared with Scandinavian 
glaciers) between NAOw index and Ti inputs in Lake Bramant 
probably indicate that decreasing temperature may be the domi-
nating factor responsible for the LIA glacier advances in the 
Grandes Rousses massif until ad 1650. This is in agreement with 
summer temperature reconstruction over the Alps (Büntgen et al., 
2006) indicating a prolonged cooling during ad 1350–1700. The 
following positive correlation observed between ad 1700 and 
1850 could reflect hemispheric-scale atmospheric circulation 
reorganizations during the last part of the LIA and a southern shift 
of westerlies, since an increase of winter precipitation would be 
responsible for glacier advance in western Scandinavian in the 
early 18th century (Nesje and Dahl, 2003; Nesje et al., 2008). A 
higher influence of winter precipitation during the last LIA phase 
of alpine glacier advance was also proposed by Vincent et al. 
(2005), who demonstrated an increase of at least 25% of winter 
precipitation between ad 1760 and 1850. Nevertheless, as the 
analysis of regional reconstructed precipitation variability over 
the last 500 years reveals major non-stationarities with large-scale 
circulation patterns (e.g. Pauling et al., 2006), other modes of 
atmospheric circulation may thus have controlled Alpine climate 
variability through the recent past, as proposed by Casty et al. 
(2005).
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North Atlantic oceanic forcing

On longer timescales, clastic supply fluctuations depict significant 
periodicities centered at 550–600 years since the last significative 
St. Sorlin glacier advance c. 2800 cal. BP (e.g. Chapron et al., 
2008) (Figure 6). This low-frequency fluctuation was associated 
with changes in North Atlantic deep water (NADW) circulation 
(Chapman and Shackleton, 2000) which are also coherent with 
fluctuations in atmospheric conditions over Greenland (Stuiver et 
al., 1995). Our results thus imply significant impact of late-Holo-
cene climate variability over the North Atlantic region on alpine 
climate and glacier mass balance at the centennial timescale.

Furthermore, clastic fluctuations depict significant pluri-
decadal periodicities centered at 30 years and especially at 60–70 
years (Figure 7). These pluridecadal oscillations were observed 
throughout the sequence within Ti fluctuations, while they were 
not recorded during the two warmer periods occurring during the 
Bronze Age within K/Ti (and K) fluctuations. They are consistent 

with typical periods of the NAO (Appenzeller et al., 1998; Cook 
et al., 1998; Hurrell and van Loon, 1997; Luterbacher et al., 1999) 
and in North Atlantic climate variability (Schlesinger and Raman-
kutty, 1994). We suggest that darker laminations observed 
throughout the record (Figure 2) are associated with extreme and/
or long NAO+ phases possibly forced by SST pluridecadal vari-
ability in the North Atlantic Ocean and result from associated 
warmer and drier conditions. Similarly, both organic intervals 
deposited during the Bronze Age may reflect prolonged NAO+ 
periods.

On decadal and longer timescales, the variation in the NAO 
could be forced by the North Atlantic SST variability (Kushnir, 
1994; Rodwell et al., 1999) and there could possibly be a coherent 
but sporadic relationship between the amplitude and phase of the 
NAO and the SST (Higuchi et al., 1999). According to these 
authors, the amplitude and phase of the interdecadal component 
of the NAO are modulated by the North Atlantic SST at cycles of 
30 and 60 years, respectively. The NAO may also influence the 

Figure 6.  Low frequency variability of clastic supply. (a) Ti fluctuations between 4100 and 100 cal. BP and (b) K/Ti between 2850 and 100 cal. 
BP. Both time series are smoothed by a 100-year running mean. Sampling period: 4 years. The lighter area denotes the COI and black contours 
represent the 95% confidence level based on a red-noise background (colour figure available online).
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intensity variability of deep convection and thus of the meridional 
overturning circulation (MOC) (Curry et al., 1998; Dickson et al., 
1996), which also exhibits variability at periods near 30 and 60 
years in a coupled atmosphere/ocean general circulation model 
(Zhu and Jungklaus, 2008).

On the other hand, Schlesinger and Ramankutty (1994) iden-
tified in the global climate system a temperature oscillation of 
65–70 years attributed to an internal oscillation of the ocean/
atmosphere system. Furthermore, Knudsen et al. (2011) showed 
that a persistent 55–70 years oscillation characterized the North 
Atlantic Ocean–atmosphere variability over the last 8000 years. 
The roughly 65-year oscillation of North Atlantic SSTs (Atlantic 
Multidecadal Oscillation, AMO; Kerr, 2000) is assumed to be 
related to multidecadal fluctuations of the thermohaline circula-
tion (Delworth and Mann, 2000; Knight et al., 2005). This per-
sistent natural oscillatory mode has been recognized to affect 
climate on surrounding continents because of changes in the 

intensity and direction of propagation of cyclones and anticy-
clones (e.g. Knight et al., 2006). In Europe, positive AMO is 
associated with positive near-surface air temperature anomalies. 
In addition, glacier mass balance in Switzerland has been 
recently significantly anticorrelated to the Atlantic Multidecadal 
Oscillation (AMO) index (Huss et al., 2010). This is consistent 
with the decadal fluctuations of the North Atlantic climate influ-
encing European surface-temperature, precipitation and stormi-
ness through evaporation, precipitation and atmospheric-heating 
processes (Keenlyside et al., 2008; Rodwell et al., 1999).  
Furthermore, Sutton and Hodson (2005) provided evidence that 
‘basin-scale changes in the Atlantic Ocean, probably related to 
the thermohaline circulation, have been an important driver of 
multidecadal variations in the summertime climate of western 
Europe’. The oscillations of clastic supply recorded in progla-
cial Lake Bramant thus likely indicate that North Atlantic oce-
anic variability may influence glacier mass balance present in 

Figure 7.  Pluridecadal variability of Ti (a) and K/Ti (b) over the last 4100 years obtained by removing the long-term variations from the annual 
time series as in Chapron et al. (2002). Sampling period: 4 years. The lighter area denotes the COI and black contours represent the 95% 
confidence level based on a red-noise background (colour figure available online).
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the watershed and regional climate through coupling with the 
atmosphere at various timescales.

Conclusions
The geographic location and the high altitude of the Grandes Rous-
ses glaciers in the Western French Alps may explain their relatively 
high sensibility to the west-component atmospheric fluxes originat-
ing from the Atlantic Ocean, i.e. to depression regimes directly 
reflected by the NAO index. The glacial advances in the massif 
occurred generally slightly earlier than the much larger Swiss 
alpine glaciers, probably because of their small size which makes 
them more sensitive to climatic fluctuations. Clastic fluctuations 
exhibit enhanced pluridecadal periodicities that appear to be related 
to similar NAO variations. A NAO-like period in our data would be 
a consequence of variations in rainfall and snow accumulation dur-
ing late autumn and winter over the watershed of proglacial Lake 
Bramant, which would partly influence glacier mass balance. The 
cycle centered at 60–70 years could also be related to internal vari-
ability between the North Atlantic Ocean/atmosphere, possibly 
reflecting the Atlantic Multidecadal Oscillation. In addition, longer 
periods (550–600 years) observed in clastic fluctuations since 2800 
cal. BP strongly suggest that other large-scale climatic phenomena 
such as variations in NADW production is leading to changes in 
temperature, precipitation and storminess in the alpine massif. The 
North Atlantic Ocean and climate variability seem therefore to play 
a major role on these high altitude alpine climate and glacier mass 
balance during the late Holocene.
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